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of matrices is a topic of significant interest in mathematical control and optimiza-
tion theory and has attracted thereby a good deal of attention from researchers over
several last decades, see [2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19]. It worth noticing
that in most of papers only the case of ”unstructured radius” was studied, where the
perturbation model is assumed to be ”component-wise” as wij ; wij+δij , ∀i, j. In
many cases, however, the perturbations are restricted to some specific structure (for
example, only one row or column of W or even only one entry of W is perturbed)
and ignoring such structures may lead to substantial underestimation of the radius
under consideration.

The aim of this paper is to generalize the classical result of Eckart and Young to
the case where the matrix W ∈ Cn×m is subjected to the structured perturbations
of the form

W  W̃ = W +D∆E

and the multi-perturbations of the form

W  W̃ = W +

N∑
i=1

Di∆iEi,

where D,E and Di, Ei, i = 1, . . . , N are given matrices defining the structure of
perturbations. The above structured perturbation model allows us, by choosing the
apropriate structuring matrices D and E, to describe the case where only one row
or column of W or even only one entry of W is perturbed, whereas the more general
class of multi-perturbations will cover all cases of affine perturbations (for instance,
the case where the diagonal entries of W are perurbed). We shall then apply our
result to calculating the stabilizability radius of a linear system. The key technique
is to make use of some well-known facts from the theory of linear multi-valued
operators in representing equations and evaluating the norms of matrices involved
in the calculation. A similar technique has been used in our recent paper [19] for
calculating structured controllability radii.

The organization of the paper is as follows. In the next Section, for the reader’s
convenience, we shall recall some known notions and results from the theory of lin-
ear multi-valued operators (see, e.g. [1, 19]). In Section 3 we prove the main results
of the paper which give formulas for calculating the complex radius of surjectiv-
ity of a rectangular matrix subjected to structured perturbations and to multi-
perturbations. In Section 4, we apply the results of the previous section to es-
tablish formulas for the stabilizability radius and give an illustrating example. In
Conclusion we summarize the obtained results and give some remarks of further
investigation.

2. Preliminaries

Let K = C or R, the set of real or complex numbers. If A ∈ Km×n, then A∗ ∈
Km×n denotes the adjoint matrix of A. Kn(= Kn×1) is the n-dimentional vector
space equipped with the vector norm ∥ · ∥, its dual space can be identified with
(Kn)∗ = (Kn×1)∗ = {u∗ : u ∈ Kn}, equipped with the dual norm. For u∗ ∈ (Kn)∗

we shall write u∗(x) = u∗x,∀x ∈ Kn. For a subset M ⊂ Kn, we denote M⊥ = {u∗ ∈
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(Kn)∗ : u∗x = 0 for all x ∈ M}. Let F : Kn ⇒ Km be a multi-valued operator. If
the graph of F , defined by

(2.1) grF =
{
(x, y) ∈ Kn ×Km : y ∈ F(x)

}
,

is a linear subspace of Kn×Km then F is called a linear multi-valued operator. The
domain and the nullspace of F are denoted, respectively, by domF =

{
x ∈ Kn :

F(x) ̸= ∅
}
and kerF =

{
x ∈ domF : 0 ∈ F(x)

}
. By definition, F(0) is a linear

subspace and, for x ∈ domF , we have the following equivalence

(2.2) y ∈ F(x) ⇐⇒ F(x) = y + F(0).

Let F : Kn ⇒ Km be a multi-valued linear operator, then for given vector norms
on Kn and Km, the norm of F is defined by

(2.3) ∥F∥ = sup
{

inf
y∈F(x)

∥y∥ : x ∈ domF , ∥x∥ = 1
}
.

For a linear multi-valued operator F : Kn ⇒ Km, its adjoint operator F∗ : (Km)∗ ⇒
(Kn)∗ and its inverse operator F−1 : ImF ⇒ Kn are defined, correspondingly, by

(2.4) F∗(v∗) =
{
u∗ ∈ (Km)∗ : u∗x = v∗y for all (x, y) ∈ grF

}
,

(2.5) F−1(y) =
{
x ∈ Kn : y ∈ F(x)

}
.

Clearly, F∗ and F−1 are also linear multi-valued operators and we have

(2.6) (F∗)−1 = (F−1)∗, ∥F∥ = ∥F∗∥.
It can be proved that F is surjective (i.e. F(Kn) = Km) if and only if F∗ is injective
(i.e. F∗−1(0) = {0}), or, equivalently, F∗−1 is single-valued. Let F : Kn ⇒ Km,G :
Km ⇒ Kl are the linear multi-valued operators, then the operator GF : Kn ⇒ Kl,
defined by (GF)(x) = G(F(x)) for all x ∈ domF , is a linear multi-valued operator
and if ImF ⊂ domG or ImG∗ ⊂ domF∗ then

(2.7) (GF)∗ = F∗G∗ and ∥(GF)∗∥ = ∥F∗G∗∥ ≤ ∥F∗∥ ∥G∗∥ = ∥F∥ ∥G∥.
If F is the linear single-valued operator defined by F(x) = FG(x) = Gx, where
G ∈ Km×n and x ∈ Kn, then, clearly, the norm of FG defined by (2.3) is just the
operator norm of matrix G:

∥FG∥ = ∥G∥.
In the sequence, when dealing with this operator in the context of the theory of
multi-valued linear operators, we shall use the notation FG(x) = G(x). It is easily
seen that the adjoint operator (FG)

∗ : (Km)∗ −→ (Kn)∗ is also linear single-valued
operator which is given by (FG)

∗(v∗) = v∗G, ∀v∗ ∈ (Km)∗. For the sake of simplic-
ity, we shall identify (FG)

∗ with G∗, that reads

(2.8) (FG)
∗(v∗) = G∗(v∗) = v∗G,∀v∗ ∈ (Km)∗.

Remark that the notation G∗v is understood, as usual, the product of matrix G∗ ∈
Kn×m and column vector v ∈ Km and we have (G∗v)∗ = G∗(v∗). Finally, let P ∈
Km×l, Q ∈ Kl×n and FPQ : Kn −→ Km is the linear single-valued operator defined
by FPQ(x) = (PQ)x. Then the adjoint operator (FPQ)

∗ : (Km)∗ −→ (Kn)∗ is also
linear single-valued operator and we have, by (2.8), ∀v∗ ∈ (Km)∗,

(PQ)∗(v∗) = (FPQ)
∗(v∗) = v∗(PQ) = Q∗(P ∗(v∗)) = (Q∗P ∗)(v∗) = (F∗

QF∗
P )(v

∗),
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and, by (2.7),

∥(PQ)∗∥ ≤ ∥Q∗∥ ∥P ∗∥.

3. Structured radius of surjectivity

Assume that the matrix W ∈ Kn×m is surjective, i.e. WKm = Kn, and is subjected
to affine perturbations of the form:

(3.1) W  W̃ = W +D∆E.

Here D ∈ Kn×l, E ∈ Kq×m are given matrices defining the structure of perturba-
tions, ∆ ∈ Kl×q is unknown disturbance matrix.

Definition 3.1. Let W ∈ Kn×m be surjective. Given a norm ∥ · ∥ on Kl×q, the
structured radius of surjectivity of W with respect to affine perturbations of the
form (3.1) is defined by

(3.2) r(W ;D,E) = inf
{
∥∆∥ : ∆ ∈ Kl×q s.t W̃ = W +D∆E non-surjective

}
.

If W +D∆E is surjective for all ∆ ∈ Kl×q then we set r(W ;D,E) = +∞.

Define the multi-valued operator EW−1D : Kl ⇒ Kq by setting

(EW−1D)(u) = E(W−1(Du)), ∀u ∈ Kl,

where W−1 : Kn ⇒ Kn+m is the (multi-valued) inverse operator of W .

Theorem 3.2. Assume that the surjective matrix W is subjected to structured per-
turbations of the form (3.1). Then the structured radius of surjectivity of W is given
by the formula

(3.3) r(W ;D,E) =
1

∥EW−1D∥
.

Proof. Since the operator W is surjective W ∗−1 is single-valued. Assume that

W̃ = W +D∆E

is non-surjective, for some ∆ ∈ Kl×q. This implies that there exists y∗0 ∈ (Kn)∗, y∗0 ̸=
0 such that (W +D∆E)∗(y∗0) = W ∗(y∗0)+(E∗∆∗D∗)(y∗0) = 0. Since W ∗−1

λ0
is single-

valued, we have

(3.4) y∗0 = −(W ∗−1E∗∆∗)(D∗(y∗0))

and, hence, D∗(y∗0) ̸= 0. By applying D∗ to the left of the both sides of (3.4), we
obtain

D∗(y∗0) = −(D∗W ∗−1E∗∆∗)(D∗(y∗0)).

Therefore,

0 < ∥D∗(y∗0)∥ ≤ ∥D∗W ∗−1E∗∥ ∥∆∗(D∗(y∗0))∥ ≤ ∥D∗W ∗−1E∗∥ ∥∆∗∥ ∥D∗(y∗0)∥.

Since ImW−1 ⊂ domE = Km and Im(EW−1)∗ ⊂ domD∗ = (Kn)∗, we have, by
using (2.7), (EW−1)∗ = W ∗−1E∗ and

(EW−1D)∗ = D∗(EW−1)∗ = D∗W ∗−1E∗.
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By (2.6), we get

∥∆∗∥ = ∥∆∥ ≥ 1

∥D∗W ∗−1E∗∥
=

1

∥EW−1D∥
.

Since the above inequality holds for any disturbance matrix ∆ ∈ Kl×q such that
D∆E destroys surjectivity, we obtain by definition,

(3.5) r(W ;D,E) ≥ 1

∥EW−1D∥
.

To prove the converse inequality, for any small ϵ > 0 such that ∥EW−1D∥ − ϵ > 0.
Since D∗W ∗−1E∗ is single-valued it follows that its norm is the operator norm and
hence there exists v∗ϵ ∈ (Kq)∗ : ∥v∗ϵ ∥ = 1, v∗ϵ ∈ dom(D∗W ∗−1E∗) such that
(3.6)
0 < ∥EW−1D∥ − ϵ = ∥D∗W ∗−1E∗∥ − ϵ ≤ ∥(D∗W ∗−1E∗)(v∗ϵ )∥ ≤ ∥D∗W ∗−1E∗∥.

Letting u∗ϵ = −W ∗−1(E∗(v∗ϵ )) ̸= 0, we have

W ∗(u∗ϵ ) = −E∗(v∗ϵ ) and D∗(u∗ϵ ) = −(D∗W ∗−1E∗)(v∗ϵ ) ̸= 0.

By Hahn-Banach Theorem, there exists h ∈ Kl such that ∥h∥ = 1, (D∗(u∗ϵ ))h =
∥D∗(u∗ϵ )∥. Thus, we can define a rank-one perturbation ∆ϵ ∈ Kl×q by setting

∆ϵ =
1

∥D∗(u∗ϵ )∥
hv∗ϵ .

Then, it is obvious that

∥∆ϵ∥ = ∥D∗(u∗ϵ )∥−1 = ∥(D∗W ∗−1E∗)(v∗ϵ )∥−1 ≤ 1

∥EW−1D∥ − ϵ
,

and, using (2.8), (∆∗
ϵD

∗)(u∗ϵ ) = ∆∗
ϵ (D

∗(u∗ϵ )) = D∗(u∗ϵ )∆ϵ = v∗ϵ . Hence, (E∗∆∗
ϵD

∗)(u∗ϵ )
= E∗(v∗ϵ ) and, therefore,

W ∗(u∗ϵ ) + (E∗∆∗
ϵD

∗)(u∗ϵ ) = 0,

with u∗ϵ ̸= 0, which implies that the perturbed matrix W̃ = W + D∆ϵE is non-
surjective. Thus, by definition,

(3.7) r(W ;D,E) ≤ ∥∆ϵ∥ ≤ 1

∥EW−1D∥ − ϵ
.

Letting ϵ → 0 we obtain the converse inequality. The proof is complete. �
We note that Theorem 3.2 has been proved for the case when the norms of ma-

trices under consideration are operator norms induced by arbitrary vector norms in
corresponding vector spaces. In the case when the vector spaces under considera-
tion are equipped with Euclidean norms (for example, ∥x∥ =

√
x∗x, x ∈ Kn) we can

derive from Theorem 3.2 a more computable formula for r. To this end, we need
the following technical result (see [19]).

Lemma 3.3. Assume G ∈ Kn×p has full row rank: rankG = n and Kn,Kp are
equipped with Euclidean norms. Then, for the linear operator FG(z) = Gz, we have

(3.8) d(0,F−1
G (y)) = ∥G†y∥, ∥F−1

G ∥ = ∥G†∥,

where G† denotes the Moore-Penrose pseudoinverse of G : G† = G∗(GG∗)−1.
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Corollary 3.4. Assume that the matrix W ∈ Kn×m is surjective and subjected to
perturbations of the form (3.1) where E ∈ Kq×(n+m) has full column rank. Then
the structured radius of surjectivity of W is given by

(3.9) r(W ;D,E) =
1

∥(W (E∗E)−1/2)†D∥
.

Proof. Since E has full column rank, E∗E ∈ K(n+m)×(n+m) is a positive definite
matrix. Therefore, we can decompose it as E∗E = (E∗E)1/2(E∗E)1/2 with an

invertible (E∗E)1/2 ∈ K(n+m)×(n+m) (see, e.g. [10]). Since ∥Ev∥ =
√

(Ev)∗Ev =√
v∗E∗Ev = ∥(E∗E)1/2v∥, we have, by definition, for all u ∈ Kl,

d(0, (EW−1D)(u)) = inf
v∈(W−1D)(u)

∥Ev∥

= inf
v∈(W−1D)(u)

∥(E∗E)1/2v∥ = d(0, ((E∗E)1/2W−1D)(u)).

(3.10)

Since matrixW (E∗E)−1/2 ∈ Kn×(n+m) has full row rank and, obviously, (E∗E)1/2W−1

= (W (E∗E)−1/2)−1 when they are considered as multi-valued linear operators, we
can apply Lemma 3.3 to deduce, for all u ∈ Kl,

d(0, (EW−1D)(u)) = d(0, ((E∗E)1/2W−1D)(u))) = ∥(W (E∗E)−1/2)†Du∥,
which implies that

(3.11) ∥EW−1D∥ = ∥(W (E∗E)−1/2)†D∥.
The result now follows from Theorem 3.2. �

Now, we consider the more general situation, assuming that the matrix W ∈
Kn×m is subjected to structured multi-perturbations of the form

(3.12) W  W̃ = W +

N∑
i=1

Di∆iEi,

where Di ∈ Kn×li , Ei ∈ Kqi×m, i ∈ N = {1, . . . , N} are given structure matrices
and ∆i ∈ Kli×qi , i ∈ N are unknown perturbations. The size of each perturbation
∆ = (∆1, · · · ,∆N ) ∈ DK = ΠN

i=1Kli×qi is measured by

(3.13) ∥∆∥ =
N∑
i=1

∥∆i∥,

where the norms ∥∆i∥ are operator norms on Kli×qi induced by given vector norms
on the spaces Kli ,Kqi , i ∈ N , respectively.

Definition 3.5. The structured radius of surjectivity ofW w.r.t multi-perturbations
of the form (3.12) is defined by
(3.14)

r(W ;Di, Ei, i ∈ N) = inf
{
∥∆∥ : ∆ ∈ DK,W +

N∑
i=1

Di∆iEi non-surjective
}
,
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where ∥∆∥ is given by (3.13).

Let Q ∈ Kn×m and P ∈ Kl×m, we shall write

(3.15) P ≼ Q iff ∥Px∥ ≤ ∥Qx∥, for all x ∈ Km.

It is easy to see that if P ≼ Q then kerQ ⊂ kerP and ImP ∗ = (kerP )⊥ ⊂
(kerQ)⊥ = ImQ∗. As above, for each i ∈ N we define the multi-valued operator
EiW

−1Di : Kli ⇒ Kqi by setting

(EiW
−1Di)(ui) = EiW

−1(Diui), ui ∈ Kli .

We need the following result which is a simple consequence of the Hahn-Banach
Theorem.

Lemma 3.6. Assume U is a non-trivial subspace of Kk, and 0 ̸= v̂∗0 /∈ U⊥. Then,
there exists 0 ̸= v∗0 ∈ v̂∗0 + U⊥, 0 ̸= x0 ∈ U such that |v∗0x0| = ∥v∗0∥∥x0∥.

The following theorem gives the formula of structured radius of surjectivity of W
with respect to multi-perturbations of the form (3.12).

Theorem 3.7. Let W ∈ Kn×m be surjective and H ∈ Kk×m be a given matrix.
Assume that W is subjected to multi-perturbations of the form (3.12) with Ei ≼ H
for all i ∈ N . Then

(3.16)
1

maxi∈N ∥HW−1Di∥
≤ r(W ;Di, Ei, i ∈ N) ≤ 1

maxi∈N ∥EiW−1Di∥
.

Proof. Assume that the perturbed matrix W̃ defined as in (3.12) is non-surjective.
Then, y∗0 ∈ (Kn)∗, y0 ̸= 0 such that

(3.17) W ∗(y∗0) +

N∑
i=1

(E∗
i ∆

∗
iD

∗
i )(y

∗
0) = 0.

Letting u∗0 = W ∗(y∗0) we have y∗0 = W ∗−1(u∗0), u∗0 ∈ dom(W ∗−1) and

(3.18) u∗0 = −
N∑
i=1

(E∗
i ∆

∗
iD

∗
iW

∗−1)(u∗0).

Since Ei ≼ H, ImE∗
i ⊂ ImH∗ for all i ∈ N. Therefore u∗0 ∈ ImH∗. Assume

u∗0 = H∗v̂∗0. Since y
∗
0 ̸= 0, u∗0 ̸= 0 and v̂∗0 /∈ kerH∗ = (ImH)⊥. By Lemma 3.6, there

exists 0 ̸= v∗0 ∈ v̂∗0 + (ImH)⊥ and 0 ̸= x0 ∈ ImH such that |v∗0x0| = ∥v∗0∥∥x0∥. It
implies that u∗0 = H∗(v∗0) and x0 = Hz0 with some z0 ∈ Kn+m. We have

(3.19) H∗(v∗0) = −
N∑
i=1

(E∗
i ∆

∗
iD

∗
iW

∗−1)(H∗(v∗0)),

which implies that

(3.20) H∗(v∗0)z0 = −
N∑
i=1

(E∗
i ∆

∗
iD

∗
iW

∗−1H∗)(v∗0)z0.
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Therefore, by (2.7) and taking into account the assumption that Ei ≼ H for all
i ∈ N , we can deduce

∥v∗0∥∥x0∥ = |v∗0x0| = |v∗0Hz0| = |H∗(v∗0)z0| ≤
N∑
i=1

|(E∗
i ∆

∗
iD

∗
iW

∗−1H∗)(v∗0)z0|

=
N∑
i=1

|(∆∗
iD

∗
iW

∗−1H∗)(v∗0)Eiz0| ≤
N∑
i=1

∥(∆∗
iD

∗
iW

∗−1H∗)(v∗0)∥ ∥Eiz0∥

≤ ∥v∗0∥ ∥Hz0∥
N∑
i=1

∥∆∗
i ∥ ∥D∗

iW
∗−1H∗∥ ≤ ∥v∗0∥ ∥x0∥ ∥∆∥max

i∈N
∥HW−1Di∥.

This implies that

(3.21) ∥∆∥ ≥ 1

maxi∈N ∥HW−1Di∥
,

which yields the first inequality in (3.16). To prove the second inequality, choose
k ∈ N and ϵ > 0 such that ∥EkW

−1Dk∥ − ϵ = maxi∈N ∥EiW
−1Di∥ − ϵ > 0.

Then, as was shown in the proof of Theorem 3.2, there exists a disturbance matrix
∆kϵ ∈ Klk×qk such that W +Dk∆kϵEk is non-surjective and

∥∆kϵ∥ ≤ 1

∥EkW−1Dk∥ − ϵ
.

Therefore, for the perturbation ∆̃ = (∆̃1, . . . , ∆̃N ), with ∆̃j = 0, ∀j ̸= k, ∆̃k = ∆kϵ,

we see that the perturbed matrix W̃ = W +
∑N

i=1Ei∆̃iDi is non-surjective and

∥∆̃∥ = ∥∆kϵ∥ ≤ 1

maxi∈N ∥EiW−1Di∥ − ϵ
.

This implies that the second inequality in (3.16), completing the proof. �

It is obvious that for any P ∈ Kn×m, P ≼ ∥P∥ Im, where Im is the identity matrix
in Km×m. Using this observation we get the following consequence of Theorems 3.7.

Corollary 3.8. The radius of surjectivity of matrix W w.r.t complex multi-
perturbations of the form (3.12) satisfies the inequalities

(3.22)
1

αmaxi∈N ∥W−1Di∥
≤ r(W ;Di, Ei, i ∈ N) ≤ 1

maxi∈N ∥EiW−1Di∥
,

where α = [maxi∈N ∥Ei∥].

Now, we give a particular case where the bounds established in the Theorem 3.7
yield a formula for calculating the structured radius of surjectivity.

Corollary 3.9. If Ei = αiE1, αi ∈ K, for all i ∈ N, then the distance to non-
surjectivity of a surjective matrix W w.r.t. complex multi-perturbations of the form
(3.12) is given by the formula

(3.23) r(W ;Di, Ei, i ∈ N) =
1

maxi∈N ∥EiW−1Di∥
.



ON THE STRUCTURED RADIUS OF SURJECTIVITY 449

Example 3.10. Consider the surjective matrix W =

[
0 1 2
1 0 0

]
. Assume that W

is subjected to structured perturbation of the form

(3.24)

[
0 1 2
1 0 0

]
 

[
δ1 1 + δ1 2 + δ2

1 + δ1 δ1 δ2

]
,

where δi ∈ C, i ∈ 1, 2 are disturbance parameters. The above perturbed model can

be represented in the form W  W + D∆E with D =

[
1
1

]
, E =

[
1 1 0
0 0 1

]
. We

have, for each v ∈ C,

EW−1D(v) = EW−1

(
v

v

)

=

{
E

p
q
r

 : q + 2r = p = v

}
=

{(
v + q

v/2− q/2

)
: q ∈ C

}
.

Thus, for each v ∈ C, the problem of computing d(0, EW−1D(v)) is reduced to the
calculation of the distance from the origin to the straight line in C2 whose equation
can be rewritten in the form x1 + 2x2 = 2v with x1 = v + q and x2 = v/2 − q/2.
Let C2 be endowed with the vector norms ∥ · ∥∞, then we can deduce,

2|v| ≤ |x1|+ 2|x2| ≤ 3max{|x1|, |x2|} = 3∥
(
x1
x2

)
∥∞.

This implies that

∥
(
x1
x2

)
∥∞ ≥ 2|v|

3
,

which yields the equality if x1 = x2 =
2v

3
. Therefore, ∥EW−1D∥ =

2

3
. By applying

Theorem 3.2, we obtain r(W ;D,E) =
3

2
.

4. Complex stabilizability radius

In this section, the results of the previous section will be used to obtain the
formula for stabilizability radius of a linear system. Consider the system (A,B):

(4.1)

{
ẋ = Ax+Bu

x(0) = x0, t ≥ 0,

where A ∈ Cn×n, B ∈ Cn×m. Recall that the system (4.1) is said to be stabilizable if
there exists a linear feedback control u = Kx with K ∈ Cm×n such that the closed-
loop system ẋ = (A+BK)x is asymptotically stable, or equivalently σ(A+BK) :=
{s ∈ C : det(Is− A−BK) = 0} ⊂ C− := {s ∈ C : Re s < 0}. Assume that system
(4.1) is subjected to structured perturbations of the form

(4.2) [A,B] [Ã, B̃] = [A,B] +D∆E,
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where D ∈ Cn×l, E ∈ Cq×(n+m) are given structuring matrices and ∆ ∈ Kl×q is
unknown disturbance matrix. Then, for a stabilizable system (A,B), we can define
the notion of complex stabilizability radius as follows

(4.3) ΛD,E
C (A,B) = inf{∥∆∥ : ∆ ∈ Cl×q, [A,B] +D∆E is not stabilizable}.

By using the formulas for the radius of surjectivity given by Theorem 3.2 and
Theorem 3.7, we derive now formulas of structured stabilizability radius for arbitrary
operator norms. Define, for each λ ∈ C, the linear single-valued operator Wλ :
Cn+m → Cn by setting Wλz = [A − λI,B]z, ∀z ∈ Cn+m, and the multi-valued
operator EW−1

λ D : Cl ⇒ Cq by setting

(EW−1
λ D)(u) = E(W−1

λ (Du)), ∀u ∈ Cl,

where W−1
λ : Cn ⇒ Cn+m is the (multi-valued) inverse operator of Wλ. By Hautus

Theorem (see e.g. [8]), the system (A,B) is stabilizable iff Wλ is surjective for all
λ ∈ C̄+, where C̄+ = {λ ∈ C : Reλ ≥ 0}. Therefore, by using Theorem 3.2, we get

Theorem 4.1. Assume that system (4.1) is stabilizable and subjected to structured
perturbations of the form (4.2). Then the complex stabilizability radius of (4.1) is
given by the formula

(4.4) ΛD,E
C (A,B) =

1

supλ∈C̄+
∥EW−1

λ D∥
.

The formula (4.4) looks very similar to the well-known formula of complex stabil-
ity radius of a asymptotically stable linear system ẋ = Ax, t ≥ 0 where the matrix
A is subjected to structured perturbations A A+D∆E (see, e.g. [9]). We note
that the study of stability radius has atracted much attention over last two decades
and algorithms for computing the complex stability radius has been developed by
several authors (see, e.g. [6] and [7]). The formula (4.4), involves, however, calcula-
tion of the norm of the linear multi-valued operator EW−1

λ D which does not have
an explicit representation. We now derive from this result some more computable
formulas, particularly in the case, where the matrix norm is the spectral norm (i.e.
the operator norm induced by Euclidean vector norms of the form ∥x∥ =

√
x∗x).

First, we note that if vector spaces Cn,Cm are equipped with Euclidean norms
then for any rectangular matrix W ∈ Cn×m its operator norm is the spectral norm
and we have ∥W∥ = σmin[W ] = ∥W †∥−1, where W † = W ∗(WW ∗)−1 is the Moore-
Penrose pseudoinverse of W . Therefore, from Theorem 4.1, we get the following
formula for unstructured stabilizability radius of a pair (A,B) which is obviously
similar to the Eising result (see [5]).

Corollary 4.2. Let stabilizable system (A,B) be subjected to unstructured complex
perturbations of the form

[A,B] [A,B] + ∆, ∆ = [∆1,∆2] ∈ Cn×m,

and the norm of disturbance matrices ∆ in (4.3) is spectral norm, then the system’s
complex stabilizability radius is given by

ΛC(A,B) =
1

supλ∈C̄+
∥W †

λ∥
.
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By applying Corollary 3.4 we get

Corollary 4.3. Let the matrix E has full column rank. Then the complex stabiliz-
ability radius of (A,B) w.r.t. matrix spectral norm and structured perturbations of
the form (4.2) is given by

(4.5) ΛD,E
C (A,B) =

1

supλ∈C̄+
∥(Wλ(E∗E)−1/2)†D∥

.

We now assume that the matrix pair (A,B) ∈ Cn×n × Cn×m is subjected to struc-
tured multi-perturbations of the form

(4.6) [A,B] [Ã, B̃] = [A,B] +

N∑
i=1

Di∆iEi,

where Di ∈ Cn×li , Ei ∈ Cqi×(n+m), i ∈ N = {1, . . . , N} are given structure matrices
and ∆i ∈ Cli×qi , i ∈ N are unknown perturbations. The size of each perturbation
∆ = (∆1, . . . ,∆N ) ∈ DC = ΠN

i=1Cli×qi is measureded by :

(4.7) ∥∆∥ =

N∑
i=1

∥∆i∥,

where the norms ∥∆i∥ are operator norms on Cli×qi induced by given vector norms
on the spaces Cli ,Cqi , i ∈ N , respectively. Then the complex stabilizability radius
of (A,B) under multi-perturbations of the form (4.6) is defined by

(4.8) Λmp
C (A,B) = inf

{
∥∆∥ : ∆ ∈ DC, [A,B] +

N∑
i=1

Di∆iEi unstabilizable
}
.

By using Theorem 3.7, we get

Theorem 4.4. Let H ∈ Ck×(n+m) be a given matrix. Assume the matrix pair
(A,B) is stabilizable and subjected to multi-perturbations of the form (3.12) with
Ei ≼ H for all i ∈ N . Then, the complex stabilizability radius of (A,B) satisfies
the inequality

(4.9)
1

maxi∈N supλ∈C̄+
∥HW−1

λ Di∥
≤ Λmp

C (A,B) ≤ 1

maxi∈N supλ∈C̄+
∥EiW

−1
λ Di∥

,

where Wλ denotes [A− λI,B].

We illustrate the above result by an example.

Example 4.5. Consider the linear control system (A,B) described by

(4.10) ẋ(t) = Ax(t) +Bu(t),

where A =

[
−1 1
0 −2

]
, B =

[
0
1

]
. By Hautus characterization, the system is stabiliz-

able. Assume that, the control matrix [A,B] is subjected to structured perturbation
of the form

(4.11)

[
−1 1 0
0 −2 1

]
 

[
−1 + δ1 1 + δ1 δ2
0 + δ1 −2 + δ1 1 + δ2

]
,
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where δi ∈ C, i ∈ 1, 2 are disturbance parameters. The above perturbed model can

be represented in the form [A,B] [A,B] +D∆E with D =

[
1
1

]
, E =

[
1 1 0
0 0 1

]
.

We have

E[A− λI,B]−1D(v) = E[A− λI,B]−1

(
v

v

)

=

{
E

p
q
r

 : −(λ+ 1)p+ q = −(λ+ 2)q + r = v

}

=

{(
v + (λ+ 2)p

(λ+ 3)v + (λ+ 1)(λ+ 2)p

)
: q ∈ C

}
.

Thus, for each v ∈ C, the problem of computing d(0, E[A−λI,B]−1D(v)) is reduced
to the calculation of the distance from the origin to the straight line in C2 whose
equation can be rewritten in the form x2−(λ+1)x1 = 2v with x1 = v+(λ+2)p, x2 =
(λ+3)v+(λ+1)(λ+2)p. Note that if λ = −2 then this line is reduced to the point(
v

v

)
. Assume λ ̸= −2 and let C2 be endowed with the vector norms ∥ · ∥∞, then we

can deduce,

2|v| ≤ |x2|+ |λ+ 1||x1| ≤ (1 + |λ+ 1|)max{|x1|, |x2|} = (1 + |λ+ 1|)∥
(
x1
x2

)
∥∞.

This implies that

∥
(
x1
x2

)
∥∞ ≥ 2|v|

1 + |λ+ 1|
,

which yields the equality if x2 =
2v

1 + |λ+ 1|
and x1 = eiφx2, where φ is chosen such

that −(λ+ 1)eiφ = |λ+ 1|. Therefore,

∥E[A− λI,B]−1D∥ = sup
|v|=1

d
(
0, E[A− λI,B]−1D(v)

)
=


2

|λ+ 1|+ 1
if λ ̸= −2,

1 if λ = −2,

By applying Theorem 4.1, we obtain the complex stabilizability radius ΛD,E
C (A,B) =

1.

5. Conclusion

In this paper we developed a unifying approach to the problem of calculating the
radius of surjectivity of a surjective rectangular matrix, which is based on the theory
of linear multi-valued operators. Our result generalized, in particular, the classical
Eckart-Young Theorem to structured perturbations. We applied the obtained re-
sults to establish some formulas for the stabilizability radius of linear control systems
under structured perturbations and multi-perturbations of system matrices. Our
approach can be developed further for calculating the distance from ill-posedness of
conic systems of the form Ax = b, x ∈ K ⊂ Km, where K is a closed convex cone,
as well as for stability radius of convex processes ẋ ∈ F(x), t ≥ 0. These problems
are the topics of our further study.
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