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The following concept [3] is a proper generalization of nontrivial weakly compat-
ible maps which have a coincidence point.

Definition 2. Two selfmaps f and g of a set X are occasionally weakly compatible
(owc) iff there is a point x in X which is a coincidence point of f and g at which f
and g commute.

We shall also need the following lemma from [8] ( see also [1] ).

Lemma 3. Let X be a set, f, g owc selfmaps of X. If f and g have a unique point
of coincidence, w := fx = gx, then w is the unique common fixed point of f and g.

Our theorems are proved in symmetric spaces which are more general than metric
spaces.

Definition 4. Let X be a set. A mapping d : X × X → [0,∞) is said to be
symmetric on X if it satisfies the conditions;

d(x, y) = 0 iff x = y, and d(x, y) = d(y, x) for x, y ∈ X.

Let A ∈ (0,∞], R+
A = [0, A). Define,

z[0, A) = {F : R+
A −→ R : F is nondecreasing, F (0) = 0 and F (t) > 0 for each

t ∈ (0, A)} and
Ψ[0, A) = {ψ : R+

A −→ R : ψ is nondecreasing ψ(t) > t, for each t ∈ (0, A)}.

Theorem 5. Let X be a set with a symmetric d. Let D = sup{d(x, y) : x, y ∈ X}.
Suppose that f, g, S, T are selfmaps of X and that the pairs {f, S} and {g, T} are
each owc. If for each x, y ∈ X satisfying fx ̸= gy we have

(1) F (d(fx, gy)) ≥ ψ(F (M(x, y))),

F ∈ z[0, A) and ψ ∈ Ψ[0, F (A−0)), where A = D if D = ∞ and A > D if D <∞,
and

M(x, y) := max{d(Sx, Ty), d(Sx, fx), d(Ty, gy),
d(Sx, gy), d(Ty, fx)},

then there is a unique point w ∈ X such that fw = gw = w and a unique point
z ∈ X such that gz = Tz = z. Moreover, z = w, so that there is a unique common
fixed point of f, g, S, and T .

Proof. Since the pairs {f, S} and {g, T} are owc, there exist points x, y ∈ X such
that fx = Sx and gy = Ty. We claim that fx = gy. If not, then we consider,

M(x, y) : = max{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)}
= d(fx, gy).

Then (1) implies

F (d(fx, gy)) ≥ ψ(F (M(x, y)))

= ψ(F (d(fx, gy))) > F (d(fx, gy)),

which is a contradiction. Therefore, fx = gy; i.e., fx = Sx = gy = Ty. Moreover,
if there is another point z such that fz = Sz, then, using (1) it follows that
fz = Sz = gy = Ty, or fx = fz, and w = fx = Sx is the unique point of
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coincidence of f and S. By Lemma 3, w is the only common fixed point of f and
S. By symmetry there is a unique point z ∈ X such that z = gz = Tz.

Suppose that w ̸= z. Using (1),

F (d(w, z)) = F (d(fw, gz)) ≥ ψ(F (M(w, z)))

> F (d(w, z)),

which is a contradiction. Therefore w = z and w is a common fixed point. By the
preceding argument it is clear that w is unique. �
Corollary 6. Let X be a set with a symmetric d. Let D = sup{d(x, y) : x, y ∈ X}.
Suppose that f, g, S, T are selfmaps of X such that {f, S} and {g, T} are owc. If

(2) F (d(fx, gy)) ≥ ψ(F (m(x, y))),

for each x, y ∈ X, F ∈ z[0, A) and ψ ∈ Ψ[0, F (A − 0)), where A = D if D = ∞
and A > D if D <∞, and

m(x, y) = hmax{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)}, h > 1,

then f, g, S, T have a unique common fixed point.

Proof. Since F and ψ are nondecreasing, from m(x, y) ≥M(x, y), we have

ψ(F (m(x, y))) ≥ ψ(F (M(x, y))).

Therefore if (2) holds, then (1) holds and so the result follows immediately from
Theorem 5. �
Theorem 7. Let X be a symmetric space with symmetric d. Let D = sup{d(x, y) :
x, y ∈ X}. Suppose that f, S are selfmaps of X such that f and S are owc, and

(3) F (d(fx, fy)) ≥ ψ(F (M(x, y))),

for each x, y ∈ X, fx ̸= fy, F ∈ z[0, A) and ψ ∈ Ψ[0, F (A − 0)), where A = D if
D = ∞ and A > D if D <∞, and

M(x, y) = ad(Sx, Sy) + bmax{d(fx, Sx), d(fy, Sy)}(4)

+ cmax{d(Sx, Sy), d(Sx, fx), d(Sy, fy)}
for all x, y ∈ X, where a, b, c > 0, a+ c > 1. Then f and S have a unique common
fixed point.

Proof. Since the pair {f, S} is owc, so there exists a point x ∈ X such that fx =
Sx = w (say). Suppose that there exist another point y in X such that fy = Sy = v
(say). Now we claim that w = v, that is, Sx = Sy. If not, then we consider

M(x, y) = ad(Sx, Sy) + bmax{d(fx, Sx), d(fy, Sy)}
+ cmax{d(Sx, Sy), d(Sx, fx), d(Sy, fy)}

= (a+ c)max{d(Sx, Sy), d(fx, Sx), d(fy, Sy)}
= (a+ c)d(Sx, Sy).

Thus

F (d(Sx, Sy)) ≥ ψ(F ((a+ c)d(Sx, Sy)))

> F ((a+ c)d(Sx, Sy)),
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which is a contradiction. Thus w = v. Therefore the result now follows from Lemma
3. �

Theorem 8. Let X be a symmetric space with symmetric d. Let D = sup{d(x, y) :
x, y ∈ X}. Suppose that f, g, S, and T are selfmaps of X and

(5) F (d(fx, gy))p) ≥ ψ(F (Mp(x, y))),

for each x, y ∈ X for which fx ̸= gy, F ∈ z[0, A) and ψ ∈ Ψ[0, F (A − 0)), where
A = D if D = ∞ and A > D if D <∞, and

Mp(x, y) = a(d(fx, Ty))p

+ bmax{(d(fx, Sx))p, (d(gy, Ty))p,

(d(fx, Sx))p/2(d(fx, Ty))p/2,

(d(Ty, fx))p/2(d(Sx, gy))p/2},(6)

for all x, y ∈ X, where a + b > 1, and p > 0. If {f, S} and {g, T} are owc, then
f, g, S, and T have a unique common fixed point.

Proof. By hypothesis, there exist points x and y such that fx = Sx and gy = Ty.
Suppose that fx ̸= gy. Then from (6),

Mp(x, y) = a(d(fx, gy))p

+ bmax{0, 0, 0, (d(fx, gy))p}
= (a+ b)(d(fx, gy))p

and

F (d(fx, gy))p) ≥ ψ(F (Mp(x, y)))

= ψ(F ((a+ b)(d(fx, gy))p))

≥ ψ(F ((d(fx, gy))p)) > F ((d(fx, gy))p),

which is a contradiction. Therefore d(fx, gy) = 0, which implies that fx = gy.
Suppose that there exists another point z such that fz = Sz. Then, using (5) one
obtains fz = Sz = gy = Ty = fx = Sx and hence w = fx = fz is the unique point
of coincidence of f and S. By symmetry there exists a unique point v ∈ X such
that v = gz = Tv. It then follows that w = v, w is a common fixed point of f, g, S,
and T , and w is unique. �

Define ġ : R5 → R5such that if u ∈ R+ is such that u ≥ ġ(u, 0, 0, u, u) or
u ≥ ġ(0, u, 0, u, u) or u ≥ ġ(0, 0, u, u, u), then u = 0.

Theorem 9. Let X be a set, d a symmetric on X. Let D = sup{d(x, y) : x, y ∈ X}.
Suppose that f, g, S, T are selfmaps of X satisfying

F (d(fx, gy)) ≥ ġ(F (d(Sx, Ty)), F (d(fx, Sx)), F (d(gy, Ty)),

F (d(fx, Ty)), F (d(gy, Sx))),(7)

for all x, y ∈ X, F ∈ z[0, A), where A = D if D = ∞ and A > D if D < ∞. If
{f, S} and {g, T} are owc, then f, g, S, T have a unique common fixed point.
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Proof. By hypothesis there exist points x, y ∈ X such that fx = Sx and gy = Ty.
Now we show that fx = gy. From (7),

F (d(fx, gy)) ≥ ġ(F (d(fx, gy)), 0, 0, F (d(fx, gy)), F (d(gy, fx))),

which implies that F (d(fx, gy)) = 0 and hence d(fx, gy) = 0. Hence fx = gy. As
in the previous theorems it can then be shown that fx is unique and that u = fx is
a common fixed point of the four mappings. Condition (7) implies uniqueness. �

A control function Φ is defined by Φ : R+ → R+ which satisfies Φ(t) = 0 iff t = 0.

Theorem 10. Let {f, S} and {g, T} be owc pairs of selfmaps of a space X with
symmetric d. Let D = sup{d(x, y) : x, y ∈ X}, and satisfying

(8) F (Φ(d(fx, gy))) ≥ ψ(F (MΦ(x, y))),

for each x, y ∈ X for which fx ̸= gy, F ∈ z[0, A) and ψ ∈ Ψ[0, F (A − 0)), where
A = D if D = ∞ and A > D if D <∞, and

MΦ(x, y) := max{Φ(d(Sx, Ty)),Φ(d(Sx, fx)),Φ((d(gy, Ty)),
[Φ(d(fx, Ty)),+Φ(d(Sx, gy))]/2}.(9)

Then f, g, S, and T have a unique common fixed point.

Proof. By hypothesis, there exist points x, y ∈ X for which fx = Sx and gy = Ty.
Suppose that fx ̸= gy. Then, from (9),

MΦ(x, y) := max{Φ(d(fx, gy)),Φ(0),Φ(0),
Φ(d(fx, gy))}.

Thus

F (Φ(d(fx, gy))) ≥ ψ(F (MΦ(x, y)))

= ψ(F (Φ(d(fx, gy)))

> F (Φ(d(fx, gy))),

which is a contradiction. Therefore

Φ(d(fx, gy)) = 0,

which implies that d(fx, gy) = 0, which implies that fx = gy. It then follows that
f, g, S, and T have a common fixed point. Condition (8) gives uniqueness. �
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