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In this paper, from a new generalized KKM theorem for generalized KKM maps
having intersectionally closed values in the sense of Luc et al. [10], we show that
Chang’s results can be generalized. Actually, Chang’s 0-pair-concaveness is prop-
erly generalized and 0-transfer continuity is extended to the intersectionally closed-
valuedness of a corresponding multimap. Consequently, we obtain a more refined
generalization of Chang’s inequality and apply this to obtain a new Fan type in-
equality and a minimax theorem. Furthermore, from Chang’s key Lemma, we es-
tablish new equilibrium theorems such as Nash, S-Nash, pure-strategy Nash, and
J-dominant-strategy Nash equilibrium theorems for generalized games or normal
games. These have been established, as in [2], with the necessary and sufficient
conditions and with topological strategy spaces that do not have the fixed point
property. Our new results generalize those in [2,17,18] and some others.

In Section 2, the recent concepts on abstract convex spaces are introduced as in
[18] and the references therein. Section 3 deals with new generalized KKM type
theorems for generalized KKM maps having intersectionally closed values in the
sense of Luc et al. [10]. We add a Ky Fan type minimax inequality as a direct
consequence of the KKM theorem. In Section 4, Chang’s 0-pair-concaveness is
properly generalized and the 0-transfer continuity is extended to the intersectionally
closed-valuedness of a corresponding multimap. Consequently, we obtain a more
refined generalization of Chang’s inequality and apply this to obtain a new Fan
type inequality and a minimax theorem. Finally, in Section 5, from Chang’s key
lemma, we establish new equilibrium theorems such as Nash, S-Nash, pure-strategy
Nash, and J-dominant-strategy Nash equilibrium theorems for generalized games
or normal games.

In this paper, topological spaces are not necessarily Hausdorff. Multimaps are
also called simply maps.

2. Abstract convex spaces

Let A be a subset of a topological space X. We denote by A or clA the closure
of A in X and, by IntA the interior of A. Let ∆n be the standard n-dimensional
simplex in Rn+1. Let ⟨D⟩ be the set of all nonempty finite subsets of a set D.

For the concepts of abstract convex spaces and KKM spaces, the reader may
consult our previous work [18] and the references therein.

Definition 2.1. An abstract convex space (E,D; Γ) consists of a topological space
E, a nonempty set D, and a multimap Γ : ⟨D⟩ ( E with nonempty values ΓA :=
Γ(A) for A ∈ ⟨D⟩.

For any nonempty D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ :=

∪
{ΓA | A ∈ ⟨D′⟩} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for any
N ∈ ⟨D′⟩, we have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X∩D) ⊂ X; in other

words, X is Γ-convex relative toD′ := X∩D. In case E = D, let (E; Γ) := (E,E; Γ).

Definition 2.2. Let (E,D; Γ) be an abstract convex space and Z a topological
space. For a multimap F : E ( Z with nonempty values, if a multimap G : D ( Z
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satisfies
F (ΓA) ⊂ G(A) :=

∪
y∈A

G(y) for all A ∈ ⟨D⟩,

then G is called a KKM map with respect to F . A KKM map G : D ( E is a
KKM map with respect to the identity map 1E .

A multimap F : E ( Z is called a KC-map [resp., a KO-map] if, for any
closed-valued [resp., open-valued] KKM map G : D ( Z with respect to F ,
the family {G(y)}y∈D has the finite intersection property. In this case, we denote
F ∈ KC(E,D,Z) [resp., F ∈ KO(E,D,Z)].

In our previous works [12-14], we gave many examples of KC-maps and KO-maps.
The abstract convex subspaces are introduced by means of the following simple

observation:

Proposition 2.3 ([15]). For an abstract convex space (E,D; Γ) and a nonempty
subset D′ of D, let X be a Γ-convex subset of E relative to D′ and Γ′ : ⟨D′⟩ ( X
a map defined by

Γ′
A := ΓA ⊂ X for A ∈ ⟨D′⟩.

Then (X,D′; Γ′) itself is an abstract convex space called a subspace relative to D′.

Proposition 2.4 ([15]). Let (E,D; Γ) be an abstract convex space, (X,D′; Γ′) a
subspace, and Z a topological space. If F ∈ KC(E,D,Z), then

F |X ∈ KC(X,D′, F (X)).

Definition 2.5. The partial KKM principle for an abstract convex space (E,D; Γ) is
the statement 1E ∈ KC(E,D,E); that is, for any closed-valued KKM map G : D (
E, the family {G(y)}y∈D has the finite intersection property. The KKM principle
is the statement 1E ∈ KC(E,D,E) ∩ KO(E,D,E); that is, the same property also
holds for any open-valued KKM map.

An abstract convex space is called a KKM space if it satisfies the KKM principle.

We have the following diagram for triples (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space
=⇒ H-space =⇒ G-convex space ⇐⇒ ϕA-space =⇒ KKM space

=⇒ Space satisfying the partial KKM principle
=⇒ Abstract convex space.

Example 2.6. There are plenty of examples of abstract convex spaces; see [18] and
the references therein. Here we need only three classes of them:

(I) A generalized convex space or a G-convex space (X,D; Γ) due to Park is an
abstract convex space such that for each A ∈ ⟨D⟩ with the cardinality |A| = n+ 1,
there exists a continuous function ϕA : ∆n → Γ(A) such that J ∈ ⟨A⟩ implies
ϕA(∆J) ⊂ Γ(J).

Here, for ∆n with vertices {ei}ni=0, ∆J is its face corresponding to J ∈ ⟨A⟩; that is,
ifA = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik} ⊂ A, then ∆J = co{ei0 , ei1 , . . . , eik}.
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(II) A ϕA-space (X,D; {ϕA}A∈⟨D⟩) consists of a topological space X, a nonempty
set D, and a family of continuous maps ϕA : ∆n → X (that is, singular n-simplexes)
for A ∈ ⟨D⟩ with |A| = n+ 1. Every ϕA-space can be made into a G-convex space;
see [16]. Some authors’ GFC-spaces or FC-spaces are ϕA-spaces or particular forms
of them, resp.

Here we give a new usage of ϕA-spaces: In [5], its author gave a necessary and
sufficient condition for the existence of a pure-strategy Nash equilibrium for non-
cooperative games in topological spaces. He adopted the following concept:

Definition 2.7. Let X be a topological space, and D,Y ⊂ X. A real function
f : X ×Y → R is said to be C-quasiconcave on D if, for any N = {x0, x1, . . . , xn} ∈
⟨D⟩, there exists a continuous map ϕN : ∆n → Y such that

min{f(xi, ϕN (λ)) | i ∈ J} ≤ f(ϕN (λ), ϕN (λ))

for all λ := (λ0, λ1, . . . , λn) ∈ ∆n, where J := {i | λi ̸= 0}.

Note that (Y,D; {ϕN}N∈⟨D⟩) is a ϕA-space.

By Propositions 1 and 2 in [5], the C-quasiconcavity unifies the diagonal transfer
quasiconcavity (weaker than quasiconcavity) [1] and the C-concavity (weaker than
concavity) [7].

(III) We give another example of spaces satisfying the partial KKM principle; see
[19].

Definition 2.8. A ΦA-space

(X,D; {ΦA}A∈⟨D⟩)

consists of a topological space X, a nonempty set D, and a family of l.s.c. maps
ΦA : ∆n ( X for A ∈ ⟨D⟩ with |A| = n+ 1.

Note that any ΦA-space is an abstract convex space (X,D; Γ) with ΓA := ImΦA

for A ∈ ⟨D⟩.
Definition 2.9. For a ΦA-space (X,D; {ΦA}A∈⟨D⟩), any map T : D ( X satisfying

ΦA(∆J) ⊂ T (J) for each A ∈ ⟨D⟩ and J ∈ ⟨A⟩
is called a KKM map.

Proposition 2.10. A KKM map T : D ( X on a ΦA-space (X,D; {ΦA}) is a
KKM map on a new abstract convex space (X,D; ΓT ).

The following is a KKM theorem for ΦA-spaces:

Proposition 2.11. For a ΦA-space (X,D; {ΦA}A∈⟨D⟩), let G : D ( X be a KKM
map with closed values. Then {G(z)}z∈D has the finite intersection property. (More
precisely, for each N ∈ ⟨D⟩ with |N | = n+ 1, we have ΦN (∆n) ∩

∩
z∈N G(z) ̸= ∅.)

Further, if

(∗)
∩

z∈M G(z) is compact for some M ∈ ⟨D⟩,
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then we have
∩

z∈D G(z) ̸= ∅.

3. Basic KKM theorems

The following whole intersection property for the map values of a KKM map is
a standard form of the KKM type theorems:

Theorem 3.1. Let (E,D; Γ) be an abstract convex space, the identity map 1E ∈
KC(E,D,E) [resp., 1E ∈ KO(E,D,E)], and G : D ( E a multimap satisfying

(1) G has closed [resp., open] values; and
(2) ΓN ⊂ G(N) for any N ∈ ⟨D⟩ (that is, G is a KKM map).

Then {G(z)}z∈D has the finite intersection property.
Further, if
(3)

∩
z∈M G(z) is compact for some M ∈ ⟨D⟩,

then we have ∩
y∈D

G(y) ̸= ∅.

Proof. The first part is a simple consequence of definition. For the second part, let
K :=

∩
z∈M G(z). Since {G(z) | z ∈ D} has the finite intersection property, so does

{K ∩ G(z) | z ∈ D} in the compact set K. Hence it has the whole intersection
property. �

Recall that Theorem 3.1 is a simple consequence of the definitions of the partial
KKM principle or the KKM space.

Recall that the main conclusions of KKM type theorems are of the form∩
y∈D

G(y) ̸= ∅

for a multimap G : D ( E.
Consider the following related four conditions:

(a)
∩

z∈D G(z) ̸= ∅ implies
∩

z∈D G(z) ̸= ∅.

(b)
∩

z∈D G(z) =
∩

z∈D G(z) (G is intersectionally closed-valued [10]).

(c)
∩

z∈D G(z) =
∩

z∈D G(z) (G is transfer closed-valued).

(d) G is closed-valued.

In [10], its authors noted that (a) ⇐= (b) ⇐= (c) ⇐= (d), and gave examples
of multimaps satisfying (b) but not (c). Therefore it is a proper time to deal with
condition (b) instead of (c) in the KKM theory.

Example 3.2. The following maps G are intersectionally closed-valued, but not
transfer closed-valued:

(1) G(z) = (0, 1) for every z ∈ [0, 1] is a constant multimap from D = [0, 1] to
E= [0, 1]; see [10].
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(2) G(z) is a convex set in a Euclidean space having a relative interior point in
common; see Rockafellar [21, Theorem 6.5].

(3) For a given subset E of a topological vector space with x∗ ∈ E, each G(z), z ∈
D, is a nicely star-shaped at x∗; see [10].

From Theorem 3.1, we have the following form of the KKM type theorems:

Theorem 3.3. Let (E,D; Γ) be an abstract convex space, Z a topological space,
F ∈ KC(E,D,Z), and G : D ( Z a map such that

(1) G is a KKM map w.r.t. F ; and
(2) there exists a nonempty compact subset K of Z such that either

(i)
∩
{G(y) | y ∈ M} ⊂ K for some M ∈ ⟨D⟩; or

(ii) for each N ∈ ⟨D⟩, there exists a Γ-convex subset LN of E relative to some

D′ ⊂ D such that N ⊂ D′, F (LN ) is compact, and

F (LN ) ∩
∩
y∈D′

G(y) ⊂ K.

Then we have

F (E) ∩K ∩
∩
y∈D

G(y) ̸= ∅.

Furthermore,
(α) if G is transfer closed-valued, then F (E) ∩K ∩

∩
{G(y) | y ∈ D} ̸= ∅;

(β) if G is intersectionally closed-valued, then
∩
{G(y) | y ∈ D} ̸= ∅.

Proof. Case (i): Since F (ΓN ) ⊂ G(N) for each N ∈ ⟨D⟩ by (1), we have

F (ΓN ) ⊂ F (E) ∩G(N) ⊂ F (E) ∩G(N) = G′(N),

where G′(y) := F (E) ∩ G(y) is closed for each y ∈ D. Then, by Proposition 2.4

on (E,D′, F (E)), {G′(y) | y ∈ D} has the finite intersection property. Since the
requirement (i) implies

F (E) ∩K ⊃ F (E) ∩
∩
y∈M

G(y) =
∩
y∈M

G′(y),

∩
y∈M G′(y) is compact. Therefore

∩
{G′(y) | y ∈ D} ̸= ∅ by Theorem 3.1 and hence

F (E) ∩K ∩
∩
y∈D

G(y) ̸= ∅.

Case (ii): Suppose that

F (E) ∩K ∩
∩
y∈D

G(y) = ∅.

Since F (E) ∩ K is compact, F (E) ∩ K ⊂
∪
{Z \ G(y) | y ∈ N} for some N ∈

⟨D⟩. Let LN be the Γ-convex subset of E in (ii). Define G′ : D′ ( F (LN ) by

G′(y) := G(y)∩F (LN ) for y ∈ D′. For each A ∈ ⟨D′⟩, define Γ′
A := ΓA ∩LN . Then

(LN , D′; Γ′) is an abstract convex space. Moreover,

(F |LN
)(Γ′

A) ⊂ F (ΓA) ∩ F (LN ) ⊂ G(A) ∩ F (LN ) = G′(A)
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for each A ∈ ⟨D′⟩ by (2); and hence G′ : D′ ( F (LN ) is a KKM map w.r.t.

F |LN
on the abstract convex space (LN , D′; Γ′) with closed values in F (LN ). Since

F ∈ KC(E,D,Z), by Proposition 2.4, we have F |LN
∈ KC(LN , D′, F (LN )) and

hence, {G′(y) | y ∈ D′} = {G(y) ∩ F (LN ) | y ∈ D′} has the finite intersection

property. Since we assumed that F (LN ) is compact, each G′(y) is compact. Hence∩
{G′(y) | y ∈ D′} ̸= ∅ by Theorem 3.1 and there exists a

z ∈
∩
y∈D′

G′(y) = F (LN ) ∩
∩
y∈D′

G(y) ⊂ K

by (ii). Since z ∈ K and z ∈ F (LN ), we have z ∈
∪
{Z \ G(y) | y ∈ N} by our

assumption. So z /∈ G(y) for some y ∈ N ⊂ D′, and hence z /∈
∩
{G(y) | y ∈ D′}.

This contradicts z ∈
∩
{G′(y) | y ∈ D′}. Therefore, we must have

F (E) ∩K ∩
∩
y∈D

G(y) ̸= ∅.

(α) Since G is transfer closed-valued, we have

F (E) ∩K ∩
∩
y∈D

G(y) = F (E) ∩K ∩
∩
y∈D

G(y) ̸= ∅.

(β) Since G is intersectionally closed-valued, we have∩
y∈D

G(y) =
∩
y∈D

G(y) ̸= ∅.

This implies the conclusion. �

Note that Theorem 3.3 can be reformulated to the equivalent forms of coinci-
dence theorems, matching theorems, analytic alternatives, minimax inequalities,
geometric and section properties as in our previous work [20].

For a multimap G : D ( E, consider the following related four conditions:

(a)
∪

z∈D G(z) = E implies
∪

z∈D IntG(z) = E.

(b) Int
∪

z∈D G(z) =
∪

z∈D IntG(z) (G is unionly open-valued [10]).

(c)
∪

z∈D G(z) =
∪

z∈D IntG(z) (G is transfer open-valued).

(d) G is open-valued.

Proposition 3.4 ([10]). The multimap G is intersectionally closed-valued (resp.,
transfer closed-valued) if and only if its complement Gc is unionly open-valued (resp.,
transfer open-valued).

In view of this proposition, we have proper examples of unionly open-valued maps
by applying the preceding examples.

From the KKM Theorem 3.3, we obtain Ky Fan type minimax inequalities. The
following are some examples:
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Theorem 3.5. Let (E,D; Γ) be an abstract convex space satisfying the partial KKM
principle. Let f : D × E → R be an extended real-valued function and γ ∈ R such
that

(1) for each z ∈ D, {y ∈ E | f(z, y) ≤ γ} is intersectionally closed [resp., transfer
closed];

(2) for each N ∈ ⟨D⟩ and y ∈ ΓN , min{f(z, y) | z ∈ N} ≤ γ; and
(3) the coercivity condition (2) of Theorem 3.3 with E = Z and F = 1E holds.

Then (a) there exists a ŷ ∈ E [resp., ŷ ∈ K] such that

f(z, ŷ) ≤ γ for all z ∈ D; and

(b) if E = D and γ = sup{f(x, x) | x ∈ E}, then we have the minimax inequality:

inf
y∈E

sup
x∈E

f(x, y) ≤ sup
x∈E

f(x, x).

Recall that if (E,D; Γ) is a G-convex space, then for any N ∈ ⟨D⟩, there exists
a continuous function ϕN : ∆|N |−1 → ΓN . In such case, the following holds:

Theorem 3.6. In Theorem 3.5, the requirement (2) can be replaced by the following
without affecting its conclusion:

(2)′ for each N ∈ ⟨D⟩, each continuous map ϕN : ∆|N |−1 → ΓN , and each
y ∈ ϕN (∆|N |−1), we have min{f(z, y) | z ∈ N} ≤ γ.

Lemma 3.7. Under the hypothesis of Theorem 3.5, condition (2) or (2)′ holds if
and only if the map G : D ( E defined by

G(z) := {y ∈ E | f(z, y) ≤ γ} for z ∈ D

is a KKM map.

Proof. We give the proof for the case (2)′. The proof of the case (2) follows from
this one, via slight modifications.

(Necessity) Suppose, on the contrary, that there exists an N ∈ ⟨D⟩ such that
ΓN ̸⊂ G(N). Choose a y ∈ ϕN (∆|N |−1) ⊂ ΓN such that y /∈ G(N), whence f(z, y) >
γ for all z ∈ N . Then minz∈N f(z, y) > γ, which contradicts (2)′. Therefore, G is a
KKM map.

(Sufficiency) Since G is a KKM map, for any N ∈ ⟨D⟩, we have ΓN ⊂ G(N). If
y ∈ ϕN (∆|N |−1) ⊂ ΓN , then y ∈ G(z) or f(z, y) ≤ γ for some z ∈ N . Therefore,
min{f(z, y) | y ∈ N} ≤ γ. �

Proof of Theorems 3.5 and 3.6. Let G(z) := {y ∈ E | f(z, y) ≤ γ} for z ∈ D. Then
G is an intersectionally closed-valued [resp., a transfer closed-valued] KKM map by
Lemma 3.7. Note that G satisfies all requirements of Theorem 3.3 with F = 1E and
hence there exists a x̂ ∈ E [resp., x̂ ∈ K] such that x̂ ∈ G(z) for all z ∈ D; that
is, f(z, x̂) ≤ γ for all z ∈ D. This completes the proof of (a). Note that (b) clearly
follows from (a). �
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4. Generalizations of S.-Y. Chang’s inequalities

Chang [2] extended the C-quasiconcavity [5] to 0-pair-concavity, which can be
further generalized as follows:

Definition 4.1. LetX be a nonempty set and Y be a topological space, andD ⊂ X.
A function f : X × Y → R is said to be generally 0-pair-concave on D, if for any
{x0, . . . , xn} ∈ ⟨D⟩, there is a multimap Φn ∈ KC(∆n, V, Y ), where V = {ei}ni=0 is
the standard base in ∆n, such that

min
i∈I(λ)

f(xi, y) ≤ 0

for all λ = {λ0, . . . , λn} ∈ ∆n and y ∈ Φn(λ), where I(λ) = {i | λi ̸= 0}.
When Φn : ∆n → Y is a single-valued continuous map, then f is 0-pair-concave

in the sense of Chang.

Remark 4.2. 1. Note that, in the above definition, an abstract convex space
(Y,D; Γ) can be obtained by defining ΓN = Φn(∆n) for each N ∈ ⟨D⟩ with |N | =
n+ 1.

2. In the above definition, we may adopt an l.s.c. map Φn : ∆n ( Y for A ∈ ⟨D⟩
instead of Φn ∈ KC(∆n, V, Y ).

For the 0-pair-concavity, Chang had the following proposition that the 0-pair-
concavity includes the C-quasiconcavity [5].

Proposition 4.3 ([2, Proposition 3.1]). Let X be a topological space, and D,Y ⊂ X.
A function f : X × Y → R is C-quasiconcave on A. Define U : X × Y → R by
U(x, y) = f(x, y)− f(y, y) for all (x, y) ∈ X × Y. Then U is 0-pair-concave on A.

Chang also extended the diagonally transfer continuity of Baye et al. [1] as follows:

Definition 4.4 ([2]). Let X be a nonempty set and Y be a topological space,
D ⊂ X, C ⊂ Y, and a function f : X×Y → R. f |D×C(x, y) is said to be 0-transfer-
continuous in y, if for every (x, y) ∈ D × C, f(x, y) > 0 implies that there exists
some x′ ∈ D and some neighborhood Ny of y in Y such that f(x′, z) > 0 for all
z ∈ Ny ∩ C.

We show the following:

Proposition 4.5. If f |D×C(x, y) is 0-transfer-continuous in y, then the map G :
D ( C defined by G(x) = {y ∈ C | f(x, y) > 0} for x ∈ D is transfer open-valued
and, hence, unionly open-valued.

Proof. It suffices to show that
∪

x∈D G(x) ⊂
∪

x∈D IntG(x). Let y ∈ G(x) for
(x, y) ∈ D × C. Since f(x, y) > 0 and y 7→ f(x, y) is 0-transfer-continuous, there
exist x′ ∈ D and Ny such that f(x′, z) > 0 for z ∈ Ny ∩ C. Then z ∈ G(x′) and
hence y ∈ Ny ∩ C ⊂ IntG(x′). This completes our proof. �

Recall that, for an abstract convex space (E ⊃ D; Γ), a function f : E → R
is said to be quasiconcave [resp., quasiconvex] if {x ∈ E | f(x) > r} [resp., {x ∈
E | f(x) < r}] is Γ-convex for each r ∈ R.

We define new concepts as follows:
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Definition 4.6. An extended real-valued function f : D × E → R is said to
be generally lower [resp., upper] semicontinuous (g.l.s.c.) [resp., g.u.s.c.] for each
z ∈ D, {y ∈ E | f(z, y) ≤ r} [resp., {y ∈ E | f(z, y) ≥ r}] is intersectionally closed
for each r ∈ R.

Example 4.7. 1. If the intersectionally closed sets are replaced by mere closed
sets, then f is said to be l.s.c. [resp., u.s.c.].

2. If the intersectionally closed sets are replaced by transfer closed sets for a
particular γ ∈ R instead of arbitrary r, then f is said to be γ-transfer l.s.c. in y
[that is, for each x ∈ X, {y ∈ Y | ϕ(x, y) ≤ γ} is transfer closed]; see Tian [22].

3. Similarly, we can adopt the term γ-g.l.s.c. The 0-transfer-continuity of y 7→
f(x, y) is properly generalized by the 0-g.l.s.c. of G in y.

4. Note that these concepts can be extended to any simply ordered set S instead
of R.

Theorem 4.8. Let D be a nonempty set and Y be a topological space. A function
U : D × Y → R satisfies the following conditions:

(1) the map G : D ( Y defined by G(x) = {y ∈ Y | U(x, y) ≤ 0} for x ∈ D is
intersectionally closed-valued [resp., transfer closed-valued]; and

(2) there exists a nonempty compact subset K =
∩
{G(x) | x ∈ M} of Y for some

M ∈ ⟨D⟩.
Then there exists z̃ ∈ Y [resp., z̃ ∈ K] such that

sup
x∈D

U(x, z̃) ≤ 0

if and only if U is generally 0-pair-concave on D.

Proof. Suppose that U is generally 0-pair-concave on D. For any finite subset
{x0, x1, . . . , xm} ∈ ⟨D⟩, there exists an abstract convex space (∆m, V ; co), where
V = {ei}mi=0 is the vertices of ∆m. Since there exists a map Φm ∈ KC(∆m, V, Y )
such that

min
i∈I(λ)

U(xi, y) ≤ 0

for all λ = (λ0, λ1, . . . , λm) ∈ ∆m and y ∈ Φm(λ), where I(λ) = {i | λi ̸= 0}.
Let H(ei) = G(xi) = {y ∈ Y | U(xi, y) ≤ 0} for i = 0, 1, . . . ,m. From the above

inequality, we have

Φm(co{ei | i ∈ S}) ⊂
∪
i∈S

H(ei)

for each S ⊂ {0, 1, . . . ,m}. Hence, H : V ( Y is a KKM map w.r.t. Φm. Since

∆m is compact, by Theorem 3.3, we have
∩m

i=0H(ei) =
∩m

i=0G(xi) ̸= ∅. Therefore
{G(x)}x∈D has the finite intersection property, and so does {K ∩G(z) | z ∈ D} in
the compact set K in (2). Hence it has the whole intersection property and we have

K ∩
∩

x∈D G(x) ̸= ∅.
Since G is intersectionally closed-valued [resp., transfer closed-valued], we have∩
x∈D G(x) ̸= ∅ [resp., K∩

∩
x∈D G(x) ̸= ∅]. Therefore, we have z̃ ∈ Y [resp., z̃ ∈ K]

such that supx∈D U(x, z̃) ≤ 0.
Conversely, if there exists z̃ ∈ Y such that supx∈D U(x, z̃) ≤ 0. For any fi-

nite points x0, x1, . . . , xk ∈ D, define ϕk : ∆k → Y by ϕk(λ) = z̃ for all λ =
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{λ0, λ1, . . . , λk} ∈ ∆k. We see that U is 0-pair-concave on D. This completes the
proof. �

Remark 4.9. 1. Actually, (1) states that G is 0-g.l.s.c. [resp., 0-transfer l.s.c.].
2. When U is generally 0-pair-concave on D, we can define an abstract convex

space (Y,D; Γ), and condition (2) can be replaced by another compactness condition
corresponding to (ii) in the KKM Theorem 3.1 without affecting the conclusion of
Theorem 4.8.

Corollary 4.10 ([2, Theorem 3.1]). Let D be a nonempty subset of a set X and Y
be a topological space. A function U : X ×Y → R satisfies the following conditions:

(1) there exist {x0, x1, . . . , xn} ⊂ D such that K =
∩n

i=0G(xi) is compact where
G(x) = {y ∈ Y | U(x, y) ≤ 0};

(2) U |D×K(x, y) is 0-transfer-continuous in y.
Then there exists z̃ ∈ K such that

sup
x∈A

U(x, z̃) ≤ 0

if and only if U is 0-pair-concave on A.

From Theorem 4.8, we have the following generalization of the Fan minimax
inequality [3]:

Theorem 4.11. Let X be a topological space, D a nonempty subset of X, and
f, g : X ×X → R. Assume that:

(1) f ≤ g on X ×X;

(2) there exist x1, . . . , xn ∈ D such that K =
∩n

i=1G(xi) is compact where G(x) =
{z ∈ X | f(x, z) ≤ µ} and µ = supy∈X g(y, y);

(3) g|D×X is C-quasiconcave on D; and
(4) for each x ∈ D, {y ∈ X | f(x, y) ≤ µ} is intersectionally closed [resp., transfer

closed].
Then there exists z̃ ∈ X [resp., z̃ ∈ K] such that

sup
x∈D

f(x, z̃) ≤ sup
y∈X

g(y, y)

holds.

Proof. Clearly we may assume that µ < ∞. Define U : D ×X → R by U(x, z) =
f(x, z) − µ. Then, from assumption (4), U satisfies assumption (1) of Theorem
4.8. For arbitrary {x̂0, x̂1, . . . , x̂k} ∈ ⟨D⟩, by (3), there is a continuous function
ϕk : ∆k → X such that

min
i∈I(λ)

g(x̂i, ϕk(λ))− g(ϕk(λ), ϕk(λ)) ≤ 0.

From assumption (1), f(x̂i, ϕk(λ))− µ ≤ g(x̂i, ϕk(λ))− g(ϕk(λ), ϕk(λ)), so

min
i∈I(λ)

U(x̂i, ϕk(λ)) ≤ 0

for all λ = (λ1, . . . , λk) ∈ ∆k, where I(λ) = {i | λi ̸= 0}. Hence U is 0-pair-
concave. Thus according to Theorem 4.8, there exists z̃ ∈ Y [resp., z̃ ∈ K] such
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that supx∈D U(x, z̃) ≤ 0. Then

sup
x∈D

f(x, z̃) ≤ sup
y∈X

g(y, y).

This completes our proof. �

Remark 4.12. 1. Instead of (4), we can choose

(4)′ for each x ∈ D, y 7→ f(x, y) is µ-g.l.s.c. on K.

Then Theorem 4.11 still improves [2, Theorem 3.2].
2. Theorems 4.8 and 4.11 seem to be not directly related to abstract convex

spaces, but they are consequences of our theory on G-convex spaces. For example,
Theorem 4.11 follows from Theorem 3.6 as follows:

Proof of Theorem 4.11 using Theorem 3.6. Since g|D×X is C-quasiconcave on D by
(3), for each A ∈ ⟨D⟩, there exists a continuous map ϕA : ∆|A|−1 → X. Therefore,
(X,D; {ϕA}A∈⟨D⟩) is a ϕA-space and can be made into a G-convex space. Note that
every G-convex space satisfies the partial KKM principle. Now we apply Theorem
3.6.

(a) By (4), for each x ∈ D, {y ∈ X | f(x, y) ≤ µ} is intersectionally closed [resp.,
transfer closed].

(b) We have to show that, for each N ∈ ⟨D⟩ and y ∈ ϕN (∆|N |−1) ⊂ ΓN , we have
min{f(z, y) | z ∈ N} ≤ µ.

In fact, since g|D×X is C-quasiconcave on D by (3), we have

min{g(xi, ϕN (λ)) | i ∈ J} ≤ g(ϕN (λ), ϕN (λ))

as in the definition in [5]. Therefore, for any y = ϕN (λ) ∈ ϕN (∆|N |−1) ⊂ ΓN , we
have

min{f(x, y) | x ∈ N} ≤ min{g(x, y) | x ∈ N} ≤ min{g(xi, ϕN (λ)) | i ∈ J}

≤ g(ϕN (λ), ϕN (λ)) ≤ sup
x∈X

g(x, x).

(c) The compactness condition holds by (2).
Since (a)-(c) imply requirements (1)-(3) of Theorem 3.6, resp., its conclusion

holds, that is, there exists a ŷ ∈ X [resp., ŷ ∈ K] such that

f(x, ŷ) ≤ γ for all x ∈ D.

This completes our proof. �

From Theorem 4.11, we have the following useful result:

Corollary 4.13 ([2, Corollary 3.1]). Let X be a compact topological space, D be a
nonempty subset of X, and g : X ×X → R. Suppose g|D×X is C-quasiconcave on
D, and the function y 7→ g(x, y) is l.s.c. for each x ∈ D. Then

min
y∈X

sup
x∈D

g(x, y) ≤ sup
y∈X

g(y, y).
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The equilibrium for a two-person zero-sum game is a minimax problem. Applying
Theorem 4.8 as in [2], we obtain the following slight generalization of [2, Theorem
3.3]:

Theorem 4.14. Let X and Y be topological spaces, D,C be nonempty compact
subsets of X,Y , resp., f, g : X×Y → R, and U : (D×C)× (X×Y ) 7→ R be defined
by U((x, y), (u, v)) = f(u, y)− g(x, v). Assume that:

(1) the function x 7→ supy∈Y f(x, y) is l.s.c. on D;
(2) the function y 7→ infx∈X g(x, y) is u.s.c. on C;
(3) U is generally 0-pair-concave on X × Y .

Then the minimax inequality

min
x∈D

sup
y∈Y

f(x, y) ≤ max
y∈C

inf
x∈X

g(x, y)

holds. Furthermore, if f = g, then

inf
x∈X1

sup
y∈Y1

f(x, y) = sup
y∈Y2

inf
x∈X2

f(x, y);

where Xi is either D or X and Yi is either C or Y for i = 1, 2.

Proof. From assumption (3), by Theorem 4.8, there exists (x̃, ỹ) ∈ D×C such that

sup
(u,v)∈X×Y

[f(x̃, v)− g(u, ỹ)] ≤ 0.

Then
sup
v∈Y

f(x̃, v) ≤ inf
u∈X

g(u, ỹ).

From assumptions (1) and (2), we have

min
x∈D

sup
y∈Y

f(x, y) ≤ max
y∈C

inf
x∈X

g(x, y).

For the case f = g, just follow the proof of [2, Theorem 3.3]. �
Remark 4.15. 1. When U is 0-pair-concave on X×Y in (3), Theorem 4.14 reduces
to [2, Theorem 3.3].

2. Theorems 4.11 and 4.14 also generalize Theorem 4 and Theorem 3 in [8,
p.1211–1214].

5. Existence of Nash equilibria

We follow [2]. Let I = {1, . . . , n} be a set of players. A non-cooperative general-
ized n-person game is an ordered 3n-tuple

G = {X1, . . . , Xn; T1, . . . , Tn; u1, . . . , un},
and for each player i ∈ I, the nonempty set Xi is the strategy set, Ti : X =∏

i∈I Xi ( Xi is the player’s constraint correspondence (multimap), and ui : X →
R is the i-th player’s payoff function. Whenever the player’s constraint correspon-
dence Ti(x) = Xi for all x ∈ X and all i ∈ I, the generalized game reduces to
2n-tuple G = {X1, . . . , Xn;u1, . . . , un} and is called an n-person game of normal
form. The set X is the Cartesian product of the individual strategy spaces. Denote
by X−i =

∏
j∈I\{i}Xj . Denote by xi and x−i an element of Xi and X−i, resp.
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Denote an arbitrary point of X by x = (xi, x−i), with xi in Xi and x−i in X−i.
Let J be a nonempty subset of I. Denote XJ =

∏
i∈J Xi and X−J =

∏
i∈I\J Xi.

Denote by xJ and x−J an element of XJ and X−J , resp. Denote an arbitrary point
of X by x = (xJ , x−J), with xJ in XJ and x−J in X−J . Denote T : X ( X by
T (x) =

∏n
i=1 Ti(x) for all x ∈ X.

A strategy vector x̃ ∈ X is said to be a Nash equilibrium for the generalized
n-person game G if for each i ∈ I

x̃i ∈ Ti(x̃) and ui(x̃i, x̃−i) ≥ ui(xi, x̃−i) for all xi ∈ Ti(x̃).

A strategy vector x̃ ∈ X is said to be an S-Nash equilibrium for the generalized
n-person game G if x̃ is a Nash equilibrium for G and

n∑
i=1

ui(x) ≤
n∑

i=1

ui(x̃i, x−i) for all x ∈ T (x̃).

Whenever the player’s constraint correspondence Ti(x) = Xi for all x ∈ X and
i ∈ I, a Nash equilibrium x̃ ∈ X is said to be a pure-strategy Nash equilibrium
for the n-person game G of normal form; an S-Nash equilibrium is said to be an
S-Nash-strategy equilibrium for the n-person game G of normal form.

Let J ⊂ I. A strategy vector x̃J ∈ XJ is said to be a J-dominant-strategy if

ui(x̃i, x−i) ≥ ui(xi, x−i) for all x ∈ X and i ∈ J.

A strategy vector x̃ ∈ X is said to be a J-dominant-strategy Nash equilibrium for
the n-person game G of normal form when x̃ is a pure-strategy Nash equilibrium
and x̃J is a J-dominant-strategy.

Let G = {X1, . . . , Xn;T1, . . . , Tn;u1, . . . , un} be a non-cooperative generalized n-
person game. By following the method introduced by Nikaido-Isoda [11], let us
define the aggregate payoff function U : X ×X → R associated as follows:

U(x, y) =

n∑
i=1

[ui(yi, x−i)− ui(x)],

for every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X =
∏n

i=1Xi. Also, we denote
F(T ) = {x ∈ X | xi ∈ Ti(x), i ∈ I} and T (x) =

∏n
i=1 Ti(xi) for all x ∈ X. Then

we shall need the following which is a general form of Proposition 1 in [9]:

Lemma 5.1 ([2, Lemma 4.1]). Let G be a non-cooperative generalized n-person
game and x̂ = (x̂1, . . . , x̂n) ∈ T (x̂).

(1) x̂ is a Nash equilibrium if and only if U(x̂, y) ≤ 0 for all y ∈ T (x̂).
(2) x̂ is an S-Nash equilibrium if and only if U(x, x̂) ≥ 0 for all x ∈ T (x̂).

Using Theorem 4.8 and Lemma 5.1, we can now prove the following existence
theorems of equilibria in generalized n-person games and normal forms of n-person
games:

Theorem 5.2. Let G be a non-cooperative generalized n-person game, and U :
X×X → R be the aggregate payoff function. Then G has a Nash equilibrium x̂ ∈ X
[resp., x̂ ∈ K] if and only if the following conditions are fulfilled:

(1) the set K is a nonempty compact subset of F(T );
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(2) the map G : K ( T (K) defined by G(x) = {y ∈ T (K) | U(x, y) ≤ 0} for
x ∈ K is intersectionally closed-valued [resp., transfer closed-valued];

(3) U |K×T (K) is generally 0-pair-concave on T (K).

Proof. Suppose the three conditions hold. Let A = T (K). From Theorem 4.8, there
exists ẑ such that

sup
y∈T (K)

U(ẑ, y) ≤ 0.

Hence from Lemma 5.1, ẑ is a Nash equilibrium for the generalized game G.
Suppose G has a Nash equilibrium ẑ. Let K = {ẑ}. Then K is a compact

subset of F(T ) and U |K×T (K)(x, y) is 0-transfer continuous in x. Also, U |K×T (K)

is 0-pair-concave on T ({z̃}). This completes the proof. �
Remark 5.3. Chang [2, Theorem 4.1] obtained Theorem 5.2 under the assumptions

(2)′ U |K×T (K)(x, y) is 0-transfer continuous in x, and
(3)′ U |K×T (K) is 0-pair-concave on T (K),

instead of (2) and (3), resp.

Theorem 5.4. Let G be a non-cooperative generalized N-person game, and U :
X × X → R be the aggregate payoff function. Then G has an S-Nash equilibrium
z̃ ∈ X [resp., z̃ ∈ K] if and only if the following conditions are fulfilled:

(1) the set K is a nonempty compact subset of F(T );
(2) the map G : K ( T (K) defined by G(x) = {y ∈ T (K) | − U(x, y) ≤ 0} for

x ∈ K is intersectionally closed-valued [resp., transfer closed-valued];
(3) −U |K×T (K) is generally 0-pair-concave on T (K).

Proof. Let A = T (K). From Theorem 4.8, there exists z̃ such that

sup
x∈T (K)

−U(x, z̃) ≤ 0.

Hence from Lemma 5.1, z̃ is an S-Nash equilibrium for the generalized game G. It
is obvious that the converse is also true. �
Remark 5.5. Chang [2, Theorem 4.2] obtained Theorem 5.4 under the assumptions

(2)′ −U |K×T (K)(x, y) is 0-transfer continuous in x, and
(3)′ −U |K×T (K) is 0-pair-concave on T (K),

instead of (2) and (3), resp.

Also, from Theorem 4.8 and Lemma 5.1, we have the following theorems:

Theorem 5.6. Let G = {X1, . . . , Xn;u1, . . . , un} be an n-person game of normal
form and J ⊂ {1, 2, . . . , n}. Suppose that for each i ∈ J the following conditions
are fulfilled:

(1) there exist yi,0, yi,1, . . . , yi,ni ∈ Xi such that Ki =
∩ni

j=0Gi(yi,j) is compact

where Gi(y) = {xi ∈ Xi | Ui(xi, y) ≤ 0} and Ui : Xi × X → R is defined by
Ui(xi, y) = ui(y)− ui(xi, y−i);

(2) the map Hi : Ki ( X defined by H(xi) = {y ∈ X | Ui(xi, y) ≤ 0} for xi ∈ Ki

is intersectionally closed-valued [resp., transfer closed-valued].
Then there exists a J-dominant-strategy z̃J in

∏
i∈J Xi [resp., in

∏
i∈J Ki] for the

game G if and only if Ui|Xi×X is generally 0-pair-concave on X for each i ∈ J .
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Theorem 5.7. Let G = {X1, . . . , Xn;u1, . . . , un} be an n-person game of normal
form, J ⊂ {1, 2, . . . , n}, and U : X × X → R be the aggregate payoff function.
Suppose that the following conditions are fulfilled:

(1) EJ = {xJ ∈ XJ | xJ is a J-dominant-strategy};
(2) there exist y0, y1, . . . , yn ∈ X such that K =

∩n
i=0 clY G(yi) is compact where

G(y) = {x ∈ EJ ×X−J | U(x, y) ≤ 0} and Y = EJ ×X−J ;
(3) the map H : K ( X defined by H(x) = {y ∈ X | U(x, y) ≤ 0} for x ∈ K is

intersectionally closed-valued [resp., transfer closed-valued].
Then there exists a J-dominant-strategy Nash equilibrium z̃ ∈ X [resp., z̃ ∈ K]

for the game G if and only if U |Y×X is generally 0-pair-concave on X.

Theorem 5.8. Let G = {X1, . . . , Xn;u1, . . . , un} be an n-person game of normal
form and U : X × X → R be the aggregate payoff function. Then there exists a
pure-strategy Nash equilibrium for the game G if and only if the following conditions
are fulfilled:

(1) there exists a subset Z ⊂ X and y0, y1, . . . , yn ∈ X such that K =
∩n

i=0 clZG(yi)
is compact where G(y) = {x ∈ Z | U(x, y) ≤ 0};

(2) the map H : K ( X defined by H(x) = {y ∈ X | U(x, y) ≤ 0} for x ∈ K is
intersectionally closed-valued [e.g., U |K×X(x, y) is 0-transfer continuous in x ];

(3) U |Z×X is generally 0-pair-concave on X.

Remark 5.9. 1. Theorems 5.6 - 5.8 generalize Theorems 4.3 - 4.5 of [2], resp.
2. According to [2], Theorem 5.2 generalizes Theorem 1 in [6]. Theorem 5.8

generalizes Theorems 1 and 3 in [1], Theorem 1 [8], and Theorem 1 of [5] without
the fixed property. Theorems 5.6 and 5.7 generalize Theorems 4 and 5 in [1].
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