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ABSTRACT. A convex vector optimization problem, which consists of more than
two convex objective functions and finitely many convex constraint functions, is
considered. In this paper, we discuss e-efficient solutions and weakly e-efficient
solutions for the convex vector optimization problem and obtain e-optimality
theorems for such solutions of which hold without any constraint conditions and
are expressed by sequences. Moreover, we obtain e-optimality theorems for the
convex vector optimization problem which hold under certain constraint qualifi-
cations.

1. INTRODUCTION

Many authors have studied existence of e-approximate solutions, e-optimality
conditions and e-duality results for several kinds of optimization problems([2, 3, 4,
10, 11, 12, 13, 16, 17, 18, 20]).

It is well known that constraint qualifications (for example, the Slater condi-
tion) should be imposed on convex optimization problems to obtain e-optimality
conditions for its e-approximate solutions.

To get an optimality condition for an efficient solution of a vector optimization
problem, we often formulate an corresponding scalar problem. However, it is so
difficult that such scalar program satisfies a constraint qualification which we need
to derive an optimality condition. Hence it is very important to investigate an
optimality condition for an efficient solution of a vector optimization problem which
holds without any constraint qualification.

Jeyakumar et al. ([8]) and Jeyakumar et al. ([9]) gave optimality conditions for
convex (scalar) optimization problems, which hold without any constraint qualifi-
cation.

Recently, many authors have paid their attention to investigate properties of
(weakly) e-efficient solutions, e-optimality conditions and e-duality theorems for
vector optimization problems([2, 3, 4, 12, 13, 16, 17, 18, 20]).

In this paper, a convex vector optimization probelm, which consists of more
than two convex objective functions and finitely many convex constraint functions,
is investigated. We consider e-efficient solutions and weakly e-efficient solutions for
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the convex vector optimization problem and obtain sequential e-optimality theorems
for such solutions of the convex vector optimization problem which hold without
any constraint qualifications and are expressed by sequences. Futhermore, we give
constraint qualifications expressed with epigraphs of conjugate functions and obtain
e-optimality theorems for the convex vector optimization problem which hold under
the constraint qualifications.

2. PRELIMINARIES

Now we give some definitions and preliminary results. The definitions can be
found in [5, 15, 21].
Let g : R — RU {400} be a convex function. The subdifferential of g at a is
given by
dg(a) = {v € R" | g(z) = gla) + (v,z —a), ¥z € domg},
where domg := {z € R" | g(x) < oo} and (,-) is the scalar product on R".
Let € 2 0. The e-subdifferential of g at a € domg is defined by

Oeg(a) :=={v eR" | g(x) 2 g(a) + (v,z —a) — ¢, Vz € domg}.
The conjugate function of g : R" — R U {+o0} is defined by
9" (v) = sup{{v, ) — g(z) | z € R"}.
The epigraph of g, epig, is defined by
epig = {(z,7) e R" xR | g(z) < r}.
For a nonempty closed convex subset C' of R", ¢ : R" — RU {400} is called the

indicator of C if §¢(x) = 0 ifreC

too otherwise, and for a point z € C, the normal

cone to C at z is defined as
No(z) == 06c(z) = {veR" | v (z — %) £0 VzeC}.

Lemma 2.1 ([7]). If h: R" — RU {400} is a proper lower semicontinuous convex
function and if a € domh, then

epih® = U{(v, (v,a) + € —h(a)) | v € Och(a)}.

€20

Lemma 2.2 ([6]). Let h : R™ — R be a convex function and let u : R™ — RU{+o0}
be a proper lower semicontinuous convex function. Then

epi(h 4+ u)* = epih™ + epiu®.

Lemma 2.3 ([1]). Let h; : R" — R™, i =0,1,...,1, be convex functions and let C
be a closed convex subset of R™. Suppose that {x € R™ | h;(z) <0, i=1,...,1} #0.
Then the following statements are equivalent:

(i) {z € R | hy(z) 0, i=1,...,1} C {z € R" | ho(z) =0}

(ii) 0 € epihf + cl( U epi(7, Aha)* + epiag).
Ai=0
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3. €-OPTIMALITY THEOREMS

Consider the following convex vector optimization problem (CVP):
(CVP) Minimize f(z) := (fi(x),..., fp(x))
subject to z€ Q:={zrecC|ygijx)<0, j=1,...,m}.

Let f :R" = R,i=1,...,p,and g; : R" = R, j =1,...,m be convex functions,
C a closed convex set and € = (e1,...€,), wheree; 20,0 =1,...,p.
Let for any z € R", S(z) = {x € R" | fi(x) £ fi(z) — ¢, foralli=1,... p}.

Now we give the definition of e-efficient solution of (CVP) which can be found
in ([14]).
Definition 3.1. The point Z € @ is said to be an e-efficient solution of (CVP) if
there does not exist x € () such that
filx) £ fi(z) — €, foralli=1,...,p,
fi(x) < fj(z) — ¢, for some j.
When € = 0, then the e-efficiency becomes the efficiency for (CVP)(see the
definition of efficient solution of (CVP) in [19]).

Now we give the definition of weakly e-efficient solution of (CVP) which is weaker
than e-efficient solution of (CVP).

Definition 3.2. A point Z € @ is said to be a weakly e-efficient solution of (CVP)
if there does not exist x € @ such that

filx) < fi(z) — €, foralli=1,... p.

When € = 0, then the weak e-efficiency becomes the weak efficiency for (CVP)(see
the definition of efficient solution of (CVP) in [19]). Note that even though Z is an
e-efficient solution of (CVP), Q@ N S(Z) may be empty.

Modifying Proposition 3.1 in [20], we can obtain the following proposition:

Proposition 3.3. Z is an e-efficient solution of (CVP) if and only if

QNS@) =0 or
p p
M fi@) =Y fi@) =Y e forany zeQnS(@)
=1 =1 =1

We can easily obtain the following proposition:

Proposition 3.4. Let ¢ 2 0 and T € Q then T is a weakly e-efficient solution of
p
(CVP) if and only if there exist p; 20 i=1,...,p, Z“i =1 such that

i=1

p p p
Zﬂifi(ﬂ?) 2 Z/Mfi(ﬂ_?) - Zuiei, forany x € Q.
i—1 i—1

=1
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Now we give a necessary and sufficient e-optimality theorem for the e-efficient solu-
tion of (CVP) which holds without any constraint qualification.

Theorem 3.5. Let T € Q. Suppose that Q N S(Z) # (. Then T is an e-efficient
solution of (CVP) if and only if there exist oy = 0,u; € 0Oq, fi(Z),1 = 1,...,p,
AP 20, 87 20,0" =20, 0] € ﬁgy(A?g?)(i‘),j =1,...,m, pp =2 0,77 =2 0,w}} €
Oyp (e f)(Z), k=1,...,p, 6" 20, 2" € N&' (z) such that

P m P
—g uizlim<§ 1);‘—1—5 wﬁ—f—z”)
n—oQ
i=1 j=1 k=1

and
P p

m p
D= ai+ lim {308 — (Ngi)@) + D (F — pier) + 0"}
=1 =1 j k=1

7=1

Proof. Let ho(x) = Z Z fi(z) + Z €;. Then
=1

=1

. G 0 r
epili’ = ) epifi + ( AR Y ) |

So, we have,

T is an e-efficient solution of (CVP).

<= (by Proposition 3.3) ho(z) = 0,Vx € QN S(Z).

< {z|gi(z) £0,i=1,...m, fj(z)—f;j(Z)+¢; <0, =1,...,p} C {z|ho(z) =
0}.

<= (by Lemma 2.3)

0 T p 0 T m
(1) < e (g ) o (U Sonner
i=1 =16

A; 20 j=1

p T
+U 2 [epi(ujfj)*+ ( u fj@;)_ e ) + epids

k=0 j=1

<= (by Lemma 2.1) there exist a; = 0,u; € Oy, fi(Z),i=1,...,p, AP 20,87 =2
0,07 € O (N7 (@), = Lo i 2 0,97 2 0,f € O (e fi) (@)K = L.,
(5”20 2" € N&' () such that

( D € —OZfl fi(®) )T

u; T . m o7 T
- Z( uTE + a; — fi(z) ) + 9 < vz + B - (\7g;)(z) )

=1 7=1
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P T T
T = n 7 n
S\ wp T4y — (i f)(2) K Fie(®) — piger

n T
+ <
(z”T;T:+5”> }

< there exist a; = 0,u; € On, fi(Z),i = 1,...,p, A} = 0,8} = 0,0} €
aﬁ?()‘?g?)(j)vj = ]-a"'ama//JZ = 077]? = O,U)Z € 8’7,?(:“]6]016)(‘%)’]{ = 17"'7p such
that

P m P
— . 3 n n n
0= .Elul—i_nh—?olo(élvj +k§1wk+z)
1= 1= =

and
p p m P
Yoa=Y ai+ lim {( D06 - Wg@) + Dok — wiern) +0" .
i=1 i=1 j=1 k=1
O

Following the first part of the proof of Theorem 3.5, we can easily obtain the
following necessary and sufficient e-optimality theorem for e-efficient solution of
(CVP) under a constraint qualification, which is called the closedness assumption
for e-efficient solution of (CVP).

Theorem 3.6. Let T € Q and assume that Q N S(Z) # 0. Suppose that

m P T
U S+ U S sty (ol ) |+t

;20 j=1 120 j=1

is closed. Then the following are equivalent:
(1) T is an e-efficient solution of (CVP).

0 T p 0 T m
6 (o) eXemi+ (s, pm-wria) (U Lo
i=1 =17t =1

A;20 j=1

P T
+ U Z [epi(ujfj)* + < ujf,-(i";)— e ) + epid.

p;=0 j=1

Now we give an example illustrating Theorem 3.6.
Example 3.7. Consider the following convex vector optimization problem:
(CVP); Minimize (x1,x2)
subject to (z1,22) € Q :={(x1,22) € R? | 23 + 23 < 1}.

Let € = (e1,€2)= (%, %) and f(z1,x2) = (fi(x1,x2), fo(z1,22)) = (x1,22). Then
(0,0) is an e-efficient solution of (CVP)y, f1(0,0) — ¢ = —%, and f2(0,0) — eg =
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—-L Then we have,

V2
Q1 S(0,0)
= QN{(z1,22) € R? | fi(w1,22) £ f1(0,0) — €1, fo(x1,22) £ f2(0,0) — €2}
1

:Qﬁ{(xl,xg) € R? | 21 __\ﬁ’ x2£_\}§}
()

We will show that closedness assumption and the condition (ii) in Theorem 3.6
hold for (CVP); at (z1,Z2) = (0,0) and (e1,€2) = (\f \f) We can check that

0 T
(4,1, -v2 ezeplf st -x2a )
Indeed,

J1(v1,02) = SUP (4, 4o)er2{V1Z1 + V2T2 — T1} = SUD(g, zo)er2{ (V1 — 1)21 + vox2}

. 0 if v = 1, Vo = 0
] 4oo otherwise,
fi(v,v2) = SUP(z1,z2)€R2 {v121 + vowg — 22} = Sup(xl,xz)ERQ{(UQ — Do + viz1}
B 0 ifvo=1,v1=0
N 400 otherwise.

Thus epiff = {(1,0)} x [0,00) and epifs = {(0,1)} x [0,00). Hence we have,

2 2
(1,1, — Zeplfl <0,0,Zfi(aj)—26i>.
=1

i=1
Let g(x1,72) = 23 + 22 — 1. Then we can easily see that
U epia)® = (0.0} x B U U {3533 + 42+ 0) [(onm) e R0 20),
A0

Moreover, we can check that U epi(A\;gi)* = epi h, where h(v1,v2) = \/v? + v3.
Ai=0

Indeed, for any A > 0 and for any vy, v € R,
U% v3 1 9
ﬁ—i-ﬁ—i—/\—\/v%—i-v% = ﬁ{\/ v%+v%2—4)\\/v%+v%+4)\}
2
- 4)\<\/v1+v2 —2)) =20

and hence ZA + 5 + A = \/vf +v3. Tt is clear that {(0,0)} x Ry C epih. Thus

U epi(Ag)* C eplh
AS0

Conversely, let (v1,72,3) € epih. Then there exists @ = 0 such that § =
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V0P + 05 + a. If (v1,02) = (0,0), then (v1,9,8) € {(0,0)} >< R+ and hence
(01,72, 8) € U epi(Nigi)*. Assume that (91, 72) # (0,0) and let 1 \/U1 + 05 =

Ai=0
Then Z—f + ﬁ + X = ﬁ%;;i, l\/@f+@§ = 0} +03. Hence (01,09,0) =
(01,02, /03 + 73 + @) € {(v1,v2, 3% + + A+ a)| (vi,v2) € R? a = 0}. Thus

(01,02, 0) € | epi(Ag)*. Consequently, eplh C U epi(Ag)*. Hence | epi(Ag)* =
AS0 A>0 A>0

{(z,y,2) [» 2 Va2 +y?}. For any pu = (u1, p2) € RZ,

(me v1,v2) = sup {v1x1 + vy — (imﬁ)(xb@)}
=1

(acl ,$2)€R2

= sup {viwr +vowa — (p1wy + pow2)}

(z1,72)€ER2
= sup  {(v1 — p1)w1 + (v2 — po)xa}
(z1,2)ER?
_ 0 if p1 = w1, pe =v2
o +00 otherwise
and hence epi(S2_y uify)* = {(s1, 42)} x [0, 00). Thus

epl(ZMﬁ) (0,0, —p1e1 — prg€a) + epidy
mZOMzZO

= U {(p1, p2, —prer — poea) +(0,0,a) |a = 0}
/1‘1207#'2%0
= {(z,y,—e1x — ey + a) |2 2 0,y = 0, = 0}.
So,

U epitrg) + U epl(ZM;JZ) (0,0, —pr1€1 — paeo) + epidin

A0 A;=0 i=1

:{(m,y,—y—%+a) |x§0,y§0,a§0}u
{7 +8) 1202082 0}u

{(a:,y,—x—\%Jr'y) !x§0,y20,720}u

{(z,y,z+0) |z =2 Va2 +y?,2 <0,y £0,6 =20}
and hence this set is closed. Thus the closedness assumption in Theorem 3.6
holds.
Moreover, since (—1,—1,v2) € {(z,y,2 +6) [z = /22 + 42,2 < 0,y < 0,5 = 0}

and

0 T
(1,1,—Vv2) € Zeplfz ( Z?:l fi(z) —Zgzl €; > ’
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(i) of Theorem 3.6 holds. O

We present a necessary and sufficient e-optimality theorem for weakly e-efficient
solution of (CVP) which holds without any constraint qualification.

Theorem 3.8. Let & € Q. Then T is a weakly e-efficient solution of (CVP) if and
only if there exist a; = 0,p; = 0, u; € O, (pifi)(T),i = L...,pA} 20,87 =2
0, vj € Opn(Njg;)(Z),j =1,...,m,6" 20,2" € Nco(Z) such that

p m
Y= g {3 )
i=1 j=1
and
p p m
Zuiei:Zai—l—nﬁ_}Igo{z — (\gy)(@ ))+5"}.
i=1 i=1 j=1
P
Proof. Let ho(z Z wifi(x Z wi fi(Z) + Z wi€;. Then
=1 =1

T
epihy = epi 4 )
P1ny Z p :ulfl < z 1/%]01 _ 25;1 Li€; >

=1

Then we have,

T is a weakly e-efficient solution of (CVP)

<= (by Proposition 3.4) {z|g;(x) <0,i=1,...m, p; f;(x) — ;i f;(Z) + pe; <
0,7=1,...,p} C{z|ho(x) = 0}.

<= (by Lemma 2.3) there exist yu; 20, i =1,...,p, Z,ui = 1 such that
i=1

0 g ? . 0 T
< 0 > € ;epl(#ifi) + ( D mifi (@) = 0 e )

m
+ U epi(z Aigi)" + epidc
Ai=0 i=1
<= (by Lemma 2.1) there exist a; 2 0,0; 20, i =1,...,p> " s =1,u; €
8041(11“2]01)(:%) 7)‘? = Oaﬁjn = 07 ’U}l S ab’]"()‘?gj)(f)?] = 1) U o = 07 2" e NC&L ('T)
such that

T p T
( : ) =S (wrsva s )
Dby pi€i — Y5y i fi(T) — T + o — i fi(T)
m o7 T o T
+ 111’11 ( ni n I m n T > + ni = n )
n-»00 ;::1 vaaH—Bj—Z] 1 A} g5(T) TE 46

<= thereexist a; = 0, u; = 0, Zp 1ui:1,ui€8ai(uifi)(f), i=1,...,p,A\} 2
0,87 20, v} eégn()\ 9;)(Z), j=1,...,m, such that
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—Zulz lim { U;l—}—z”},
n—oo
=1 Jj=1
p p m
D wes = 3o+ lim {3207 = Xjay(a) + 0"
i=1 i=1 j=1

O

From the proof of Theorem 3.8, we can easily obtain the following necessary

and sufficient e-optimality theorem for weakly e-efficient solution of (CVP) under
a constraint qualification, which is called the closedness assumption for weakly e-
efficient solution of (CVP).

Theorem 3.9. Let & € Q and assume that /\erpi(zg-n:l Ajg;)* + epidf is closed.
>
=
Then the following are equivalent;
(i) & is a weakly e-efficient solution of (CVP).
(ii) there ewist p; 20,7 =1,...,p, >0 | wi =1 such that

0 g - . % 0 T
( 0 ) € ;epl(ﬂifi) + ( P ifi(®) = P e )

m
+ U Zepi()\jgj)* + epids.
2,20 j=1

REFERENCES

[1] N. Dinh, V. Jeyakumar and G. M. Lee, Sequential Lagrangian conditions for convex programs
with applications to semidefinite programming, J. Optim. Theory and Appl. 125 (2005), 85—
112.

[2] M. G. Govil and A. Mehra, e-Optimality for multiobjective programming on a Banach space,
European J. Oper. Res. 157 (2004), 106-112.

[3] C. Gutidrrez, B. Jim4 and V. Novo, Multiplier rules and saddle-point theorems for Helbig’s
approzimate solutions in conver Pareto problems, J. Global Optim. 32 (2005), 367-383.

[4] A. Hamel, An e-Lagrange multiplier rule for a mathematical programming problem on Banach
spaces, Optimization 49 (2001), 137-149.

[5] J. B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Vol-
umes I and II, Springer-Verlag, Berlin, Heidelberg, 1993.

[6] V. Jeyakumar, G. M. Lee and N. Dinh, Characterizations of solution sets of convex vector
minimization problems, European J. Oper. Res. 174 (2006), 1380-1395.

[7] V. Jeyakumar, Asymptotic dual conditions characterizing optimality for convex programs, J.
Optim. Theory Appl. 93 (1997), 153-165

[8] V. Jeyakumar, G. M. Lee and N. Dinh, New sequential Lagrange multiplier conditions char-
acterizing optimality without constraint qualification for convex programs, STAM J. Optim. 14
(2003), 534-547.

[9] V. Jeyakumar, Z. Y. Wu, G. M. Lee and N. Dinh, Liberating the subgradient optimality con-
ditions from constraint qualification, J. Global Optim. 36 (2006), 127-137.

[10] G. S. Kim and G. M. Lee, On e-approzimate solutions for convex semidefinite optimization

problems, Taiwanese J. Math. 11 (2007), 765-784.



482

G. S. KIM AND G. M. LEE

[11] G. M. Lee and J. H. Lee, e-Duality theorems for convexr semidefinite optimization problems

with conic constraints, J. Inequal. Appl. 2010, Article ID 363012, 13pp.

[12] J. C. Liu, e-Duality theorem of nondifferentiable nonconvexr multiobjective programming, J.

Optim. Theory Appl. 69 (1991), 153-167.

[13] J. C. Liu, e-Pareto optimality for nondifferentiable multiobjective programming via penalty

function, J. Math. Anal. Appl. 198 (1996), 248-261.

[14] P. Loridan, Necessary conditions for e-optimality, Math. Programming Stud. 19 (1982), 140-

152.

[15] R. T. Rockafellar, Conver Analysis, Princeton University Press, Princeton, New Jersey, 1970.
[16] J. J. Strodiot, V. H. Nguyen and N. Heukemes, e-Optimal solutions in nondifferentiable convex

programming and some related questions, Math. Program. 25 (1983), 307-328.

[17] K. Yokoyama, Epsilon approzimate solutions for multiobjective programming problems, J.

Math. Anal. Appl. 203 (1996), 142-149.

[18] K. Yokoyama and S. Shiraishi, e-Necessary conditions for convexr multiobjective programming

problems without Slater’s constraint qualification, preprint.

[19] Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic

Press, New York, 1985.

[20] P. Loridan, e-Solutions in vector minimization problems, J. Optim. Theory Appl. 43 (1984),

265-276.

[21] C. Zalinescu, Convex Analysis in General Vector Space, World Scientific Publishing Co. Pte.

Ltd, Singapore, 2002.

Manuscript received July 24, 2010
revised March 9, 2011

Gwi Soo Kim
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

E-mail address: gwisoo1103@hanmail.net

GUE MYUNG LEE
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

E-mail address: gmlee@pknu.ac.kr



