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A GENERAL COMPOSITE ITERATION METHOD FOR
MONOTONE MAPPINGS AND A COUNTABLE FAMILY OF
NONEXPANSIVE MAPPINGS

JONG SOO JUNG

ABSTRACT. We introduce a general composite iterative scheme for an inverse-
strongly monotone mapping and a countable family of nonexpansive mappings
in Hilbert spaces. It is proved that the sequence generated by the proposed
iterative scheme converges strongly to a common point of the set of solutions of
variational inequality for an inverse-strongly monotone mapping and the set of
fixed points of a countable family of nonexpansive mapping, which is the unique
solution of a certain variational inequality being the optimality condition for
some minimization problem. Our results substantially improve and develop the
corresponding results of Chen et al. [5], liduka and Takahashi [9], and Jung [11].

1. INTRODUCTION

Let H be a real Hilbert space and C' be a nonempty closed convex subset of
H. Recall that a mapping f : C — C is a contraction on C if there exists a
constant k € (0,1) such that ||f(z) — f(v)|| < k|lz — y||, =, vy € C. We use Il
to denote the collection of mappings f verifying the above inequality. That is,
I[Ic ={f:C — C| f is a contraction with constant k}. A mapping S : C — C'is
called nonexpansive if ||Sx — Sy|| < ||z —y| =, y € C: see [7,19] for the results of
nonexpansive mappings. We denote by F(S) the set of fixed points of S; that is,
F(S)={xe€C:xz= Sz}

Recall that a linear bounded operator B is strongly positive if there is a constant
7 > 0 with property

(Bz,x) >7|z||?, forall zc H.

Recently, iterative methods for nonexpansive mappings have been applied to solve
convex minimization problem; see, e.g., [6, 23, 24, 26] and the references therein. A
typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space H:

1
1.1 in—(B —
(1.1) min 2< x,x) — (x,b),

where C' is the fixed point set of a nonexpansive mapping S and b is a given point
in H
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Let Po be the metric projection of H onto C. A mapping A of C into H is called
monotone if for z, y € C, (x —y, Ax — Ay) > 0. The variational inequality problem
is to find a u € C such that

(v—u,Au) >0
for all v € C; see [2, 4, 13, 24]. The set of solutions of the variational inequality is
denoted by VI(C, A). A mapping A of C into H is called inverse-strongly monotone
if there exists a positive real number « such that

(x —y, Az — Ay) > a|| Az — Ay|?

for all x, y € C; see [3, 8, 14]. For such a case, A is called a-inverse-strongly
monotone.

In 2005, Tiduka and Takahashi [9] introduced an iterative scheme for finding a
common point of the set of fixed points of a nonexapnsive mapping and the set of
solutions of the variational inequality for an inverse-strong monotone mapping as
follows: for an a-inverse-strongly-monotone mapping A of C' into H, a nonexpansive
mapping S of C into itself such that F/(S)NVI(C, A) # 0, x1 =z € C, {ay,} C [0, 1),
and {\,} C [0,2q],

(1.2) Tpt1 = an® + (1 — ay)SPo(zy — A\yAzy,)

for every n > 1, where Pg is the metric projection of H onto C'. They proved
that the sequence generated by (1.2) converges strongly to Pp(s)nv1(c,4)® under the
following conditions on {ay, } and {\,}: A, € [¢, d] for some ¢, d with 0 < ¢ < d < 2«
and

[o¢] [o¢] (o)
(1.3) nh—>Holoa” =0, Zan < 00, Z |otnt1 — ap| < 0o and Z [Ant1 — An| < o0
n=1 n=1 n=1

On the other hand, the viscosity approximation method of selecting a particular
fixed point of a given nonexpansive mapping was proposed by Moudafi [16]. In 2004,
in order to extend Theorem 2.2 of Moudafi [16] to a Banach space setting, Xu [25]
consider the the following explicit iterative process: for S : C' — C a nonexpansive

mapping, f € Il and ay, € (0,1),
(1.4) Tnt1 = anf(an) + (1 — ap)Sz,, n>1

Moreover, in [25], he also studied the strong convergence of {z,,} generated by (1.4)
as n — oo in either a Hilbert space or a uniformly smooth Banach space and showed
that the strong lim,,_,+ x, is the unique solution of certain variational inequality.

In [24], Xu proved that, for a strongly positive bounded linear operator B with
constant 7, the sequence {z,} defined by the following iterative method with the
initial guess x1 € H chosen arbitrarily,

Tpy1 = anb+ (I — a,B)Sxy, n>1,

converges strongly to the unique solution of the minimization problem (1.1) pro-
vided the sequence {a,,} satisfies certain conditions. In 2006, Marino and Xu [15]
introduced a new iterative scheme by the viscosity approximation method: for a
strongly positive bounded linear operator B with constant 7, f € Ilg and v > 0,

(1.5) Tnt1 = anYf(zn) + (I — apB)Sxy, n>1,
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and proved that the sequence {z,} generated by (1.5) converges strongly to the
unique solution of the variational inequality

(B=vf)a"z—2") 20, zeF(5),

which is the optimality condition for the minimization problem

1
min —(Bzx,x) — h(x),
z€F(S) 2< ) (z)
where h is a potential function for v f (that is, h'(x) = v f(x) for x € H).
In 2007, as the the viscosity iteration method of (1.2), Chen et al. [5] considered
the following iterative scheme:

(1.6) Tnt1 = anf(xn) + (1 — apn)SPo(x, — A\pAzy,), n>1,

and showed that the sequence {z,} generated by (1.6) strongly converges strongly
to a point in F(S) N VI(C, A) under the conditions on {a,} and {\,} in (1.3),
which is the unique solution of a certain variational inequality.

In 2010, Jung [11] provided a new composite iterative scheme as follows:

Tp+1 = (1 - Bn)yn + BnSPC(yn - )\nAyn)y n>1,

where {#,} € [0,1]. Also he proved that the sequence {z,} generated by (1.7)
strongly converges strongly to a point in F'(S) N VI(C, A) under the conditions on
{an} and {\,} in (1.3) and suitable conditions on {3, }, which is the unique solution
of a certain variational inequality.

In this paper, motivated by above-mentioned results [5, 9, 11, 15], we introduce a
general composite iterative scheme for finding a common point of the set of solutions
of the variational inequality for an inverse-strongly monotone mapping and the set
of fixed points of a countable family of nonexapnsive mappings as follows: for
an a-inverse-strongly monotone mapping A of C into H, a countable family of
nonexpansive mappings S,, of C' into itself such that NS, F(S,) N VI(C, A) # 0,
a contraction f of C into itself with constant k, a strongly positive bounded linear
operator B on C with constant 7, 0 < v < %, z1 € C, {ap} and {B,} C [0,1), and
{An} €0, 2q],

Yn = anyf(xn) + (I — ap,B)SpPo(xn — A\nAxy,),
Tn4+1 = (1 - /Bn)yn + ﬁnSnPC(yn - AnAyn)a n > 1.

Under appropriate conditions on the sequences {ay,}, {\,} and {5, }, we show that
the sequence {z,} generated by (1.8) converges strongly to a unique solution of
a certain variational inequality, which is the optimality condition for some mini-
mization problem. Using this result, we first obtain a strong convergence result
for finding a common fixed point of a strictly pseudo-contractive mapping and a
countable family of nonexpansive mappings. Moreover, we investigate the problem
of finding a common point of the set of zero of an inverse-strongly monotone map-
ping and the set of fixed points of a countable family of nonexpansive mappings.
The main results improve and complement the corresponding results of Chen et al.
[5], liduka and Takahashi [9] and Jung [11]. We point out that the iterative scheme

(1.7) {yn = anf(zn) + (1 — o) SPo(mn — M Azy),

(1.8)
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(1.8) is a new approach for finding solutions of variational inequalities for monotone
mappings and the fixed points of a countable family of nonexpansive mappings.

2. PRELIMINARIES AND LEMMAS

Let H be a real Hilbert space with inner product (-, -) and norm || - || and let C be
a closed convex subset of H. We write z,, — z to indicate that the sequence {z,}
converges weakly to z. x,, — x implies that {z,,} converges strongly to z. For every
point z € H, there exists a unique nearest point in C, denoted by Pc(x), such that

[ = Po(z)]| < ||z =yl

for all y € C. P is called the metric projection of H onto C. It is well known that
Pc is nonexpansive and P satisfies

(2.1) (& =y, Po(x) = Pe(y)) > ||Po(z) — Pe(y)|?
for every x, y € H. Moreover, Po(x) is characterized by the properties:
u=Po(z) e (z—u,u—y) >0

and
lz —y|> > ||l — Po(2)|]* + |y — Pe(z)|? forallz € H, y € C.

In the context of the variational inequality problem for a nonlinear mapping A, this
implies that

(2.2) ueVI(C,A) <= u = Po(u — Au), for any A > 0.

It is also well known that H satisfies the Opial condition (cf. [7, 21]), that is, for
any sequence {z,} with x,, = z, the inequality

liminf ||z, — z| < liminf ||z, — y||
n—oo n—oo

holds for every y € H with y # x.

We state some examples for inverse-strongly monotone mappings. If A =1 —T,
where T is a nonexpansive mapping of C' into itself and [ is the identity mapping
of H, then A is %-inverse—strongly monotone and VI(C,A) = F(T). A mapping A
of C'into H is called strongly monotone if there exists a positive real number 7 such
that

(@ —y, Aw — Ay) > nllz —y||?
for all z, y € C. In such a case, we say A is n-strongly monotone. If A is 7-
strongly monotone and k-Lipschitz continuous, that is, ||Az — Ay|| < k||lz — y|| for
all z, y € C, then A is -%-inverse-strongly monotone.

If A is an a-inverse-strongly monotone mapping of C' into H, then it is obvious
that A is é—Lipschitz continuous. We also have that for all , y € C' and A > 0,

I(Z = Ad)z — (I = AA)y[* = [|(x — y) — MAz — Ay)[]”
=z =yl — 2\z —y, Az — Ay) + N*| Az — Ay||?
< llz =yl + A\ = 20)[| Az — Ay]|*.
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So, if A < 2, then I — AA is a nonexpansive mapping of C into H. The following
result for the existence of solutions of the variational inequality problem for inverse
strongly-monotone mappings was given in Takahashi and Toyoda [22].

Proposition 2.1. Let C be a bounded closed convex subset of a real Hilbert space
and let A be an a-inverse-strongly monotone mapping of C into H. Then, VI(C, A)
18 nonempty.

A set-valued mapping T : H — 2 is called monotone if for all z, y € H, f € Tx
and g € Ty imply (z —y, f —g) > 0. A monotone mapping T : H — 2 is mazimal
if the graph G(T") of T' is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping 7T is maximal if and only if for
(x,f) e Hx H, (x —y,f—g) >0 for every (y,g9) € G(T) implies f € Tz. Let A
be an inverse-strongly monotone mapping of C' into H and let Nov be the normal
cone to C at v, that is, Nov ={w € H : (v —u,w) > 0, for all u € C}, and define

vé¢C.

Then T' is maximal monotone and 0 € T if and only if v € VI(C, A): see [19, 20].
We need the following lemmas for the proof of our main results.

{AU+NCU, veC
Tv = 0

Lemma 2.2. In a real Hilbert space H, there holds the following inequality
lz +ylI* < ll2[* + 2(y, = + y),
forallx, ye H.

Lemma 2.3 (Xu [23]). Let {s,} be a sequence of non-negative real numbers satis-
fying
$n41 < (1= An)sn + B +9m, n>1,
where {\n} and {Bn} satisfy the following conditions:
(i) {An} C[0,1] and X707 A = o0 or, equivalently, [1721(1 — \,) =0,
(i) imsup, o 52 <0 or 3272, |Ba] < o0,

(ifi) 70 >0 (n > 1), 307 7n < 00.
Then lim,_oo Sp = 0.

Lemma 2.4 (Marino and Xu [15]). Assume that B is a strongly positive linear
bounded operator on a Hilbert space H with coefficient ¥ > 0 and 0 < p < || B||~.
Then ||[I — pB|| < 1— p7y.

Lemma 2.5 (Aoyama et al. [1]). Let C' be a nonempty closed convexr subset of H
and {Sy} be a sequence of nonexpansive mappings of C into itself. Suppose that

Zsup{HSnHz —Spz|| 2 € C} < 0.

n=1
Then, for each y € C, {Spy} converges strongly to some point of C. Moreover, let
S be a mapping of C into itself defined by Sy = lim,_,o0 Spy for all y € C. Then
lim;, o0 sup{||Sz — Spz| : z € C'} = 0.
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3. MAIN RESULTS

In this section, we present a new general composite iterative scheme for inverse-
strongly monotone mappings and a countable family of nonexpansive mappings.

Theorem 3.1. Let C' be a closed convex subset of a real Hilbert space H such
that C += C C C. Let A be an a-inverse-strongly monotone mapping of C into
H and {S,} be a sequence of nonexpansive mappings of C into itself such that
N2 F(S,) NVI(C,A) # 0. Let B be a strongly positive bounded linear operator
on C with constant 5 € (0,1) and f be a contraction of C into itself with constant
k€ (0,1). Assume that 0 <~y < % Let {x,} be a sequence generated by

r1=x € C,
(IS) Yn = an’}/f(xn) + (I - anB)SnPC’(xn - AnAxn%

Tnt1 = (1 = Bn)yn + BaSnPo(yn — AnAyn), n>1,
where {\,} C [0,2a], {a,} C [0,1) and {B,} C [0,1]. Let {an}, {\n} and {B,}
satisfy the conditions:

(i) ap = 0 (n— 00); 00| (= 00;

(ii) Bn C [0,a) for alln >0 and for some a € (0,1);

(iii) A, € [¢,d] for some ¢, d with 0 < ¢ < d < 2«;

(iv) Donzt lomg1 — an| <00, 3207 Byt — Bl <00, 3070 [Ant1 — An| < 00.
Suppose that "7 sup{||Sn+12 — Snz|| : z € D} < oo for any bounded subset D
of C. Let S be a mapping of C into itself defined by Sz = lim, o0 Spz for all
z € C and suppose that F(S) = N2, F(Sy). Then {z,} converges strongly to
q € My F(Sp) NVI(C, A), where g = Pree p(s,)nvi(c,ay(Yf +1—B)(q), which is
the unique solution of a variational inequality

(vf(@) = Ba,p—q) <0, p €M F(Sn) NVI(C, A),
which is the optimality condition for the minimization problem
1
min —(Bzx,z) — h(x),

€N F(Sp)NVI(C,A) 2
where h is a potential function for vf.
Proof. Since o, — 0 by the condition (i), we may assume, with no loss of generality,
that o, < ||B||~! for all n > 1. From Lemma 2.4, we know that if 0 < p < ||B|| 7},
then ||I — pB| < 1 — py. We will assume that || — B|| < 1—-7. Let Q =
Pree  F(s,)nvi(c,a)- Then Q(vf + 1 — B) is a contraction of C into itself. Indeed,
for x,y € C, we have

1Q(yf+I = B)(z) = Q(vf + 1 = B)(y)]
<NOvf +1=B)(x) = (vf+1-B)Wll
<Af @) = FWI + 1 = Blllle -y
<kllz =yl + (1 =)z -yl
< [lz =yl
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Since H is complete, there exists a unique point ¢ € C such that ¢ = Q(vf + I —
B)(q) = Pre r(s.)nviec,a(vf +1—B)(q).

Let z, = Po(xz, — MyAxy,) and w, = Po(yn — A\pAyy) for every n > 1. Let
ue N F(S,) VI(C,A). Since I — A\, A is nonexpansive and u = Po(u — A\, Au)
from (2.2), we have

|lzn — u|| = [|Po(zn — AnAzy) — Po(u — A Au)||
< xn — AMpAxy) — (u— N\ Au)||
< [Jon — ul|.
Similarly we have [|w,, — u|| < ||y, — u].
Now we divide the proof into several steps.

Step 1. We show that {x,} is bounded. In fact, put M = max{||z1—u]l, W}
It is obvious that ||z1 — u|| < M. Suppose that ||z, — u|| < M. Then, we have

[yn = ull = llan(vf(2n) = Bu) + (I = anB)(Snzn — u)
< an|[vf(@n) = Bul + |[I = anBlll|zn — uf
< an[y[[f(zn) = FW)][ + 17 (u) = Bul[] + (1 — an¥)[[2n — uf
< anvklzn —ul + (1 = an¥)lJzn — ull + an v f(uw) = Bu|
1
5 —
<1 - =k)an)M + (¥ —vk)anM = M,

= (1 =G —vk)an)llen —ul + an(y = k) ok 17/ (u) — Bull

and
Zn+1 —ull = (1T = Bn)(Yn — u) + Bu(Snwy — u)]|

< (1= Bu)llyn — ull + Bullwn — |
< (1= Bu)llyn — ull + Bullyn — ull
= |lyn —ull < M.

So, we have that ||z, —u|| < M for n > 0 and hence {z,} is bounded and so {y,},
{zn}, {wn}, {BSnzn}, {Azy} and { Ay, } are bounded. Moreover, since ||.Sy, 2, —u|| <
|zn — ul| and ||Spw, — u|| < |lyn — ull, {Snzn} and {S,wy} are also bounded. By
condition (i), we also obtain

(3.1) 1Yn = Snznll = anll7f(zn) = BSnza| = 0 (as n — o).

Step 2. We show that lim,, .« ||Zn+1 — Zn|| = 0. From (IS), we have
Ynt1 = Q17 f(Tnt1) + (I — ant1B)Snt12n41
Yn = Oén’)/f(xn) + (I — OénB)Snzn.
Simple calculations show that

Yn+1 — Yn = (I — ant1B)(Snt12n41 — Snzn) — (Qns1 — an)BSpzn
+[an(f(@nt1) = f(2n)) + (ns1 — an) f(2n)]-
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[2n41 = 2nll < [(@n+1 = A1 Azng1) — (20 — AnAzy)|
<
<

|(Znt1 — Ag1AZni1) = (Tn — A1 Azy)|| + | An — Ang1|]|Azy ||
[Zn+1 = Znll + [An = Anga ||| Ay |

for every n > 1, we have

Hyn+1 - ynH

(3.2)

IN

IN

IN

IN

<

(I = anB)(Snt+12n+1 — Snzn) — (ny1 — ) BSpzn
+y[on1(f(@nt1) = f(@n)) + (g1 — o) f(@n)]]

(1 = an17) [ Snt12n41 = Snzall + |an+1 — on|[| BSh 2 ||
Fylant 1|l f(zng1) = flan)ll + [antr — anll|Lf(zn) ]

(1 = ant1M)[[[Snt+12n+1 — Snt1zn || + [[Snt12n — Snznll]

tant1 — anll| BSpznll + v[on+1kl|wn+1 — znll + lant1 — an || f (zn)][]
(1 = ant1¥)lzn+1 — 2ull + 1Snt12n — Snznll + lant1 — anl||BSnzn||
Fylant1kl|zni1 — znll + |omer — anll[ £ (zn)l]

(1 = ap1V)[llznt1 — @all + [An = At |[[Azn ]

+yont1k||zns1 — 2|l + Joms1 — an|Li + ||Snt12n — Snznl|

(1= = vk)ant)|Tnt1 — zull + [An = Ant1]La

+lont1 — an| M1 + ||Spt12n — Snznl|

for every n > 1, where M; = sup{y|f(zn)| + [|[BSnzn| : n > 1} and L; =
sup{||Az,| : n > 1}.
On the other hand, from (IS) we have

Tny1 = (1 — Bn)yn + BaSnwn
Tn = (1 - 571—1)?]71—1 + ,Bn_lsn_ﬂun_l.

Also, simple calculations show that
Tn+l — Tp = (1 - Bn)(yn - yn—l) + 6n(snwn - Sn—lwn—l)

Since

+ (Bn - Bn—l)(Sn—lwn—l - yn—l)-

Hwn - wn—l” < H(yn - )\nAyn) - (yn—l - /\n—lAyn—1>H

< H(yn - /\nAy'n) - (yn—l - /\nAyn—l)H + ’)‘n—l - )‘n’HAyn—lu
< yn = yn—1ll + [An—1 — Anll[ Ayn—1]]

for every n > 2, it follows that

[Zn+1 — 2nl

(3.3)

<

IN

IN

(1= Bu)llyn — yn-1l

+Bn[l|Snwn — Sn—1wyl| + || Sn—1wp — Sn—1wn—1]]]

+18n = Bn-1|Sn-1w0n-1 — yn-1]|

(1= Bo)llyn — yn—1ll + Bnllwn — w1 + Bl Snwn — Sp—1wy||
'H/Bn - /Bn—1’|’5n—1wn—1 - yn—l”

(1 = B)llyn = yn—1ll + Bnllyn — Yn—-1ll + [An—1 = An|l| Ayn-1)
+Bn”5’nwn - n—lwnH + ’/Bn - Bn—l‘”sn—lwn—l - yn—lH
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< lyn =yl + [An—1 = Anll[Ayn— ||
+18n = Bn-1l[|Sn-10n-1 — yn-1l| + [|Spwn — Sp—1wn|.
Substituting (3.2) into (3.3), we derive
[Tn1 —@all < (1= F = vk)an)l|en — |l + [An—1 = An|L1 + |om — 1| My
A1 = AnlllAyn-1ll + [Bn = Brl[[Sn-1wn-1 = yn-1ll
(3.4) +2sup{||Snz — Sp_12|| : z € D}
< (1 =F—vk)an)llzn — zn-1ll + La|An—1 — An| + Mi|an — 1]
+Mp|Bn — Bn-1| + 2sup{|[Snz — Sp—12]| : 2 € D},
where D is a bounded subset of C' containing {wy,}, Ls = sup{Li + ||Ayn|| : n > 1},

and My = sup{||Spwy, — yn|| : n > 1}. From the conditions (i) and (iv), it is easy to
see that

7}1{&(7 - "}/k‘)an =0, 21(7 - Vk)an =00
and
Z(M1|an+l - O‘n‘ + M2‘6n+1 - /8n|
n=1

+ Lo|Ant1 — An| + 2sup{||Sn+12 — Snz|| : z € D}) < 0.
Applying Lemma 2.3 to (3.4), we have
|Tnt1 — znl] = 0 as n — oo.
By (3.2), we also have that ||yn+1 — yn| — 0 as n — oc.

Step 3. We show that lim,_,« ||zn, — ynl| = 0 and lim, e ||2n — Snzn| = 0.
Indeed,

[Zn+1 = Ynll = BnllSnwn — ynll
< Bu([1Snwn — Snznll + [|Snzn — yall)
< a(llwn — znll + [|Snzn — ynl)
< a(llyn — znll + [[Snzn — ynl)
< alllyn — o1l + 12ns1 — 2ol + 15020 — ynll)

which implies that

a
znt1 = ynll < 7= (l2n+1 = @nll + [Snzn = yal))-

Obviously, by (3.1) and Step 2, we have ||zy4+1 — yn|| = 0 as n — oco. This implies
that that

(3.5) 20 = ynll < llzn = Znall + [Znp1 = ynll = 0 as n — oo
By (3.1) and (3.5), we also have

(3.6) |z — Snznll < |Tn — Ynll + |yn — Snznll = 0 as n — occ.
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Step 4. We show that lim, o ||z, — z,|| = 0 and lim, . ||yn — 2n|| = 0. To
this end, let u € N2, F(S,) N VI(C, A). Then, we have

lyn — UH2 = [lan(vf(2n) — Bu) + (I — anB)(Snzn — u)||2

(n|vf(2n) = Bull + | = anB||||Snzn — ul))?

anlvf (zn) = Bul® + (1 = an¥) |20 — ull?

+ 200 (1 — an¥) |7 f (2n) — Bull[[zn — ul|

anlvf () = Bull® + (1 = an) [l — ull® + Aa(An — 20)[| Ay, — Aull?]
+ 200 (1 — an¥) |17 f (2n) — Bull[[zn — ul|

anl|7f(zn) — Bull* + ||zn — ul]* + (1 — ay¥)e(d — 20)|| Az, — Aul|?

+ 2an |7 f (zn) — Bulll|zn — ul|.

<
<

IN

IN

So we obtain
— (1 = ap¥)e(d — 2a)|| Az, — Aul?
< anlvf(@n) = Bull® + (l2n — ull + llyn = ull) (I = ull = llyn — u])
+ 20m 17 f (2n) — Bull[[zn — ul
|7 (2n) = Bull® + (l2n — ull + [lyn — ul) |20 — ynll
+ 20m |17 f (n) — Bul|lzn — ul.

IN

Since ay, — 0 and ||z, — y,|| — 0 by the condition (i) and Step 3, respectively, we
have ||Az,, — Aul| = 0 (n — o0). Moreover, from (2.1) we obtain

|z — qu = ||Po(xn — AMAzxy) — Po(u — )\nAu)H2
(Xn — AMAxy — (u — MyAu), 2, — u)

IN

1
= 5 {l@n = AnAzy) = (u = M )| + [z —
= [(zn — AnAzn) — (u — ApAu) — (2, — u)”z}

IN

lllzn = ull + llzn — ull? ~ llzn — 2l
+ 2\ (T — 20, Az — Au) — N2 Ay, — Aul?}.
and so
2 — ul|? < ||z — ul® = |20 — 20| + 200 Zn — 20, Az — Au)
— 22| Az, — Aul?.
Thus it follows that
lyn — ull® < (anllvf(@n) = Bull + (1 = au¥)l| 20 — ul])?
+ 200 (1 — )7 f (2n) — Bul|[|2n —u|
< o7 f (@n) = Bull? + [lon — ull* = (1 = an¥) on — 2ol

+2(1 — an) A (Tn — 20, Az — Au) — (1 — an¥)N2||Azy — Aul|?
+ 2an[[7f (zn) — Bulll[zn — ul.-
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Then, we have
(1 — an¥)llzn — Zn||2
< anlvf (@n) = Bull® + (2 —ull + llyn — ul) (I = ull = llyn — ul)
+2(1 — an) A (T — 20, Az — Au) — (1 — an7)N2|| Az — Aul|?
+ 2017 f (zn) — Bulll|zn — ul|
< anlvf (@n) = Bull® + (lan — ull + llyn — ull) |20 — yall
+2(1 — an) A (@ — 20, Az — Au) — (1 — an7)N2|| Ay, — Aul|?
+ 2017 f (zn) — Bullllzn — ul.
Since ay, — 0, ||z, — yn|| — 0 and ||Az,, — Aul| — 0, we get ||z, — z,|| — 0. Also by
(3.5)
(3.7) [yn = znll < llyn — znll + lzn = 2nl] = 0 (0 — o0).

Step 5. We show that lim,_, [|Sz, — 2z, || = 0. In fact, since
[Snzn = znll < [1Sn2n — ynll + lyn — 2al
< anlvf(@n) = BSnznll + [lyn — 2l
from (3.7), we have lim,,_, ||Sn2n — 2zn|| = 0. Observe that
1Sz — znll < |S2n — Snznll + [|Snzn — 2nl|
<sup{||Sz — Spz|| : 2 € D} + ||Snzn — 2nl|-
By Lemma 2.5, we have lim,, ;. [|Szn, — 2| = 0.

Step 6. We show that limsup,,_, . (vf(¢) — Bq,yn —¢q) < 0 for g € N3, F(S,) N
VI(C,A), where ¢ = ngole(Sn)mVI(C,A)(’Yf + I — B)(q). To this end, choose a
subsequence {z,,} of {z,} such that

limsup(yf(q) — Bq,zn — q) = Z,l_i{g)ﬁf(Q) — Bq, 2, — q)-

n—o0

Since {zy,} is bounded, there exists a subsequence {znlj} of {zp,} which converges
weakly to z. We may assume without loss of generality that z,, — 2. Since
|S2n; — 2n, || = 0 by Step 5, we have Sz,, — z. Then we can obtain z € N>, F/(S,)N
VI(C,A). Indeed, let us first show that z € VI(C, A). Let

Av+ Nov, wvel
Tv =
0 v ¢ C.

Then T is maximal monotone. Let (v, w) € G(T'). Since w—Av € Nov and z, € C,
we have

(v —zp,w— Av) > 0.

On the other hand, from z,, = Po(x, — A\ Axy,), we have (v—2zp, 2, — (T — A Azy)) >

0 and hence
2y >

(v — zn,
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Therefore we have

<U - Zmaw> > <U - anA’U>

2 <U_Zni,A’U>—<U—zni’ i +Awnz>
Aoy
= (v — 2, Av — Az, — 2Ty
An;
= <U - Zn,“A’U — A2n2> + <U - Z”i’ Azni — A:[,’nl>
Zn; — Tn,
(v — zn,, o )
= <U - Z"HAzni - Awm> - <U — Zn;» @>
.

(3

Since ||zp, — zn|| — 0 in Step 4 and A is a-inverse-strongly monotone, we have
(v —z,w) >0 asi— oco. Since T is maximal monotone, we have z € T~10 and
hence z € VI(C,A). Next we show that z € F(S). Assume z ¢ F(S). Since
Zn, — z and z # Sz, from Opial condition and Step 5, we have

liminf ||z,, — z|| < liminf ||z,, — Sz||
1—00 71— 00
< liminf(|[zn; — Szp,[| + 1520, — S2])
1—00

< liminf ||z, — 2|
11— 00

This is a contradiction. So, we obtain z € F(S) = N2, F(S,). Therefore, z €
Moz1F'(Sn) NVI(C, A). Since ¢ = Free  p(s,)avi(c,a)(vf +1 — B)(q), we have

limsup(7f(¢) — Be, 20 — ) = lim (v/(¢) = Bg, 20, — @)
= (vf(q) — Bg,z — q) < 0.

Thus, from (3.7) we obtain

limsup(vf(q) — Bg, yn — q)

n—oo

< limsup(yf(q) — Bq, yn — 2n) +limsup(yf(q) — Bq, zn — q)
n—oo n—oo

< limsup [|7f(q) — Bql|llyn — 2nll + limsup(vf(q) — Bg, 2, — q)
n—oo n—oo

< 0.

Step 7. We show that lim, ,« ||z, — ¢|| = 0 for ¢ € NS, F(S,) N VI(C, A),
where ¢ = Pre (s, )nvi(c,a)(vf +1— B)(q). Indeed, since [|z41 —ql| < [lyn —ql,
Izn —qll < llzn —qll and yn —q = an(vf(xn) — Bq) + (I — anB)(Szn — q), by Lemma
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2.2 we have
[ Zns1 — ql|®

< lyn — alI* = llon(vf (zn) — Bq) + (I — anB)(Snzn — q)|?

< | = anB)(Snzn — Q)H2 + 20, (vf(2n) — B, Yn — q)

< (1= an)?llzn — all® + 200y (f(2n) — F(@),yn — )

< (1= an¥)?n — qll” + 2009 (f (20) = £(@), 90 — @)

+ 200 (vf(q) — Bgyn — q))

< (1= an¥)?||zn — qll* + 2007kl 20 — glllyn — gl
+2an(vf(q) — Bgyn — @)
(1= an¥)?zn — gl + 2007kl|2n = gl (lyn — @nll + 20 — 4l])
+ 200 (vf(q) — B, Yn — q)
< (1 =20 = k) an)|zn — ql* + a2 |lzn — qll* + 2007k |yn — znllllz — gl

+ 200 (v f(q) — B, yn — @)

(1 —a)l|lzn — qll* + Bn,

IN

IN

where
= 2(7 = vk)am,
P = g 7° MY + 2007k|lyn — | My + 200 (vf(0) = Ba, yn — ),
and M = sup{||z, —¢|| : » > 1}. From (i), Step 4 and Step 6, it is easily seen that

o, — 0, >0 @y = 00, and limsup,, & < 0. Thus, by Lemma 2.3, we obtain
T, — ¢q. This completes the proof. O

Remark 3.2. We can obtain that if ¢ solves the minimization problem

1
min —(Bz,x) — h(z),
T€ENS, F(Sn)NVI(C,A) 2
where h is a potential function for ~f, then
(vf(@) = Ba,p—q) <0, p €N F(Sy) NVI(C,A).
For this fact, we also refer [10, 17].

As direct consequences of Theorem 3.1, we have the following results.

Corollary 3.3. Let C be a closed convex subset of a real Hilbert space H. Let A
be an a-inverse-strongly monotone mapping of C into H and {S,} be a sequence of
nonexpansive mappings of C into itself such that N2 F(S,) NVI(C,A) # 0. Let
f be a contraction of C into itself with constant k € (0,1) and {x,} be a sequence
generated by

r1=x € C,
Yn = anf(xn) + (1 — ap)SnPo(zn — AMAxy,),
Tnt1 = (1 - 5n)yn + 5nSnPC(yn - )‘nAyn)7 n=>1,
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where {\p,} C [0,2a], {an} C [0,1) and {B,} C [0,1]. Let {an}, {An} and {Bn}
satisfy the conditions:

(i) an = 0 (n— 00); D00 Q= 00;

(ii) Bn C [0,a) for alln >0 and for some a € (0,1);

(iii) A, € [¢,d] for some ¢, d with 0 < ¢ < d < 2«;

(iv) Yooty lant1 — an| <00, 3202 [Bui1 — Bl <00, 3507 [Ant1 — An| < 00
Suppose that > > sup{||Sp+12 — Spz| : 2 € D} < oo for any bounded subset
D of C. Let S be a mapping of C into itself defined by Sz = lim,_ oo Snz for
all z € C and suppose that F(S) = NS F(Sy,). Then {x,} converges strongly
to g € MR F(Sn) NVI(C, A), where ¢ = Pree p(s,)nvi(c,a)f(q), which solves a
variational inequality

(fla) —q,p—q) <0, peF(S)NVI(C,A).
Proof. Taking B = I and v = 1 in Theorem 3.1, we can obtain the desired result. [J

Corollary 3.4. Let C be a closed convex subset of a real Hilbert space H such that
C+C cC. Let A be an a-inverse-strongly monotone mapping of C into H and S
be a nonexpansive mapping of C into itself such that F(S)NVI(C,A) # 0. Let B
be a strongly positive bounded linear operator on C with constant 5 € (0,1) and f
be a contraction of C into itself with constant k € (0,1). Assume that 0 < vy < %
Let {z,} be a sequence generated by

r1=x€C,
Yn = Oln')/f(xn) + (I - anB)SPC(xn - AnAJUn)’
Tnt+1 = (1 - /Bn)yn + BnSPC(yn - )\nAyn)a n =1,
where {\,} C [0,20a], {an} C [0,1) and {B,} C [0,1]. If {an}, {M} and {B.}
satisfy the conditions:
(i) an =0 (n — 00); D02 ap = 00;
(ii) Bn C [0,a) for alln >0 and for some a € (0,1);
(iii) A € [c,d] for some ¢, d with 0 < ¢ < d < 2¢;
(iv) Doply langr —an] <00, 2021 [Bra1 — Bnl <00, 3021 [Ang1 — An| < 00,
then {xn} converges strongly to q € F(S)NVI(C, A), where ¢ = Pp(s)nvrc,a) (v f+
I — B)(q), which is the unique solution of a variational inequality

(vf(¢) = Bq,p—q) <0, pe F(S)NVI(C,A).

Corollary 3.5. Let C' be a closed convex subset of a real Hilbert space H such that
C+C CC. Let A be an a-inverse-strongly monotone mapping of C into H such
that VI(C,A) # 0. Let B be a strongly positive bounded linear operator on C with
constant 5 € (0,1) and f be a contraction of C into itself with constant k € (0,1).
Assume that 0 < v < % Let {x,,} be a sequence generated by

r1=x€C,
Yn = anYf(xn) + (I — anB)Po(zy — AMAxy,),
Tn+l = (1 - Bn)yn + ﬂnPC(yn - AnAy’n)v n>1,
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where {A\,} C [0,2a], {an} C [0,1) and {B,} C [0,1]. If {an}, {\} and {Bn}
satisfy the conditions:

(i) an = 0 (n— 00); D00 Q= 00;

(ii) Bn C [0,a) for alln >0 and for some a € (0,1);

(iii) A, € [¢,d] for some ¢, d with 0 < ¢ < d < 2«;

(iv) Doni ot — anl <00, 37021 [Bag1 — Bal < 00, 2021 [Ang1 — Anl < 00,
then {x,} converges strongly to q € VI(C,A), which is the unique solution in
VI(C,A) to the following variational inequality

(vfl¢) = Bg,p—q) <0, peVI(C,A).

Remark 3.6. (1) Theorem 3.1 (and Corollary 3.4) improves the corresponding
results in Chen et al. [5], liduka and Takahashi [9], and Jung [11].

(2) Theorem 3.1 of Jung [11] is a special case of Corollary 3.3 with S,, = S for
n > 1. Also, if S, = S, 8, = 0 and f(x,) = = is constant in Corollary 3.3, then
Corollary 3.3 reduces to Theorem 3.1 of Iiduka and Takahashi [9].

(3) As in Remark 3.1 of Peng and Yao [18], we can obtain a sequence {W,,} of
nonexpansive mappings satisfying the condition Y o7, sup{||Wnq12 — W,|| : 2z €
D} < o for any bounded subset D of H. So, by replacing {S,} by {W,} in the
iterative scheme (IS) in Theorem 3.1, we can obtain the corresponding results of
the so-called W-mapping.

(4) Other example of a sequence of nonexpansive mappings satisfying the condi-
tion in Theorem 3.1 can be also found in [1, Section 4].

(5) We obtain a new composite iterative scheme for nonexpansive mapping if
A =0 in Theorem 3.1 as follows:

r1=x € C,
Yn = an’)/f(xn) + (I - anB)Snﬁna
Tp4+1 = (1 - Bn)yn + annyn

This composite iterative scheme reduces to an iterative scheme (1.5) of Marino and
Xu [15] if B, =0 and S, = S for n > 1.

4. APPLICATIONS

In this section, as in [5, 9, 11], we prove two theorems in a Hilbert space by using
Theorem 3.1.
A mapping T : C' — C is called strictly pseudo-contractive if there exists a with
0 < a < 1 such that
1Tz = Ty|* < |l = y|I* + all(I = T)z — (I = T)y|?
for every x, y € C. If @« = 0, then T is nonexpansive. Put A = I — T, where

T : C — (C is a strictly pseudo-contractive mapping with «. Then A is 1;O‘—inverse—

strongly monotone; see [3]. Actually, we have, for all z, y € C,
(I = Az — (I = A)yl” < llz =yl + o] Az — Ay|*.
On the other hand, since H is a real Hilbert space, we have

(I = A)a — (I = Ayl* = [lo =yl + | Az — Ay||* — 2{z — y, Az — Ay).
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Hence we obtain .
(v =y, A — Ay) > = || Ax — Ay

Using Theorem 3.1, we first establish a strong convergence theorem for finding a
common fixed point of a countable family of nonexpansive mapping and a strictly
pseudo-contractive mapping.

Theorem 4.1. Let C' be a closed convex subset of a real Hilbert space H such
that C + C C C. Let T be an a-strictly pseudo-contractive mapping of C into
itself and {S,} be a sequence of nonexpansive mappings of C' into itself such that
N2 F(Sp,) NF(T) # 0. Let B be a strongly positive bounded linear operator on
C with constant ¥ € (0,1) and f be a contraction of C into itself with constant
k€ (0,1). Assume that 0 <y < % Let {x,,} be a sequence generated by

r1=x € C,

Yn = anVf(xn) + (I — anB)Sn((1 — \p)xpn + ATxy),

Tn41 = (1 - ﬁn)yn + /ann((l - An)yn + AnTyn), n=>1,
where {\,} C [0,1 —a), {an} C[0,1) and {B,} C [0,1]. Let {an}, {\n} and {B.}
satisfy the conditions:

(1) ap = 0 (n— 00); D0 (= 00;

(ii) Bn C [0,a) for alln >0 and for some a € (0,1);

(iii) A, € [¢,d] for some ¢, d with0 < c<d<1—a;

(iv) Donzt lomt1 — an| <00, 3207 Byt — Bl <00, 30704 [Ant1 — An| < 00.
Suppose that >~ >7  sup{||Sn+12 — Snz|| : z € D} < oo for any bounded subset D
of C. Let S be a mapping of C into itself defined by Sz = lim, o0 Spz for all
z € C and suppose that F(S) = N2, F(Sy). Then {z,} converges strongly to
q € N F(Sy) NF(T), which is the unique solution in N2, F(S,) N F(T) to the
following variational inequality

(vf(q) = Bq,p—q) <0, pen F(S,)NF(T).

Proof. Put A=1—T. Then A is 1_TO‘—inve-rse—Stlrongly monotone. We have F(T') =
VI(C,A) and Po(zy — \yAzy,) = (1 — \y)zy + AyTx,. Thus, the desired result
follows from Theorem 3.1. U

Using Theorem 3.1, we also obtain the following result.

Theorem 4.2. Let H be a real Hilbert space H. Let A be an a-inverse-strongly
monotone mapping of H into itself and {S,} be a sequence of nonexpansive map-
pings of H into itself such that N0 F(S,) N A0 # 0. Let B be a strongly positive
bounded linear operator on H with constant 7 € (0,1) and f be a contraction of H
into itself with constant k € (0,1). Assume that 0 <y < Z Let {x,} be a sequence

generated by
r1=x € H,
Yn = anvf(xn) + (I — anB)Sp(zy — A\Azy,),
xn—f—l - (1 - 571)3/71 + /ann(yn - )\nAyn); n Z 17
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where {\p,} C [0,2a), {a,} C [0,1) and {Bn} C [0,1]. Let {an}, {A\n} and {Bn}
satisfy the conditions:

(i) ap = 0 (n— 00); D02 | Q= 00;

(ii) Bn C [0,a) for alln >0 and for some a € (0,1);

(iii) A, € [¢,d] for some ¢, d with 0 < ¢ < d < 2«;

(iv) Yooty lant1 — an| <00, 3202 |Bui1 — Bl <00, 3507 [Ant1 — An| < 00
Suppose that Y7 sup{||Snt12 — Snz|| : 2 € D} < oo for any bounded subset D
of H. Let S be a mapping of H into itself defined by Sz = lim,,_,o Snz for all
z € H and suppose that F(S) = NS, F(Sy). Then {z,} converges strongly to
q € N2, F(S,) N A™L0, which is the unique solution in NS F(S,) N A™10 to the
following variational inequality

(vf(a@) —Bg,p—q) <0, peM F(S,)NnA~'0.

Proof. We have A=10 = VI(H, A). So, putting Py = I, by Theorem 3.1, we obtain
the desired result. g

Remark 4.3. (1) Theorems 4.1 and 4.2 improve and extend Theorems 4.1 and 4.2
in Chen et al. [5] and Jung [11] from one nonexpansive mapping to a countable
family of nonexpansive mapping. In particular, if B =1, v =1, and 5, = 5 for
n > 1 in Theorems 4.1 and 4.2, we obtain Theorems 4.1 and 4.2 in Jung [11].

2)UB=I1,v=1,8,=0and S, = S for n > 1 in Theorems 4.1 and 4.2, then
we also get Theorems 4.1 and 4.2 in Chen et al [5].

(3) Theorems 4.1 and 4.2 also extend Theorem 4.1 and 4.2 in liduka and Takahashi
[9] to the viscosity methods in general composite iterative schemes with a countable
family of nonexpansive mappings.

(4) In all our results, we can replace the condition > > | |41 — @] < 00 on the
control parameter {a,} by the condition a,, € (0,1] for n > 1, lim, o0 o /41 =
1 ([23, 24]) or by the perturbed control condition |ap41 — an| < o(ant1) + op,

2 nz10n < oo ([12]).
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