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ABSTRACT. This paper deals with the problem of robust stability for a class of
nonlinear neutral time delay systems with convex polytopic uncertainties. The
time-delay is assumed to be a time-varying non-differentiable function belong-
ing to a given interval. By constructing a set of improved Lyapunov-Krasovskii
parameter-dependent functionals and using linear matrix inequality (LMI) tech-
nique, new exponential estimate for the robust stability of the system is estab-
lished. The delay-dependent sufficient conditions for the robust stability of the
systems are presented in terms of LMIs. A numerical example is given to show
the effectiveness of the results.

1. INTRODUCTIONS

Time-delay occurs in most of practical models, such as, aircraft stabilization,
chemical engineering systems, inferred grinding model, manual control, neural net-
work, nuclear reactor, population dynamic model, ship stabilization, and systems
with lossless transmission lines. The existence of this time-delay may be the source
for instability and bad performance of the system. Hence, the problem of stability
analysis for time-delay systems has received much attention of many researchers in
recent years, see [2, 4, 6, 10, 14] and the references therein. In practice, the system
model can be described by functional differential equations of neutral type, which
depends on both state and state derivatives. Neutral system examples include dis-
tributed networks, heat exchanges, and processes involving steam. Recently, the sta-
bility analysis of neutral systems has been widely investigated by many researchers,
see [9, 11, 13]. Theoretically, the linear neutral system with time delays is much
more complicated, especially for the case where the system matrices belong to some
convex polytope. Based on parameter-dependent Lyapunov functionals, sufficient
conditions conditions for asymptotic stability of linear polytopic systems have been
proposed in [12]. Some delay-dependent conditions for asymptotic stability have
been derived in [5, 7, 15, 16], which improve the estimate of the stability domain.
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However, some conservatism still remain since common matrix variable required to
satisfy the whole sets of LMIs and the time delays are assumed to be either constants
or differentiable and upper bounded. To the best of our knowledge, so far, the result
on the stability for nonlinear neutral polytopic systems with interval time-varying
delays has not been fully studied. The result of [12] for linear neutral polytopic sys-
tem with constant delays. Paper [13] deals with asymptotic stability of nonlinear
neutral systems with time-varying delays, but without polytopic uncertainties and
the time-varying delay function is assumed to be differentiable.

In this paper, we revisit the robust exponential stability problem for nonlinear
neutral systems with both convex polytopic uncertainties and interval time-varying
delays. The novel feature of the results obtained in this paper is twofold. First,
the system considered in this paper is nonlinear neutral subjected to interval, non-
differentiable delay, which means that the lower and upper bounds for the time-
varying delay are available, but the delay function is bounded but not necessary to
be differentiable. This allows the time-delay to be a fast time-varying function and
the lower bound is not restricted to being zero. Second, by constructing a set of
new parameter-dependent Lyapunov Krasovskii functionals, novel delay-dependent
sufficient conditions for the exponential stability of the system are obtained in terms
of LMI conditions.

The paper is organized as follows. Section 2 presents notations, definitions and
some well-known technical propositions needed for the proof of the main result.
Delay-dependent exponential stability conditions of the system are presented in
Section 3. An numerical example illustrated effectiveness of the conditions is given
in Section 4.

2. PRELIMINARIES

The following notations will be used throughout this paper. R* denotes the set of
all nonnegative real numbers; R" denotes the n—dimensional Euclidean space with
the norm ||.|| and scalar product ="y of two vectors x,y; Amax(A) (Amin(A), resp.)
denotes the maximal (the minimal, resp.) number of the real part of eigenvalues
of A; AT denotes the transpose of the matrix A and I denote the identity matrix;
0,, denote the zero matrix in R". @ > 0 (Q > 0, resp.) means that @ is semi-
positive definite (positive definite, resp.) ie. (Qz,z) > 0 for all x € R™ (resp.
(Qr,x) > 0 for all z # 0); A > B means A — B > 0; C!([a, b], R") denotes the set
of all continuously differentiable functions on [a,b]. The segment of the trajectory
x(t) is denoted by x; = {x(t + s) : s € [~h,0]}.

Consider a nonlinear neutral system with interval state-delay and convex poly-
topic uncertainties of the form
(2.1)

£(t) = D(§)a(t — 1) = Ao(§)a(t) + Ar(§)x(t — h(t)) + fe(t, z(t), z(t — h(t))), t =0,

,I(t) = ¢(t)a te [_Ea 0]7

where z(t) € R" is the system state; time-varying delay function h(t) satisfies the
conditions

0 < hyp < (1) < ho,
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and h = max{h,, hy}. The state-space data are subject to uncertainties and
belong to the polytope 2 given by

p

p
Q= {[Ao,Al,D,f](f) = &[Ao, A, D, fi], >0, & = 1} ;

i=1 i=1
where Ag;, A1;, D;, i =1,...,p, are given constant matrices with appropriate dimen-
sions and f; := f;(t,.) are given vector functions satisfying

(22) Hfi(tvxvy)H2 Sa%z‘|x||2+ai”y‘|27 i:1,2,...,p,V($,y),t20.
The initial function ¢ € C*([—h,0], R") with the norm

lol = sup \/I6(®)]12 + 16(e)]2

—h<t<0

Definition 2.1. Given o > 0. System (2.1) is a—exponentially stable if every
solution x(t, ¢) of the system satisfies the following condition:

Fy>0: at, ) <Aldlle™™, vt=0.

We introduce the following technical well-known propositions, which will be used
in the proof of our results.

Proposition 2.2 (Schur complement Lemma [1]). For given matrices X,Y, Z with
appropriate dimensions satisfying X = X', YT =Y >0. Then X + Z'Y1Z < 0
if and only if

X Zz7 -Y Z

[Z —Y] <0 or {ZT X] < 0.

Proposition 2.3. Let S be a symmetric positive definite matriz. Then, for any
x,y € R" and matriz F', we have

2Fy,z) — (Sy,y) < (FST'FTz,z).
The proof of the above proposition is easily derived from completing the square:
(S(y—S™FTz),y — S~ FTz) > 0.

Proposition 2.4 ([3]). For any symmetric positive definite matriz W, scalar v > 0
and vector function w : [0,v] — R"™ such that the concerned integrals are well
defined, then

[/OVW(S)dS]TW [/wa(s)ds] < ,,/OV wT (s)Ww(s)ds.

3. MAIN RESULT

Let Uy, (k=1,...,7,i=1,...,p), M be n xn matrices, P;, Q;, R;, S;, T;, Z;, (i =
1,...,p), be symmetric positive definite matrices and constants a > 0,e > 0, we
denote

EZ(PjaQ]7R]7S]7T77ZJ?uJ) =
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(= T = Trr,. T Trr. = =

En Ay Uz = AgUsy Uy + ‘_?OiU5J =16 =17
* —R; Unglz‘ 0 —U2j UQjDi U2j

= ‘ Trr. 77T Trr . T, Tr7.. T Trr .
* * * * =55 U5jDi — Us; U5j —Ur;j
* * * * =66 UGTj + D;FUU
« % * * * =77
where

B = AG(P + Uyj) + (P + Uyj) Avi + eag; I + Q; + Ry — Tj;
Ei13 = PjAu + U1TjA1i + ALUs; + Ty;

E16 = P;D; + ULD; + AUs;;

Eir = A&U?j + P + Uirj;

Ss3 = —Tj — Zj + A[[Us; + Ug; Ay, + eai, I

Es5 = —Usj — Ug; + Sj + W3, T + (har — han)* Z;

Ee6 = —S; + D, Us; + Ud; D;

Eor = —el + U;rj + Uzj,

M = diag{ M, Og,, }

Al = 121],1213 )\min(Pj)a Ap = fg]agxp )\max(-Pj)v )\Q = Hl]aX /\max(Qj)v AR = m]aX Amaa((fij')y

As = max )\max(Sj)v AT = max )\max(T‘j)a Az = max )\max(Zj)7
J J J

1
Ne = Ap + hndg + T(Ar + As) + 562 (W Ar + (o = hon)? (s + hn)Az).

p
[P7Q7R757Ta Z](f) - Z&][F)WQJ’RJ’SJ’E’ZJ]’
7j=1

p
i=1

Theorem 3.1. Assume that, for system (2.1), there exist matrices Uy;, Ua;, Usi, U,
Usi,Usi, Uz (1 = 1,...,p), a symmetric semi-positive definite matriz M, symmetric
positive definite matrices P;, Q;, R;, S;, T;, Zi, (i = 1,...,p), and a positive number
€, such that the following linear matrix inequalities hold:

(3.1)  Ei(F, Qi Ri, S, T3, Zi, Us) + M <0, i=1,...,p;

—_ — 2
(3.2)  Ei(P;,Qy, R;,S;, Ty, Z;,U;) + E;(P;, Qi, Ry, Si, Ti, Zi, Uy) — EM <0,

t=1,....p—1, 5=1+1,....p.
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Then exists a positive number a, such that every solution xz(t,®) of the system
satisfies

A _
le(t o)l < [T Nele™, £20, VYae(0al
1
Proof. From the conditions (3.1), there exists § > 0 such that
EZ(PZ’QlaRla‘S’l’naZuuz)+M<—51, Z:1,2,,p
Consider the equation

pla) = 2aAp + <1 — 6_2'”) (Ar+ As) + (1 — e_Qahm>)\Q

+ 12, (eQO‘hM - 1) Ar + (hM - hm)2<€2ahM - 1))\2.

Note that, the function p(«) is continuous and strictly increasing in a € [0, 00),
p(0) =0, p(a) = 00 as @ — oco. Hence, there is a unique positive solution a of the

equation p(a) = — and p(a) < 0 for all a € (0, ay]. For any a € (0, ], consider
p p

the following Lyapunov-Krasovskii functional

6
(3.3) V() =Y Vi,
i=1

where,

= [ © 20057 () 5(€)i(s)ds,

t—1
t t
Vs = h / / 20 O0=t+har) 3T (0)T(€)2(0)dbds,
t—ha Vs

t—hm

Vo = (har — hun) / / t 20=t+ha) 5T () 7(€)2:(0)dOds,
t

—hpy s
and a > 0 will be defined.
It is easy to verify from (3.3) that

(3.4) Mlz@I? < Viae) < dallail?, € R,
Taking derivative of V; along trajectories of system (2.1) we have
Vi =227 (8) P(£)&(1)
— 2T (1) P(§)40(€) + Ao(&) TP(&)] 2(1

+ 227 (1)P(&) [A1(©)(t — h()) + D(E)a(t — 7) + e,
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where, for convenient, we denote f¢ := fe(t,z(t), z(t — h(t))) = Z§:1 &t
From (2.2) we obtain

af;x' (z(t) +ala’ (t— b))zt —h(t) — f] f; >0, j=1,...,p,

and hence,
(3.5) Z [adjaT @) + atjaT (= he)alt - h®) - £ 1] = 0.

By completing the square we have

M@

7 fe=(;

& jf(;; €jfj>

5 FTH+2> 861

1<j

—

IN

I
M”@ TIM@ .

S+ G&GUTfi+ 1 1)

1<j

)(Z &178) = Sl
j=1

<.
Il
—_

I
II@"@

Then, it follows from (3.5) that
elao(€)’xT (1) (t) + a1 (€)®xT (t — h(t))ax(t — h(t)) — ngfg} >0,

for any € > 0, where ag(£)? := Z?Zl fja%j and ay(£)? := Z§:1 Qa%j. Therefore, the
derivative of V] satisfies

Vi < 2T() [P(€)Ao(€) + Ao(&)TP(€) + eao(€)*1|w(t)
(3.6) + 20T (O)P(E) [A1(©a(t — h(t) + D()i(t — 7) + ]
+ e[a (€T (t — h(t)w(t — h(t)) — F fe].
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Next, taking derivatives of Vi, k = 2,...,6, along trajectories of system (2.1) we
obtain

(3.7)
Vo =2t (1)Q(€)a(t) — e e (t — hyn)Q(E)2(t — hn) — 2aV;
Vs =z  (H)R(E)x(t) — e 2TxT (t — T)R(E)x(t — T) — 2aV3;
Vi=a@"(6)S(&)i(t) — e 27aT (t — 7)S(€)i(t — 7) — 2aVy;
Vs = h2,e2h i T ()T (€)d(t) — hay t 2 ha) 3 T (T (€)i(s)ds — 2aVs
t—hag

< REeehm i V(T (€)i(t) — hayy - ET($)T(&)d(s)ds — 2aV;

Vo = (har — hun)2®Mm a7 () Z(€)(2)

t—hm
— (hat — o) / 2ol 5T () 7(¢)i(s)ds — 2V
t

—hn

< (har — h)?e®*Mm @ T (4) Z(€)d(t)

t—hm
— (hat = h) / 7 (5)Z(€)i(s)ds — 2aVe.

—h
Furthermore, by applying Proposition 2.4 and the Leibniz-Newton formula, we have
t t

—has T (s)T(€)i(s)ds < —h(t)/ ET(s)T(&)i(s)ds

t—hs t—h(t)

t T t
(3.8) < - [ /t _h(t)a’c(s)ds T(¢) /t _h(t)j;(s)ds]
<~ [tt) — ot — h)] T [wt) — (s — h(0)];
and
(39) t—hm t—hm
s =) [T (6)2€)i5)ds < ~(h(0) = ) [ o 3T Z(@it)ds
t—hm T t—hm
< - [/t—h(t) x(s)ds| Z(&) /t_h(t) x(s)ds]

!
< —[(t = hm) = 2t = h(®)] Z(&) [0t = hm) — w(t = h(1))].

By using the following identity

—i(t) + D(§)&(t — 7) + Ao(§)x(t) + Ar(§)x(t — h(t)) + fe = 0,
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we have
22T OUE)T + 2T (t = )T + 2T (t — h(E)Us(€)T
(810) 42T (t—hn)Un(&)T +3TOUs(O)T +iT(t = 1)U + L U7(©)]
x [ (t) + D)t — 7) + Ao()a(t) + Ar(€)a(t — h(t)) + fe| = 0.
Combining from (3.6)-(3.10) we have
(3.11) V(t, ) + 20V (t,2,) < ' (H)@(E)n(t),

where,
') =[zT(t) =T(t—7) a"(t—h(t) zT({t—hy) @'(t

)
and

[@11(€) Ao (&)TU(E) ®13(¢) ®14(§)  Pus(

—e 20TR(E)  Ua(&)TA1(€) 0 —U2(<

(

*

P33(8) P34(§) P35

() = * Dyy(§) Uy

¥ K X X ¥ ¥

* * * D55(¢) P56 (&) P57(&)
* * * * D6 (€) De7(€)
* * * * * ‘1377( )

@11(€) = [40(6) + a1] (&) + P(©)[A0(&) + 0] + Ao(&)TVL(E) + U1(&) Aole)
+ eag(€)*1 + Q(€) + R(§) — T(¢);
P(§)A1(€) + U1(€) T A1 (€) + Ao(€) TUs &) + T(€);

P13(¢) =

®14(8) = Ao(§)TUL(E);  P15(6) = —U1(§)T + Ao()TUs(8);

®16(¢) = P(E)D(E) + Ui (&) TD(&) + Ao(€)TUs ();

D17(£) = P(€) + U1(9)T + Ao (&)U (&)

Dy3(&) = —T(&) — Z(€) + A1(&) TU3(€) + Us(&) T A1 (&) + €ar (€)1

®34(8) = Z() + A1(©)TUL(E);  ®35(8) = —Us(&)T + A1(&)TUs (€);

D36(¢) = Us(€)TD(E) + A1) TUs(&);  ®37(&) = Us(§)T + Ar(&)TU(8);
Dy (&) = —e 2MmQ(E) — Z(8);

Os55(8) = S(E) + hire® ™M T (&) + (har — hm)*e* ™ Z(€) — Us(£) — Us(§)T;
O56(¢) = Us(§)TD(E) — Us(&);  ®s7(8) = Us(&)T — Ur(€);

De(E) = —e27S() + Us(€)TD(E) + D(&)TUs(€); Pr() = Us(€)" + D(&)TUr(€);
Dr7(€) = —el + Uz (&) + Uz (&)

Using property Zi:l & =1 we have

p
V(t @) + 20V (t,20) < 0" (0] D €224(P Qi Ry, i, T, ZiUs)
1=1
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p—1 p
+y > 5@'5]'(51'(13;»@1731,5]'7137Zj’Uj)+Ej(Pi,Qi,Ri,Si,Ti,Zi,Ui))}n(t)

i=1 j=i+1
p
+) &n () Tin(t
=1
where,
U, = diag{QaPi, (1- e*2aT)R,-, 0, (1— efzahm)Qi,
2, (e20h _ 1)T 4 (hag — hon)2 (€220 —1)Z;, (1 — e=297)8;, o}.

Therefore,

V(t,z) +2aV (t,x) <" Zfl + 72 Z &¢& | Min(t)

3.12 =1 j=itl
(3.12) )

=5(3 &) IO + p(@) (o)
=1

Observe that,

(p—1) Z —22 Z &5 = E_j d G- =0,

i=1 j=i+1 i=1 j=i+1
(€)= (3e) -1,
=1 =1
then from (3.12) we have
(3.13) V(t,a0) + 20V (t,10) < [p(a) - 2} In@®))2, ¢>o.
For any a € (0, o] we have
V() + 20V (t,20) < 07(0) o) — & Infe)]? < 0

which implies
V(t,zr) < V(0,20)e 2 ¢t > 0.

Taking (3.4) into account, we obtain

)\ —Q
||x<t,¢>||s\/f||¢||e L0

which concludes the proof. O

Remark 3.2. In this paper, by using an improved Lyapunov-Krasovskii functional
we obtain directly the exponential estimate for solutions of polytopic neutral system
(2.1) without using assumptions on the stability of neutral operator [8].
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Remark 3.3. It is worth noting that the condition (3.1) means the asymptotic
stability of each i‘"-subsystem, while the condition (3.2) implies the asymptotic
stability of the ij**-subsystems and if p = 1 this condition is automatically removed.
Then theorem 3.1 is reduced to the exponential stability criterion for neutral systems
with nonlinear perturbations and time-varying delays.

Remark 3.4. Theorem 3.1 gives conditions for the exponential stability of neutral
systems with nonlinear, polytopic type uncertainties and interval-time varying state
delay. These conditions are derived in terms of linear matrix inequalities which can
be solved effectively by various computation tools [1].

4. AN EXAMPLE

Consider the nonlinear neutral system (2.1), where
-1 0 -1 -1 -3 -1
Ao = [_1 _J ;A = [ 0 _2} , Aoz = [ 0 _1] ;

—0.5 0.1 0.1 —0.1 —0.2 0.4
Au = [—0.1 0.2} A= [0.1 —0.5] A= [—0.5 0.4] ’

0.1 0.1 0.1 0 -01 0
Dl_[o 0.1]’ DZ_{O —0.1]’ D3_[0 0.1}’
CLOi:(IlZ’:O.l, i:1,2,3.
Delay function h(t) = 0.5 + d(t), where

d(t) = 0.5sin?t if i€ T = Ukso[2km, (2k + 1)7]
dit)y=0 if te R"\Z.

It is worth noting that, the delay function h(t) is non-differentiable, interval time
varying in RT. Therefore, the stability criteria proposed in [9, 13, 15, 16] are not
applicable to this system. We have h,, = 0.5, hjy; = 1,7 = 1. By LMI toolbox of
Matlab, we find that LMI conditions (3.1), (3.2) are satisfied with M = I,e = 102
and

P [85.5661  6.9397 p, — 746947 9.2670 ]

17 6.9397 526648 “? T [9.2670 147.8895]

P — [137.3857 13.1879 01 = 28.8406 11.1200]

57 | 13.1879  41.1895) " ' T [11.1200 21.8652]

0, — [32:6350 1631001 ) [127.5799  2.2804]
27 |16.3100 82.0828|° 3T | 2.2804 18.3659]

R [271430 12.2736] o, [20.9222 27.8139
L7 12.2736 15.5309)° T T |27.8139 78.6832)°

R [120.2473 182163) . [12.4857 18011
571182163 84003 | 1T | 1.8011 19.8902]°

g, _ [17:2561 05387 g, _ [13:0859  1.1669
27105387 13.0135|> 27 | 1.1669 11.1598]"°
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—6.1901 15.8206 19.4778 77.8855

T — 12.2321 —4.8051 7. — 26.7516 —1.4499
37 1-4.8051 14.9685 |’ 17| -1.4499  56.5555 |’

T — [33.9760 —6.1901} - [13.7778 19.4778] 7

5 [473321 —9.1867] [ 655498 —16.5890
7 1-9.1867 50.2910|° 7 |-16.5890 40.6353 |’
[ | 114849 —10.1346) [ 114849  —10.1346
1T [-103104 59741 |0 TP T |-10.3104  5.9741 |
e — | 11:4849 —10.1346] ur — [ 11.4849  —10.1346
BT -10.3104 59741 |0 7T |-10.3104 59741 |
Unn — [2-3684 0.2624 | e — [—1.1523 3.9144
27 14.3405 —2.9379] " 7% T |—6.6555 0.8054]
e, — [95:9962  —9.3215]  _ [14.9702  5.0667
L7 183719 41.0290|° “™ T |-2.6189 17.8526]°
oy — [ 193078 035277 . [18.6734 —3.1088
771202927 22.2819|7 7 T | -4.6628 17.0935 |’

Uy =Uy =Ug; = 0,1 =1,2,3,Us2 = Usz = 0.
Moreover, from (3.1) we find that
Zi( P, Qi Riy Si, Ty, Zi,Uy) < =M =01, i=1,2,3,
where 6 = 1.6079. Taking some computation by theorem 3.1, we have

ple) = 298.098 + 127.6275(1 - e—a) + 143.4444(1 - 6—2") +101.7989 <e2°‘ - 1)

and the positive solution of the equation p(a) = §/3 is a, = 0.5850722618 x 1073.
Applying Theorem 3.1, the system is globally exponentially stable with any con-
vergence rate a € (0,ay]. For a = 0.00058, every solution z(t,¢) of the system
satisfies

z(t, d)|| < 3.2327||¢b||e 000038 ¢ > .
| 2(

5. CONCLUSIONS

In this paper, the problem of the robust exponential stability for nonlinear neu-
tral differential equations with interval non-differentiable time-varying delays and
polytopic uncertainties has been studied. By constructing a set of new parameter-
dependent Lyapunov functionals, novel delay-dependent conditions for the robust
exponential stability are derived in terms of linear matrix inequalities, which allow
simultaneous computation of two bounds that characterize the exponential stabil-

ity rate of the solution and can be easily determined by utilizing MATLABs LMI
Control Toolbox.
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