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Let PC be the metric projection of H onto C. A mapping A of C into H is called
monotone if for x, y ∈ C, ⟨x− y,Ax−Ay⟩ ≥ 0. The variational inequality problem
is to find a u ∈ C such that

⟨v − u,Au⟩ ≥ 0

for all v ∈ C; see [2, 4, 13, 24]. The set of solutions of the variational inequality is
denoted by V I(C,A). A mapping A of C into H is called inverse-strongly monotone
if there exists a positive real number α such that

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2

for all x, y ∈ C; see [3, 8, 14]. For such a case, A is called α-inverse-strongly
monotone.

In 2005, Iiduka and Takahashi [9] introduced an iterative scheme for finding a
common point of the set of fixed points of a nonexapnsive mapping and the set of
solutions of the variational inequality for an inverse-strong monotone mapping as
follows: for an α-inverse-strongly-monotone mapping A of C into H, a nonexpansive
mapping S of C into itself such that F (S)∩V I(C,A) ̸= ∅, x1 = x ∈ C, {αn} ⊂ [0, 1),
and {λn} ⊂ [0, 2α],

(1.2) xn+1 = αnx+ (1− αn)SPC(xn − λnAxn)

for every n ≥ 1, where PC is the metric projection of H onto C. They proved
that the sequence generated by (1.2) converges strongly to PF (S)∩V I(C,A)x under the
following conditions on {αn} and {λn}: λn ∈ [c, d] for some c, d with 0 < c < d < 2α
and

(1.3) lim
n→∞

αn = 0,

∞∑
n=1

αn < ∞,

∞∑
n=1

|αn+1 − αn| < ∞ and

∞∑
n=1

|λn+1 − λn| < ∞.

On the other hand, the viscosity approximation method of selecting a particular
fixed point of a given nonexpansive mapping was proposed by Moudafi [16]. In 2004,
in order to extend Theorem 2.2 of Moudafi [16] to a Banach space setting, Xu [25]
consider the the following explicit iterative process: for S : C → C a nonexpansive
mapping, f ∈ ΠC and αn ∈ (0, 1),

(1.4) xn+1 = αnf(xn) + (1− αn)Sxn, n ≥ 1.

Moreover, in [25], he also studied the strong convergence of {xn} generated by (1.4)
as n → ∞ in either a Hilbert space or a uniformly smooth Banach space and showed
that the strong limn→∞ xn is the unique solution of certain variational inequality.

In [24], Xu proved that, for a strongly positive bounded linear operator B with
constant γ, the sequence {xn} defined by the following iterative method with the
initial guess x1 ∈ H chosen arbitrarily,

xn+1 = αnb+ (I − αnB)Sxn, n ≥ 1,

converges strongly to the unique solution of the minimization problem (1.1) pro-
vided the sequence {αn} satisfies certain conditions. In 2006, Marino and Xu [15]
introduced a new iterative scheme by the viscosity approximation method: for a
strongly positive bounded linear operator B with constant γ, f ∈ ΠH and γ > 0,

(1.5) xn+1 = αnγf(xn) + (I − αnB)Sxn, n ≥ 1,
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and proved that the sequence {xn} generated by (1.5) converges strongly to the
unique solution of the variational inequality

⟨(B − γf)x∗, x− x∗⟩ ≥ 0, x ∈ F (S),

which is the optimality condition for the minimization problem

min
x∈F (S)

1

2
⟨Bx, x⟩ − h(x),

where h is a potential function for γf (that is, h′(x) = γf(x) for x ∈ H).
In 2007, as the the viscosity iteration method of (1.2), Chen et al. [5] considered

the following iterative scheme:

(1.6) xn+1 = αnf(xn) + (1− αn)SPC(xn − λnAxn), n ≥ 1,

and showed that the sequence {xn} generated by (1.6) strongly converges strongly
to a point in F (S) ∩ V I(C,A) under the conditions on {αn} and {λn} in (1.3),
which is the unique solution of a certain variational inequality.

In 2010, Jung [11] provided a new composite iterative scheme as follows:

(1.7)

{
yn = αnf(xn) + (1− αn)SPC(xn − λnAxn),

xn+1 = (1− βn)yn + βnSPC(yn − λnAyn), n ≥ 1,

where {βn} ∈ [0, 1]. Also he proved that the sequence {xn} generated by (1.7)
strongly converges strongly to a point in F (S) ∩ V I(C,A) under the conditions on
{αn} and {λn} in (1.3) and suitable conditions on {βn}, which is the unique solution
of a certain variational inequality.

In this paper, motivated by above-mentioned results [5, 9, 11, 15], we introduce a
general composite iterative scheme for finding a common point of the set of solutions
of the variational inequality for an inverse-strongly monotone mapping and the set
of fixed points of a countable family of nonexapnsive mappings as follows: for
an α-inverse-strongly monotone mapping A of C into H, a countable family of
nonexpansive mappings Sn of C into itself such that ∩∞

n=1F (Sn) ∩ V I(C,A) ̸= ∅,
a contraction f of C into itself with constant k, a strongly positive bounded linear
operator B on C with constant γ, 0 < γ < γ

k , x1 ∈ C, {αn} and {βn} ⊂ [0, 1), and
{λn} ⊂ [0, 2α],

(1.8)

{
yn = αnγf(xn) + (I − αnB)SnPC(xn − λnAxn),

xn+1 = (1− βn)yn + βnSnPC(yn − λnAyn), n ≥ 1.

Under appropriate conditions on the sequences {αn}, {λn} and {βn}, we show that
the sequence {xn} generated by (1.8) converges strongly to a unique solution of
a certain variational inequality, which is the optimality condition for some mini-
mization problem. Using this result, we first obtain a strong convergence result
for finding a common fixed point of a strictly pseudo-contractive mapping and a
countable family of nonexpansive mappings. Moreover, we investigate the problem
of finding a common point of the set of zero of an inverse-strongly monotone map-
ping and the set of fixed points of a countable family of nonexpansive mappings.
The main results improve and complement the corresponding results of Chen et al.
[5], Iiduka and Takahashi [9] and Jung [11]. We point out that the iterative scheme
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(1.8) is a new approach for finding solutions of variational inequalities for monotone
mappings and the fixed points of a countable family of nonexpansive mappings.

2. Preliminaries and Lemmas

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ ·∥ and let C be
a closed convex subset of H. We write xn ⇀ x to indicate that the sequence {xn}
converges weakly to x. xn → x implies that {xn} converges strongly to x. For every
point x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

∥x− PC(x)∥ ≤ ∥x− y∥

for all y ∈ C. PC is called the metric projection of H onto C. It is well known that
PC is nonexpansive and PC satisfies

(2.1) ⟨x− y, PC(x)− PC(y)⟩ ≥ ∥PC(x)− PC(y)∥2

for every x, y ∈ H. Moreover, PC(x) is characterized by the properties:

u = PC(x) ⇔ ⟨x− u, u− y⟩ ≥ 0

and

∥x− y∥2 ≥ ∥x− PC(x)∥2 + ∥y − PC(x)∥2 for all x ∈ H, y ∈ C.

In the context of the variational inequality problem for a nonlinear mapping A, this
implies that

(2.2) u ∈ V I(C,A) ⇐⇒ u = PC(u− λAu), for any λ > 0.

It is also well known that H satisfies the Opial condition (cf. [7, 21]), that is, for
any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

holds for every y ∈ H with y ̸= x.
We state some examples for inverse-strongly monotone mappings. If A = I − T ,

where T is a nonexpansive mapping of C into itself and I is the identity mapping
of H, then A is 1

2 -inverse-strongly monotone and V I(C,A) = F (T ). A mapping A
of C into H is called strongly monotone if there exists a positive real number η such
that

⟨x− y,Ax−Ay⟩ ≥ η∥x− y∥2

for all x, y ∈ C. In such a case, we say A is η-strongly monotone. If A is η-
strongly monotone and κ-Lipschitz continuous, that is, ∥Ax − Ay∥ ≤ κ∥x − y∥ for
all x, y ∈ C, then A is η

κ2 -inverse-strongly monotone.
If A is an α-inverse-strongly monotone mapping of C into H, then it is obvious

that A is 1
α -Lipschitz continuous. We also have that for all x, y ∈ C and λ > 0,

∥(I − λA)x− (I − λA)y∥2 = ∥(x− y)− λ(Ax−Ay)∥2

= ∥x− y∥2 − 2λ⟨x− y,Ax−Ay⟩+ λ2∥Ax−Ay∥2

≤ ∥x− y∥2 + λ(λ− 2α)∥Ax−Ay∥2.
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So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H. The following
result for the existence of solutions of the variational inequality problem for inverse
strongly-monotone mappings was given in Takahashi and Toyoda [22].

Proposition 2.1. Let C be a bounded closed convex subset of a real Hilbert space
and let A be an α-inverse-strongly monotone mapping of C into H. Then, V I(C,A)
is nonempty.

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx
and g ∈ Ty imply ⟨x− y, f − g⟩ ≥ 0. A monotone mapping T : H → 2H is maximal
if the graph G(T ) of T is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if for
(x, f) ∈ H ×H, ⟨x − y, f − g⟩ ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Let A
be an inverse-strongly monotone mapping of C into H and let NCv be the normal
cone to C at v, that is, NCv = {w ∈ H : ⟨v − u,w⟩ ≥ 0, for all u ∈ C}, and define

Tv =

{
Av +NCv, v ∈ C

∅ v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A): see [19, 20].
We need the following lemmas for the proof of our main results.

Lemma 2.2. In a real Hilbert space H, there holds the following inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩,
for all x, y ∈ H.

Lemma 2.3 (Xu [23]). Let {sn} be a sequence of non-negative real numbers satis-
fying

sn+1 ≤ (1− λn)sn + βn + γn, n ≥ 1,

where {λn} and {βn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=1 λn = ∞ or, equivalently,
∏∞

n=1(1− λn) = 0,

(ii) lim supn→∞
βn

λn
≤ 0 or

∑∞
n=1 |βn| < ∞,

(iii) γn ≥ 0 (n ≥ 1),
∑∞

n=1 γn < ∞.

Then limn→∞ sn = 0.

Lemma 2.4 (Marino and Xu [15]). Assume that B is a strongly positive linear
bounded operator on a Hilbert space H with coefficient γ > 0 and 0 < ρ ≤ ∥B∥−1.
Then ∥I − ρB∥ ≤ 1− ργ.

Lemma 2.5 (Aoyama et al. [1]). Let C be a nonempty closed convex subset of H
and {Sn} be a sequence of nonexpansive mappings of C into itself. Suppose that

∞∑
n=1

sup{∥Sn+1z − Snz∥ : z ∈ C} < ∞.

Then, for each y ∈ C, {Sny} converges strongly to some point of C. Moreover, let
S be a mapping of C into itself defined by Sy = limn→∞ Sny for all y ∈ C. Then
limn→∞ sup{∥Sz − Snz∥ : z ∈ C} = 0.
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3. Main results

In this section, we present a new general composite iterative scheme for inverse-
strongly monotone mappings and a countable family of nonexpansive mappings.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H such
that C ± C ⊂ C. Let A be an α-inverse-strongly monotone mapping of C into
H and {Sn} be a sequence of nonexpansive mappings of C into itself such that
∩∞
n=1F (Sn) ∩ V I(C,A) ̸= ∅. Let B be a strongly positive bounded linear operator

on C with constant γ ∈ (0, 1) and f be a contraction of C into itself with constant

k ∈ (0, 1). Assume that 0 < γ < γ
k . Let {xn} be a sequence generated by

(IS)


x1 = x ∈ C,

yn = αnγf(xn) + (I − αnB)SnPC(xn − λnAxn),

xn+1 = (1− βn)yn + βnSnPC(yn − λnAyn), n ≥ 1,

where {λn} ⊂ [0, 2α], {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1]. Let {αn}, {λn} and {βn}
satisfy the conditions:

(i) αn → 0 (n → ∞);
∑∞

n=1 αn = ∞;

(ii) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1);

(iii) λn ∈ [c, d] for some c, d with 0 < c < d < 2α;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |λn+1 − λn| < ∞.
Suppose that

∑∞
n=1 sup{∥Sn+1z − Snz∥ : z ∈ D} < ∞ for any bounded subset D

of C. Let S be a mapping of C into itself defined by Sz = limn→∞ Snz for all
z ∈ C and suppose that F (S) = ∩∞

n=1F (Sn). Then {xn} converges strongly to
q ∈ ∩∞

n=1F (Sn)∩V I(C,A), where q = P∩∞
n=1F (Sn)∩V I(C,A))(γf + I −B)(q), which is

the unique solution of a variational inequality

⟨γf(q)−Bq, p− q⟩ ≤ 0, p ∈ ∩∞
n=1F (Sn) ∩ V I(C,A),

which is the optimality condition for the minimization problem

min
x∈∩∞

n=1F (Sn)∩V I(C,A)

1

2
⟨Bx, x⟩ − h(x),

where h is a potential function for γf .

Proof. Since αn → 0 by the condition (i), we may assume, with no loss of generality,
that αn < ∥B∥−1 for all n ≥ 1. From Lemma 2.4, we know that if 0 < ρ ≤ ∥B∥−1,
then ∥I − ρB∥ ≤ 1 − ργ. We will assume that ∥I − B∥ ≤ 1 − γ. Let Q =
P∩∞

n=1F (Sn)∩V I(C,A). Then Q(γf + I − B) is a contraction of C into itself. Indeed,
for x, y ∈ C, we have

∥Q(γf+I −B)(x)−Q(γf + I −B)(y)∥
≤ ∥(γf + I −B)(x)− (γf + I −B)(y)∥
≤ γ∥f(x)− f(y)∥+ ∥I −B∥∥x− y∥
≤ γk∥x− y∥+ (1− γ)∥x− y∥
< ∥x− y∥.
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Since H is complete, there exists a unique point q ∈ C such that q = Q(γf + I −
B)(q) = P∩∞

n=1F (Sn)
∩

V I(C,A)(γf + I −B)(q).

Let zn = PC(xn − λnAxn) and wn = PC(yn − λnAyn) for every n ≥ 1. Let
u ∈ ∩∞

n=1F (Sn)
∩

V I(C,A). Since I − λnA is nonexpansive and u = PC(u− λnAu)
from (2.2), we have

∥zn − u∥ = ∥PC(xn − λnAxn)− PC(u− λnAu)∥
≤ ∥(xn − λnAxn)− (u− λnAu)∥
≤ ∥xn − u∥.

Similarly we have ∥wn − u∥ ≤ ∥yn − u∥.
Now we divide the proof into several steps.

Step 1. We show that {xn} is bounded. In fact, putM = max{∥x1−u∥, ∥γf(u)−Bu∥
γ−γk }.

It is obvious that ∥x1 − u∥ ≤ M . Suppose that ∥xn − u∥ ≤ M . Then, we have

∥yn − u∥ = ∥αn(γf(xn)−Bu) + (I − αnB)(Snzn − u)∥
≤ αn∥γf(xn)−Bu∥+ ∥I − αnB∥∥zn − u∥
≤ αn[γ∥f(xn)− f(u)∥+ ∥γf(u)−Bu∥] + (1− αnγ)∥xn − u∥
≤ αnγk∥xn − u∥+ (1− αnγ)∥xn − u∥+ αn∥γf(u)−Bu∥

= (1− (γ − γk)αn)∥xn − u∥+ αn(γ − γk)
1

γ − γk
∥γf(u)−Bu∥

≤ (1− (γ − γk)αn)M + (γ − γk)αnM = M,

and
∥xn+1 − u∥ = ∥(1− βn)(yn − u) + βn(Snwn − u)∥

≤ (1− βn)∥yn − u∥+ βn∥wn − u∥
≤ (1− βn)∥yn − u∥+ βn∥yn − u∥
= ∥yn − u∥ ≤ M.

So, we have that ∥xn − u∥ ≤ M for n ≥ 0 and hence {xn} is bounded and so {yn},
{zn}, {wn}, {BSnzn}, {Axn} and {Ayn} are bounded. Moreover, since ∥Snzn−u∥ ≤
∥xn − u∥ and ∥Snwn − u∥ ≤ ∥yn − u∥, {Snzn} and {Snwn} are also bounded. By
condition (i), we also obtain

(3.1) ∥yn − Snzn∥ = αn∥γf(xn)−BSnzn∥ → 0 (as n → ∞).

Step 2. We show that limn→∞ ∥xn+1 − xn∥ = 0. From (IS), we have{
yn+1 = αn+1γf(xn+1) + (I − αn+1B)Sn+1zn+1

yn = αnγf(xn) + (I − αnB)Snzn.

Simple calculations show that

yn+1 − yn = (I − αn+1B)(Sn+1zn+1 − Snzn)− (αn+1 − αn)BSnzn

+ γ[αn(f(xn+1)− f(xn)) + (αn+1 − αn)f(xn)].
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Since

∥zn+1 − zn∥ ≤ ∥(xn+1 − λn+1Axn+1)− (xn − λnAxn)∥
≤ ∥(xn+1 − λn+1Axn+1)− (xn − λn+1Axn)∥+ |λn − λn+1|∥Axn∥
≤ ∥xn+1 − xn∥+ |λn − λn+1|∥Axn∥

for every n ≥ 1, we have

∥yn+1 − yn∥ = ∥(I − αnB)(Sn+1zn+1 − Snzn)− (αn+1 − αn)BSnzn

+γ[αn+1(f(xn+1)− f(xn)) + (αn+1 − αn)f(xn)]∥
≤ (1− αn+1γ)∥Sn+1zn+1 − Snzn∥+ |αn+1 − αn|∥BSnzn∥

+γ[αn+1∥f(xn+1)− f(xn)∥+ |αn+1 − αn|∥f(xn)∥]
≤ (1− αn+1γ)[∥Sn+1zn+1 − Sn+1zn∥+ ∥Sn+1zn − Snzn∥]

+|αn+1 − αn|∥BSnzn∥+ γ[αn+1k∥xn+1 − xn∥+ |αn+1 − αn|∥f(xn)∥](3.2)

≤ (1− αn+1γ)∥zn+1 − zn∥+ ∥Sn+1zn − Snzn∥+ |αn+1 − αn|∥BSnzn∥
+γ[αn+1k∥xn+1 − xn∥+ |αn+1 − αn|∥f(xn)∥]

≤ (1− αn+1γ)[∥xn+1 − xn∥+ |λn − λn+1|∥Axn∥]
+γαn+1k∥xn+1 − xn∥+ |αn+1 − αn|L1 + ∥Sn+1zn − Snzn∥

≤ (1− (γ − γk)αn+1)∥xn+1 − xn∥+ |λn − λn+1|L1

+|αn+1 − αn|M1 + ∥Sn+1zn − Snzn∥
for every n ≥ 1, where M1 = sup{γ∥f(xn)∥ + ∥BSnzn∥ : n ≥ 1} and L1 =
sup{∥Axn∥ : n ≥ 1}.

On the other hand, from (IS) we have{
xn+1 = (1− βn)yn + βnSnwn

xn = (1− βn−1)yn−1 + βn−1Sn−1wn−1.

Also, simple calculations show that

xn+1 − xn = (1− βn)(yn − yn−1) + βn(Snwn − Sn−1wn−1)

+ (βn − βn−1)(Sn−1wn−1 − yn−1).

Since

∥wn − wn−1∥ ≤ ∥(yn − λnAyn)− (yn−1 − λn−1Ayn−1)∥
≤ ∥(yn − λnAyn)− (yn−1 − λnAyn−1)∥+ |λn−1 − λn|∥Ayn−1∥
≤ ∥yn − yn−1∥+ |λn−1 − λn|∥Ayn−1∥

for every n ≥ 2, it follows that

∥xn+1 − xn∥ ≤ (1− βn)∥yn − yn−1∥
+βn[∥Snwn − Sn−1wn∥+ ∥Sn−1wn − Sn−1wn−1∥]
+|βn − βn−1|∥Sn−1wn−1 − yn−1∥

≤ (1− βn)∥yn − yn−1∥+ βn∥wn − wn−1∥+ βn∥Snwn − Sn−1wn∥
+|βn − βn−1|∥Sn−1wn−1 − yn−1∥(3.3)

≤ (1− βn)∥yn − yn−1∥+ βn(∥yn − yn−1∥+ |λn−1 − λn|∥Ayn−1∥)
+βn∥Snwn − Sn−1wn∥+ |βn − βn−1|∥Sn−1wn−1 − yn−1∥
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≤ ∥yn − yn−1∥+ |λn−1 − λn|∥Ayn−1∥
+|βn − βn−1|∥Sn−1wn−1 − yn−1∥+ ∥Snwn − Sn−1wn∥.

Substituting (3.2) into (3.3), we derive

∥xn+1 − xn∥ ≤ (1− (γ − γk)αn)∥xn − xn−1∥+ |λn−1 − λn|L1 + |αn − αn−1|M1

+|λn−1 − λn|∥Ayn−1∥+ |βn − βn−1|∥Sn−1wn−1 − yn−1∥
+2 sup{∥Snz − Sn−1z∥ : z ∈ D}(3.4)

≤ (1− (γ − γk)αn)∥xn − xn−1∥+ L2|λn−1 − λn|+M1|αn − αn−1|
+M2|βn − βn−1|+ 2 sup{∥Snz − Sn−1z∥ : z ∈ D},

where D is a bounded subset of C containing {wn}, L2 = sup{L1+ ∥Ayn∥ : n ≥ 1},
and M2 = sup{∥Snwn − yn∥ : n ≥ 1}. From the conditions (i) and (iv), it is easy to
see that

lim
n→∞

(γ − γk)αn = 0,
∞∑
n=1

(γ − γk)αn = ∞

and
∞∑
n=1

(M1|αn+1 − αn|+M2|βn+1 − βn|

+ L2|λn+1 − λn|+ 2 sup{∥Sn+1z − Snz∥ : z ∈ D}) < ∞.

Applying Lemma 2.3 to (3.4), we have

∥xn+1 − xn∥ → 0 as n → ∞.

By (3.2), we also have that ∥yn+1 − yn∥ → 0 as n → ∞.

Step 3. We show that limn→∞ ∥xn − yn∥ = 0 and limn→∞ ∥xn − Snzn∥ = 0.
Indeed,

∥xn+1 − yn∥ = βn∥Snwn − yn∥
≤ βn(∥Snwn − Snzn∥+ ∥Snzn − yn∥)
≤ a(∥wn − zn∥+ ∥Snzn − yn∥)
≤ a(∥yn − xn∥+ ∥Snzn − yn∥)
≤ a(∥yn − xn+1∥+ ∥xn+1 − xn∥+ ∥Snzn − yn∥)

which implies that

∥xn+1 − yn∥ ≤ a

1− a
(∥xn+1 − xn∥+ ∥Snzn − yn∥).

Obviously, by (3.1) and Step 2, we have ∥xn+1 − yn∥ → 0 as n → ∞. This implies
that that

(3.5) ∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥ → 0 as n → ∞.

By (3.1) and (3.5), we also have

(3.6) ∥xn − Snzn∥ ≤ ∥xn − yn∥+ ∥yn − Snzn∥ → 0 as n → ∞.
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Step 4. We show that limn→∞ ∥xn − zn∥ = 0 and limn→∞ ∥yn − zn∥ = 0. To
this end, let u ∈ ∩∞

n=1F (Sn) ∩ V I(C,A). Then, we have

∥yn − u∥2 = ∥αn(γf(xn)−Bu) + (I − αnB)(Snzn − u)∥2

≤ (αn∥γf(xn)−Bu∥+ ∥I − αnB∥∥Snzn − u∥)2

≤ αn∥γf(xn)−Bu∥2 + (1− αnγ)∥zn − u∥2

+ 2αn(1− αnγ)∥γf(xn)−Bu∥∥zn − u∥
≤ αn∥γf(xn)−Bu∥2 + (1− αnγ)[∥xn − u∥2 + λn(λn − 2α)∥Axn −Au∥2]

+ 2αn(1− αnγ)∥γf(xn)−Bu∥∥zn − u∥
≤ αn∥γf(xn)−Bu∥2 + ∥xn − u∥2 + (1− αnγ)c(d− 2α)∥Axn −Au∥2

+ 2αn∥γf(xn)−Bu∥∥zn − u∥.

So we obtain

− (1− αnγ)c(d− 2α)∥Axn −Au∥2

≤ αn∥γf(xn)−Bu∥2 + (∥xn − u∥+ ∥yn − u∥)(∥xn − u∥ − ∥yn − u∥)
+ 2αn∥γf(xn)−Bu∥∥zn − u∥

≤ αn∥γf(xn)−Bu∥2 + (∥xn − u∥+ ∥yn − u∥)∥xn − yn∥
+ 2αn∥γf(xn)−Bu∥∥zn − u∥.

Since αn → 0 and ∥xn − yn∥ → 0 by the condition (i) and Step 3, respectively, we
have ∥Axn −Au∥ → 0 (n → ∞). Moreover, from (2.1) we obtain

∥zn − u∥2 = ∥PC(xn − λnAxn)− PC(u− λnAu)∥2

≤ ⟨xn − λnAxn − (u− λnAu), zn − u⟩

=
1

2
{∥(xn − λnAxn)− (u− λnAu)∥2 + ∥zn − u∥2

− ∥(xn − λnAxn)− (u− λnAu)− (zn − u)∥2}

≤ 1

2
{∥xn − u∥2 + ∥zn − u∥2 − ∥xn − zn∥2

+ 2λn⟨xn − zn, Axn −Au⟩ − λ2
n∥Axn −Au∥2}.

and so

∥zn − u∥2 ≤ ∥xn − u∥2 − ∥xn − zn∥2 + 2λn⟨xn − zn, Axn −Au⟩
− λ2

n∥Axn −Au∥2.

Thus it follows that

∥yn − u∥2 ≤ (αn∥γf(xn)−Bu∥+ (1− αnγ)∥zn − u∥)2

+ 2αn(1− αnγ)∥γf(xn)−Bu∥∥zn − u∥
≤ αn∥γf(xn)−Bu∥2 + ∥xn − u∥2 − (1− αnγ)∥xn − zn∥2

+ 2(1− αnγ)λn⟨xn − zn, Axn −Au⟩ − (1− αnγ)λ
2
n∥Axn −Au∥2

+ 2αn∥γf(xn)−Bu∥∥zn − u∥.
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Then, we have

(1− αnγ)∥xn − zn∥2

≤ αn∥γf(xn)−Bu∥2 + (∥xn − u∥+ ∥yn − u∥)(∥xn − u∥ − ∥yn − u∥)
+ 2(1− αnγ)λn⟨xn − zn, Axn −Au⟩ − (1− αnγ)λ

2
n∥Axn −Au∥2

+ 2αn∥γf(xn)−Bu∥∥zn − u∥
≤ αn∥γf(xn)−Bu∥2 + (∥xn − u∥+ ∥yn − u∥)∥xn − yn∥

+ 2(1− αnγ)λn⟨xn − zn, Axn −Au⟩ − (1− αnγ)λ
2
n∥Axn −Au∥2

+ 2αn∥γf(xn)−Bu∥∥zn − u∥.

Since αn → 0, ∥xn − yn∥ → 0 and ∥Axn −Au∥ → 0, we get ∥xn − zn∥ → 0. Also by
(3.5)

(3.7) ∥yn − zn∥ ≤ ∥yn − xn∥+ ∥xn − zn∥ → 0 (n → ∞).

Step 5. We show that limn→∞ ∥Szn − zn∥ = 0. In fact, since

∥Snzn − zn∥ ≤ ∥Snzn − yn∥+ ∥yn − zn∥
≤ αn∥γf(xn)−BSnzn∥+ ∥yn − zn∥,

from (3.7), we have limn→∞ ∥Snzn − zn∥ = 0. Observe that

∥Szn − zn∥ ≤ ∥Szn − Snzn∥+ ∥Snzn − zn∥
≤ sup{∥Sz − Snz∥ : z ∈ D}+ ∥Snzn − zn∥.

By Lemma 2.5, we have limn→∞ ∥Szn − zn∥ = 0.

Step 6. We show that lim supn→∞⟨γf(q)−Bq, yn− q⟩ ≤ 0 for q ∈ ∩∞
n=1F (Sn)∩

V I(C,A), where q = P∩∞
n=1F (Sn)∩V I(C,A)(γf + I − B)(q). To this end, choose a

subsequence {zni} of {zn} such that

lim sup
n→∞

⟨γf(q)−Bq, zn − q⟩ = lim
i→∞

⟨γf(q)−Bq, zni − q⟩.

Since {zni} is bounded, there exists a subsequence {znij
} of {zni} which converges

weakly to z. We may assume without loss of generality that zni ⇀ z. Since
∥Szni−zni∥ → 0 by Step 5, we have Szni ⇀ z. Then we can obtain z ∈ ∩∞

n=1F (Sn)∩
V I(C,A). Indeed, let us first show that z ∈ V I(C,A). Let

Tv =

{
Av +NCv, v ∈ C

∅ v /∈ C.

Then T is maximal monotone. Let (v, w) ∈ G(T ). Since w−Av ∈ NCv and zn ∈ C,
we have

⟨v − zn, w −Av⟩ ≥ 0.

On the other hand, from zn = PC(xn−λnAxn), we have ⟨v−zn, zn−(xn−λnAzn)⟩ ≥
0 and hence

⟨v − zn,
zn − xn

λn
+Axn⟩ ≥ 0.
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Therefore we have

⟨v − zni , w⟩ ≥ ⟨v − zni , Av⟩

≥ ⟨v − zni , Av⟩ − ⟨v − zni ,
zni − xni

λni

+Axni⟩

= ⟨v − zni , Av −Axni −
zni − xni

λni

⟩

= ⟨v − zni , Av −Azni⟩+ ⟨v − zni , Azni −Axni⟩

− ⟨v − zni ,
zni − xni

λni

⟩

≥ ⟨v − zni , Azni −Axni⟩ − ⟨v − zni ,
zni − xni

λni

⟩.

Since ∥zn − xn∥ → 0 in Step 4 and A is α-inverse-strongly monotone, we have
⟨v − z, w⟩ ≥ 0 as i → ∞. Since T is maximal monotone, we have z ∈ T−10 and
hence z ∈ V I(C,A). Next we show that z ∈ F (S). Assume z /∈ F (S). Since
zni ⇀ z and z ̸= Sz, from Opial condition and Step 5, we have

lim inf
i→∞

∥zni − z∥ < lim inf
i→∞

∥zni − Sz∥

≤ lim inf
i→∞

(∥zni − Szni∥+ ∥Szni − Sz∥)

≤ lim inf
i→∞

∥zni − z∥.

This is a contradiction. So, we obtain z ∈ F (S) = ∩∞
n=1F (Sn). Therefore, z ∈

∩∞
n=1F (Sn) ∩ V I(C,A). Since q = P∩∞

n=1F (Sn)∩V I(C,A)(γf + I −B)(q), we have

lim sup
n→∞

⟨γf(q)−Bq, zn − q⟩ = lim
i→∞

⟨γf(q)−Bq, zni − q⟩

= ⟨γf(q)−Bq, z − q⟩ ≤ 0.

Thus, from (3.7) we obtain

lim sup
n→∞

⟨γf(q)−Bq, yn − q⟩

≤ lim sup
n→∞

⟨γf(q)−Bq, yn − zn⟩+ lim sup
n→∞

⟨γf(q)−Bq, zn − q⟩

≤ lim sup
n→∞

∥γf(q)−Bq∥∥yn − zn∥+ lim sup
n→∞

⟨γf(q)−Bq, zn − q⟩

≤ 0.

Step 7. We show that limn→∞ ∥xn − q∥ = 0 for q ∈ ∩∞
n=1F (Sn) ∩ V I(C,A),

where q = P∩∞
n=1F (Sn)∩V I(C,A)(γf + I −B)(q). Indeed, since ∥xn+1− q∥ ≤ ∥yn − q∥,

∥zn−q∥ ≤ ∥xn−q∥ and yn−q = αn(γf(xn)−Bq)+(I−αnB)(Szn−q), by Lemma
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2.2 we have

∥xn+1 − q∥2

≤ ∥yn − q∥2 = ∥αn(γf(xn)−Bq) + (I − αnB)(Snzn − q)∥2

≤ ∥(I − αnB)(Snzn − q)∥2 + 2αn⟨γf(xn)−Bq, yn − q⟩
≤ (1− αnγ)

2∥zn − q∥2 + 2αnγ⟨f(xn)− f(q), yn − q⟩
≤ (1− αnγ)

2∥xn − q∥2 + 2αnγ⟨f(xn)− f(q), yn − q⟩
+ 2αn⟨γf(q)−Bq, yn − q⟩)

≤ (1− αnγ)
2∥xn − q∥2 + 2αnγk∥xn − q∥∥yn − q∥

+ 2αn⟨γf(q)−Bq, yn − q⟩
≤ (1− αnγ)

2∥xn − q∥2 + 2αnγk∥xn − q∥(∥yn − xn∥+ ∥xn − q∥)
+ 2αn⟨γf(q)−Bq, yn − q⟩

≤ (1− 2(γ − γk)αn)∥xn − q∥2 + α2
nγ

2∥xn − q∥2 + 2αnγk∥yn − xn∥∥xn − q∥
+ 2αn⟨γf(q)−Bq, yn − q⟩

≤ (1− αn)∥xn − q∥2 + βn,

where

αn = 2(γ − γk)αn,

βn = α2
nγ

2M2
1 + 2αnγk∥yn − xn∥M1 + 2αn⟨γf(q)−Bq, yn − q⟩,

and M1 = sup{∥xn − q∥ : n ≥ 1}. From (i), Step 4 and Step 6, it is easily seen that

αn → 0,
∑∞

n=1 αn = ∞, and lim supn→∞
βn

αn
≤ 0. Thus, by Lemma 2.3, we obtain

xn → q. This completes the proof. �

Remark 3.2. We can obtain that if q solves the minimization problem

min
x∈∩∞

n=1F (Sn)∩V I(C,A)

1

2
⟨Bx, x⟩ − h(x),

where h is a potential function for γf , then

⟨γf(q)−Bq, p− q⟩ ≤ 0, p ∈ ∩∞
n=1F (Sn) ∩ V I(C,A).

For this fact, we also refer [10, 17].

As direct consequences of Theorem 3.1, we have the following results.

Corollary 3.3. Let C be a closed convex subset of a real Hilbert space H. Let A
be an α-inverse-strongly monotone mapping of C into H and {Sn} be a sequence of
nonexpansive mappings of C into itself such that ∩∞

n=1F (Sn) ∩ V I(C,A) ̸= ∅. Let
f be a contraction of C into itself with constant k ∈ (0, 1) and {xn} be a sequence
generated by

x1 = x ∈ C,

yn = αnf(xn) + (1− αn)SnPC(xn − λnAxn),

xn+1 = (1− βn)yn + βnSnPC(yn − λnAyn), n ≥ 1,
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where {λn} ⊂ [0, 2α], {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1]. Let {αn}, {λn} and {βn}
satisfy the conditions:

(i) αn → 0 (n → ∞);
∑∞

n=1 αn = ∞;

(ii) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1);

(iii) λn ∈ [c, d] for some c, d with 0 < c < d < 2α;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |λn+1 − λn| < ∞.
Suppose that

∑∞
n=1 sup{∥Sn+1z − Snz∥ : z ∈ D} < ∞ for any bounded subset

D of C. Let S be a mapping of C into itself defined by Sz = limn→∞ Snz for
all z ∈ C and suppose that F (S) = ∩∞

n=1F (Sn). Then {xn} converges strongly
to q ∈ ∩∞

n=1F (Sn) ∩ V I(C,A), where q = P∩∞
n=1F (Sn)∩V I(C,A))f(q), which solves a

variational inequality

⟨f(q)− q, p− q⟩ ≤ 0, p ∈ F (S) ∩ V I(C,A).

Proof. TakingB = I and γ = 1 in Theorem 3.1, we can obtain the desired result. �

Corollary 3.4. Let C be a closed convex subset of a real Hilbert space H such that
C ±C ⊂ C. Let A be an α-inverse-strongly monotone mapping of C into H and S
be a nonexpansive mapping of C into itself such that F (S) ∩ V I(C,A) ̸= ∅. Let B
be a strongly positive bounded linear operator on C with constant γ ∈ (0, 1) and f

be a contraction of C into itself with constant k ∈ (0, 1). Assume that 0 < γ < γ
k .

Let {xn} be a sequence generated by
x1 = x ∈ C,

yn = αnγf(xn) + (I − αnB)SPC(xn − λnAxn),

xn+1 = (1− βn)yn + βnSPC(yn − λnAyn), n ≥ 1,

where {λn} ⊂ [0, 2α], {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1]. If {αn}, {λn} and {βn}
satisfy the conditions:

(i) αn → 0 (n → ∞);
∑∞

n=1 αn = ∞;

(ii) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1);

(iii) λn ∈ [c, d] for some c, d with 0 < c < d < 2α;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |λn+1 − λn| < ∞,
then {xn} converges strongly to q ∈ F (S)∩V I(C,A), where q = PF (S)∩V I(C,A))(γf+
I −B)(q), which is the unique solution of a variational inequality

⟨γf(q)−Bq, p− q⟩ ≤ 0, p ∈ F (S) ∩ V I(C,A).

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H such that
C ± C ⊂ C. Let A be an α-inverse-strongly monotone mapping of C into H such
that V I(C,A) ̸= ∅. Let B be a strongly positive bounded linear operator on C with
constant γ ∈ (0, 1) and f be a contraction of C into itself with constant k ∈ (0, 1).

Assume that 0 < γ < γ
k . Let {xn} be a sequence generated by

x1 = x ∈ C,

yn = αnγf(xn) + (I − αnB)PC(xn − λnAxn),

xn+1 = (1− βn)yn + βnPC(yn − λnAyn), n ≥ 1,
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where {λn} ⊂ [0, 2α], {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1]. If {αn}, {λn} and {βn}
satisfy the conditions:

(i) αn → 0 (n → ∞);
∑∞

n=1 αn = ∞;

(ii) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1);

(iii) λn ∈ [c, d] for some c, d with 0 < c < d < 2α;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |λn+1 − λn| < ∞,
then {xn} converges strongly to q ∈ V I(C,A), which is the unique solution in
V I(C,A) to the following variational inequality

⟨γf(q)−Bq, p− q⟩ ≤ 0, p ∈ V I(C,A).

Remark 3.6. (1) Theorem 3.1 (and Corollary 3.4) improves the corresponding
results in Chen et al. [5], Iiduka and Takahashi [9], and Jung [11].

(2) Theorem 3.1 of Jung [11] is a special case of Corollary 3.3 with Sn = S for
n ≥ 1. Also, if Sn = S, βn = 0 and f(xn) = x is constant in Corollary 3.3, then
Corollary 3.3 reduces to Theorem 3.1 of Iiduka and Takahashi [9].

(3) As in Remark 3.1 of Peng and Yao [18], we can obtain a sequence {Wn} of
nonexpansive mappings satisfying the condition

∑∞
n=1 sup{∥Wn+1z − Wn∥ : z ∈

D} < ∞ for any bounded subset D of H. So, by replacing {Sn} by {Wn} in the
iterative scheme (IS) in Theorem 3.1, we can obtain the corresponding results of
the so-called W-mapping.

(4) Other example of a sequence of nonexpansive mappings satisfying the condi-
tion in Theorem 3.1 can be also found in [1, Section 4].

(5) We obtain a new composite iterative scheme for nonexpansive mapping if
A = 0 in Theorem 3.1 as follows:

x1 = x ∈ C,

yn = αnγf(xn) + (I − αnB)Snxn,

xn+1 = (1− βn)yn + βnSnyn.

This composite iterative scheme reduces to an iterative scheme (1.5) of Marino and
Xu [15] if βn = 0 and Sn = S for n ≥ 1.

4. Applications

In this section, as in [5, 9, 11], we prove two theorems in a Hilbert space by using
Theorem 3.1.

A mapping T : C → C is called strictly pseudo-contractive if there exists α with
0 ≤ α < 1 such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + α∥(I − T )x− (I − T )y∥2

for every x, y ∈ C. If α = 0, then T is nonexpansive. Put A = I − T , where
T : C → C is a strictly pseudo-contractive mapping with α. Then A is 1−α

2 -inverse-
strongly monotone; see [3]. Actually, we have, for all x, y ∈ C,

∥(I −A)x− (I −A)y∥2 ≤ ∥x− y∥2 + α∥Ax−Ay∥2.
On the other hand, since H is a real Hilbert space, we have

∥(I −A)x− (I −A)y∥2 = ∥x− y∥2 + ∥Ax−Ay∥2 − 2⟨x− y,Ax−Ay⟩.
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Hence we obtain

⟨x− y,Ax−Ay⟩ ≥ 1− α

2
∥Ax−Ay∥2.

Using Theorem 3.1, we first establish a strong convergence theorem for finding a
common fixed point of a countable family of nonexpansive mapping and a strictly
pseudo-contractive mapping.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H such
that C ± C ⊂ C. Let T be an α-strictly pseudo-contractive mapping of C into
itself and {Sn} be a sequence of nonexpansive mappings of C into itself such that
∩∞
n=1F (Sn) ∩ F (T ) ̸= ∅. Let B be a strongly positive bounded linear operator on

C with constant γ ∈ (0, 1) and f be a contraction of C into itself with constant

k ∈ (0, 1). Assume that 0 < γ < γ
k . Let {xn} be a sequence generated by

x1 = x ∈ C,

yn = αnγf(xn) + (I − αnB)Sn((1− λn)xn + λnTxn),

xn+1 = (1− βn)yn + βnSn((1− λn)yn + λnTyn), n ≥ 1,

where {λn} ⊂ [0, 1− α), {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1]. Let {αn}, {λn} and {βn}
satisfy the conditions:

(i) αn → 0 (n → ∞);
∑∞

n=1 αn = ∞;

(ii) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1);

(iii) λn ∈ [c, d] for some c, d with 0 < c < d < 1− α;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |λn+1 − λn| < ∞.
Suppose that

∑∞
n=1 sup{∥Sn+1z − Snz∥ : z ∈ D} < ∞ for any bounded subset D

of C. Let S be a mapping of C into itself defined by Sz = limn→∞ Snz for all
z ∈ C and suppose that F (S) = ∩∞

n=1F (Sn). Then {xn} converges strongly to
q ∈ ∩∞

n=1F (Sn) ∩ F (T ), which is the unique solution in ∩∞
n=1F (Sn) ∩ F (T ) to the

following variational inequality

⟨γf(q)−Bq, p− q⟩ ≤ 0, p ∈ ∩∞
n=1F (Sn) ∩ F (T ).

Proof. Put A = I−T . Then A is 1−α
2 -inverse-strongly monotone. We have F (T ) =

V I(C,A) and PC(xn − λnAxn) = (1 − λn)xn + λnTxn. Thus, the desired result
follows from Theorem 3.1. �

Using Theorem 3.1, we also obtain the following result.

Theorem 4.2. Let H be a real Hilbert space H. Let A be an α-inverse-strongly
monotone mapping of H into itself and {Sn} be a sequence of nonexpansive map-
pings of H into itself such that ∩∞

n=1F (Sn)∩A−10 ̸= ∅. Let B be a strongly positive
bounded linear operator on H with constant γ ∈ (0, 1) and f be a contraction of H

into itself with constant k ∈ (0, 1). Assume that 0 < γ < γ
k . Let {xn} be a sequence

generated by 
x1 = x ∈ H,

yn = αnγf(xn) + (I − αnB)Sn(xn − λnAxn),

xn+1 = (1− βn)yn + βnSn(yn − λnAyn), n ≥ 1,
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where {λn} ⊂ [0, 2α), {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1]. Let {αn}, {λn} and {βn}
satisfy the conditions:

(i) αn → 0 (n → ∞);
∑∞

n=1 αn = ∞;

(ii) βn ⊂ [0, a) for all n ≥ 0 and for some a ∈ (0, 1);

(iii) λn ∈ [c, d] for some c, d with 0 < c < d < 2α;

(iv)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |λn+1 − λn| < ∞.
Suppose that

∑∞
n=1 sup{∥Sn+1z − Snz∥ : z ∈ D} < ∞ for any bounded subset D

of H. Let S be a mapping of H into itself defined by Sz = limn→∞ Snz for all
z ∈ H and suppose that F (S) = ∩∞

n=1F (Sn). Then {xn} converges strongly to
q ∈ ∩∞

n=1F (Sn) ∩ A−10, which is the unique solution in ∩∞
n=1F (Sn) ∩ A−10 to the

following variational inequality

⟨γf(q)−Bq, p− q⟩ ≤ 0, p ∈ ∩∞
n=1F (Sn) ∩A−10.

Proof. We have A−10 = V I(H,A). So, putting PH = I, by Theorem 3.1, we obtain
the desired result. �

Remark 4.3. (1) Theorems 4.1 and 4.2 improve and extend Theorems 4.1 and 4.2
in Chen et al. [5] and Jung [11] from one nonexpansive mapping to a countable
family of nonexpansive mapping. In particular, if B = I, γ = 1, and Sn = S for
n ≥ 1 in Theorems 4.1 and 4.2, we obtain Theorems 4.1 and 4.2 in Jung [11].

(2) If B = I, γ = 1, βn = 0 and Sn = S for n ≥ 1 in Theorems 4.1 and 4.2, then
we also get Theorems 4.1 and 4.2 in Chen et al [5].

(3) Theorems 4.1 and 4.2 also extend Theorem 4.1 and 4.2 in Iiduka and Takahashi
[9] to the viscosity methods in general composite iterative schemes with a countable
family of nonexpansive mappings.

(4) In all our results, we can replace the condition
∑∞

n=1 |αn+1−αn| < ∞ on the
control parameter {αn} by the condition αn ∈ (0, 1] for n ≥ 1, limn→∞ αn/αn+1 =
1 ([23, 24]) or by the perturbed control condition |αn+1 − αn| < o(αn+1) + σn,∑∞

n=1 σn < ∞ ([12]).
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