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of solution set of (P) via Lagrange multipliers, we firstly prove that the Lagrange
function associated to (P) with a fixed multiplier corresponding to a given solution
is constant on the solution set of the problem (P). Then, a theorem characterizing its
solution set is given. In this part, we also give some corollaries on characterizations
of solution set of (P) with relaxed assumptions applied to constraint functions. As
a particular case, we recover results on characterizations of solution sets of a class
of convex programs. For the second type, firstly we consider a point-to-set mapping
defined on Rn by

∂cL(·, λ) ∩ (−N(C, ·)) : x 7→ ∂cL(·, λ)(x) ∩ (−N(C, x),

where ∂cL(·, λ)(x) denotes Clarke-subdifferential at x of the Lagrange function L
associated to (P) with a fixed Lagrange multiplier, and N(C, x) is the normal cone
to a nonempty closed convex subset C at x ∈ C. Then we prove that this mapping
is constant on the solution set of (P). Based on this result, a characterization of
solution set of (P) via subgradients is established. The last part of the paper
is devoted to minimizing sequence characterizations of solution set of (P). Unlike
characterizations mentioned above, where at least one solution of the problem under
consideration is known, here a minimizing sequence of (P) is used instead. This is
often the case when we do not know an exact solution but a minimizing sequence
can be obtained by some numerical method.

The paper is organized as follows. Section 2 is devoted to preliminaries and
the properties of semiconvex functions. Our main results are established in the
third section (the last section of the paper). Several theorems concerning the types
of characterizations of solution set of (P) are given. Besides, applications of the
obtained results to some special cases are presented. Examples are given to illustrate
certain results.

2. Preliminaries

Let us denote by R(T ) a following linear space:

R(T ) := {λ = (λt)t∈T | λt = 0 for all t ∈ T but only finitely many λt ̸= 0}.

For λ ∈ R(T ), its supporting set, suppλ := {t ∈ T | λt ̸= 0}, is a finite subset of T .

The nonnegative cone of R(T ) is denoted by

R(T )
+ := {λ = (λt)t∈T ∈ R(T ) | λt ≥ 0, t ∈ T}.

It is easy to see that R(T )
+ is a convex cone of R(T ).

For z = (zt)t ⊂ Z, Z being a linear space, we understand that

⟨λ, z⟩ :=
∑
t∈T

λtzt =
∑

t∈suppλ
λtzt

and ∑
t∈T

λtft :=
∑

t∈suppλ
λtft
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where ft : Rn → R, t ∈ T . If {Yt | t ∈ suppλ} is a class of non-empty sets of some
linear space, we define ∑

t∈T
λtYt :=

∑
t∈suppλ

λtYt.

Let f : Rn → R be a locally Lipschitz function at x ∈ Rn. The generalized
directional derivative of f at x in the direction d ∈ Rn is defined by (see [2])

f c(x; d) := lim sup
h→0
t↓0

f(x+ h+ td)− f(x+ h)

t

and the Clarke’s subdifferential of f at x, denoted by ∂cf(x), is

∂cf(x) := {u ∈ Rn | u(d) ≤ f c(x; d), ∀d ∈ Rn}.

For d ∈ Rn, the directional derivative of f at x in the direction d, denoted by
f ′(x; d), is defined by the following limit (if it exists)

lim
t↓0

f(x+ td)− f(x)

t
.

The function f is said to be quasidifferentiable or regular (in the sense of Clarke)
at x if f ′(x; d) exists and equals to f c(x; d) for every d ∈ Rn (see [2], [3]).

Let D be a closed convex subset of Rn. The normal cone to D at x is

N(D,x) = {u ∈ Rn | u(y − x) ≤ 0, ∀y ∈ D}.

Definition 2.1 ([17, Definition 2]). Let Ω be a nonempty subset of Rn. A function
f : Rn → R is said to be semiconvex at x ∈ Ω if f is locally Lipschitz at x, regular
at x, and (

x+ d ∈ Ω, d ∈ Rn, f ′(x; d) ≥ 0
)
=⇒ f(x+ d) ≥ f(x).

The function f is said to be semiconvex on Ω if f is semiconvex at every x ∈ Ω.

From the definition above, we can easily verify that

(2.1) (f is semiconvex at x,∃u ∈ ∂cf(x) : u(z − x) ≥ 0) ⇒ (f(z) ≥ f(x)).

Lemma 2.2. Suppose that f is semiconvex on a convex set C ⊂ Rn. Then for
x ∈ C, d ∈ Rn with x+ d ∈ C,

f(x+ d) ≤ f(x) =⇒ f ′(x; d) ≤ 0.

The lemma above was presented in [17, Theorem 8] with C is a convex subset of
Rn and in [20, Lemma 4.1] with C is a convex subset of a Banach space. We note
that the notion of semiconvexity presented above was used in several papers such
as [8], [12], [20], [21] (an extension of this notion called ϵ-semiconvexity is proposed
in [15]). When a semiconvex function is differentiable, it is called “pseudoconvex”
(see [7], [16], [23]).

It is well known that if f : Rn → R is a pseudoconvex function then the lower
level set of f , {x ∈ C | f(x) ≤ α, α ∈ R}, is a convex subset of Rn, where C is
a convex subset of Rn. When f is semiconvex on Rn and C is also convex, it is
easy to verify that f is quasiconvex on C. Consequently, the level set above is a
convex subset of Rn (for details, see [7], p. 119). For Problem (P), if ft, t ∈ T, are
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semiconvex on C then for every t ∈ T , {x ∈ C | ft(x) ≤ 0} is convex. Hence, the
feasible set of (P) is convex (it is also closed).

3. Characterizations of solution sets

Let us denote by A the feasible set of (P). The solution set of (P) is

S := {z ∈ A | f(z) ≤ f(x), ∀x ∈ A}.

To derive characterizations of solution set S of (P), we suppose that S ̸= ∅. In this
paper, z is a given solution of (P). We also assume that under some condition there

exists λ ∈ R(T )
+ (Lagrange multiplier) such that the following optimality condition

holds (for details, see [21]).

(3.1) 0 ∈ ∂cf(z) +
∑
t∈T

λt∂
cft(z) +N(C, z), λtft(z) = 0, ∀t ∈ T.

In this case, we denote the supporting set of the λ by T+. Frequently, the Lagrange

function L : Rn × R(T )
+ → R of (P) is defined by

L(x, λ) = f(x) +
∑
t∈T

λtft(x).

3.1. Lagrange multiplier characterizations. To obtain characterizations of so-
lution sets of (P) via Lagrange multipliers, we need the following lemma.

Lemma 3.1. For Problem (P), let z be a given solution such that the condition
(3.1) holds. If the functions f and ft, t ∈ T , are regular at z and the function
L(·, λ) is semiconvex at z, then L(·, λ) is constant on S. Moreover, for all y ∈ S,
ft(y) = 0 for all t ∈ T+.

Proof. Suppose that z ∈ S and there exists λ ∈ R(T )
+ such that (3.1) holds. Then

there exist u ∈ ∂cf(z), vt ∈ ∂cft(z), t ∈ T,w ∈ N(C, z) and λtft(z) = 0 for all t ∈ T
such that

u+
∑
t∈T

λtvt = −w.

Since C is a closed convex subset of X, w(y − z) ≤ 0 for all y ∈ C. Hence,

(3.2) (u+
∑
t∈T

λtvt)(y − z) ≥ 0, ∀y ∈ C.

On the other hand, since L(·, λ) is regular at z, we have

(3.3) (f +
∑
t∈T+

λtft)
c(z; y − z) = (f +

∑
t∈T+

λtft)
′
(z; y − z).

Moreover, by the regularity of f, ft, t ∈ T at z, from (3.2) and (3.3) we deduce

(f +
∑
t∈T+

λtft)
′
(z; y − z) ≥ 0.
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Based on the semiconvexity property of L(·, λ) at z, we get

f(y) +
∑
t∈T+

λtft(y) ≥ f(z) +
∑
t∈T+

λtft(z), ∀y ∈ C.

Since λtft(z) = 0 for all t ∈ T ,

f(y) +
∑
t∈T+

λtft(y) ≥ f(z), ∀y ∈ C.

When y ∈ S, we get y ∈ A (i.e., ft(y) ≤ 0 for all t ∈ T ) and f(y) = f(z). Hence,

f(z) = f(y) ≥ f(y) +
∑
t∈T+

λtft(y) ≥ f(z).

It follows that
∑

t∈T+
λtft(y) = 0, i.e., ft(y) = 0 for all t ∈ T+. We see that L(·, λ)

is constant on S. �
Theorem 3.2. For Problem (P), let z be a given solution such that the condition
(3.1) holds. Suppose that f is semiconvex on C and L(·, λ) is semiconvex at z.
Suppose further that the functions ft, t ∈ T , are regular at z and A is convex. Then
S = S1 = S̄1 where

S1 = {x ∈ C | ∃u ∈ ∂cf(z) ∩ ∂cf(x), u(z − x) = 0, ft(x) = 0 ∀t ∈ T+

and ft(x) ≤ 0 ∀t ∈ T \ T+},
S̄1 = {x ∈ C | ∃u ∈ ∂cf(x), u(z − x) = 0, ft(x) = 0 ∀t ∈ T+

and ft(x) ≤ 0 ∀t ∈ T \ T+}.

Proof. It is obvious that S1 ⊂ S̄1. So, it needs to prove that S ⊂ S1 and S̄1 ⊂ S.
Firstly we prove that S̄1 ⊂ S. Let x ∈ S̄1. Then there exists u ∈ ∂cf(x), such
that u(z − x) = 0, ft(x) = 0 for all t ∈ T+, and ft(x) ≤ 0 for all t ∈ T \ T+. From
u ∈ ∂cf(x), u(z − x) = 0, and z ∈ C, since f is semiconvex on C, f(z) ≥ f(x).
Furthermore, since x, z ∈ A and z is a solution of (P), x ∈ S.

We now prove that S ⊂ S1. Let x ∈ S. By Lemma 3.1, we get ft(x) = 0 for
all t ∈ T+ and ft(x) ≤ 0 for all t ∈ T \ T+. Since z satisfies condition (3.1) with

λ ∈ R(T )
+ , there exist u ∈ ∂cf(z), vt ∈ ∂cft(z), t ∈ T , w ∈ N(C, z) and λtft(z) = 0

for all t ∈ T such that

u+
∑
t∈T

λtvt = −w.

Since C is a closed convex subset of X, w(x − z) ≤ 0 for all x ∈ C. Hence, for
x ∈ S ⊂ C, we get

(u+
∑
t∈T

λtvt)(x− z) ≥ 0,

i.e.,

(3.4) u(x− z) ≥ −
∑
t∈T

λtvt(x− z) = −
∑
t∈T+

λtvt(x− z).

Since λtft(z) = 0 for all t ∈ T ,

(3.5) (λtft)
′
(z;x− z) = lim

θ↓0

λtft(z + θ(x− z))− λtft(z)

θ
= lim

θ↓0

λtft(z + θ(x− z))

θ
.
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Since A is a convex subset of X, we get z+θ(x−z) ∈ A when x, z ∈ A and θ ∈ (0, 1).
Hence, λtft(z + θ(x− z)) ≤ 0 for all t ∈ T when θ is small enough. From this and

(3.5), we obtain (λtft)
′
(z;x − z) ≤ 0, t ∈ T . It is obvious that λtft, t ∈ T, are

regular at z, i.e., (λtft)
′
(z;x− z) = (λtft)

c(z;x− z). It follows that λtvt(x− z) ≤ 0
for all t ∈ T if vt ∈ ∂cft(z). These and (3.4) imply that u(x− z) ≥ 0. On the other

hand, since f(x) = f(z) and f is semiconvex at z, by Lemma 2.2, f
′
(z;x− z) ≤ 0.

Hence,

u(x− z) ≤ f c(z;x− z) = f
′
(z;x− z) ≤ 0,

where u ∈ ∂f c(z). Thus, u(x− z) = 0.
To complete the proof, we need to prove that u ∈ ∂f(z)∩∂f(x). Since u ∈ ∂cf(z),

it remains to show that u ∈ ∂cf(x). By the regularity of f at z, also at x, we have
f ′(x; d) = f c(x; d) and f ′(z; d) = f c(z; d) for all d ∈ Rn. We claim that there does
not exist any d0 ∈ Rn such that f ′(x; d0) < f ′(z; d0). Indeed, suppose to contrary
that there exists d0 ∈ Rn such that f ′(x; d0) < f ′(z; d0), i.e.,

lim
t1↓0

f(x+ t1d0)− f(x)

t1
− lim

t2↓0

f(z + t2d0)− f(z)

t2
< 0.

Then,

lim
t↓0

f(x+ td0)− f(x)

t
− f(z + td0)− f(z)

t
< 0,

Since f(x) = f(z), we get

lim
t↓0

f(x+ td0)− f(z + td0)

t
< 0.

Thus, there exists t0 ∈ (0, 1) and α > 0 small enough such that

(3.6) f(x+ td0)− f(z + td0) < −α < 0,∀t ∈ (0, t0).

It is easy to see that h(t) := f(x+ td0)− f(z + td0) is continuous at t = 0. In the
inequality above, by letting t → 0, we get f(x) − f(z) < 0, a contradiction. So, if
u(d) ≤ f ′(z; d) = f c(z; d) for all d ∈ Rn then

u(d) ≤ f ′(x; d) = f c(x; d), ∀d ∈ Rn.

This shows that u ∈ ∂cf(z) implies u ∈ ∂cf(x). We obtain u ∈ ∂cf(z) ∩ ∂cf(x).
Hence, x ∈ S1. The proof is complete. �

As we discussed in the last part of Section 2, if ft, t ∈ T, are semiconvex on C,
then the feasible set of (P) is convex. We obtain a corollary from Theorem 3.2 with
the proof omitted.

Corollary 3.3. For Problem (P), let z be a given solution such that the condition
(3.1) holds. If the functions f, ft, t ∈ T, are semiconvex on C and if the function
L(·, λ) is semiconvex at z, then S = S1 = S̄1 where

S1 = {x ∈ C | ∃u ∈ ∂cf(z) ∩ ∂cf(x), u(z − x) = 0, ft(x) = 0 ∀t ∈ T+

and ft(x) ≤ 0 ∀t ∈ T \ T+},
S̄1 = {x ∈ C | ∃u ∈ ∂cf(x), u(z − x) = 0, ft(x) = 0 ∀t ∈ T+

and ft(x) ≤ 0 ∀t ∈ T \ T+}.
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Example 3.4.

(P1) Minimize sin(y − x)
subject to sin(tx− y) ≤ 0, t ∈ [0, 1]

(x, y) ∈ {(x, y) ∈ R2 | x2 + y2 ≤ 1, y ≥ 0}.
Set

f(x, y) = sin(y − x), ft(x, y) = sin(tx− y), C = {(x, y) ∈ R2 | x2 + y2 ≤ 1, y ≥ 0}.

It is easy to check that f and ft, t ∈ T, are semiconvex functions on C. For
(x, y) ∈ C, a simple computation shows that y − x, tx − y ∈ [−

√
2,
√
2] ⊂ [−π

2 ,
π
2 ].

Hence,

sin(tx− y) ≤ 0, t ∈ [0, 1] ⇔ tx− y ≤ 0, t ∈ [0, 1].

The feasible set of the problem is

A = {(x, y) ∈ R2 | x2 + y2 ≤ 1, y ≥ 0, y ≥ x}.

For every (x, y) ∈ A, we have sin(y − x) ≥ 0. The point z = (0, 0) is a solution of
(P). We can easily check the validity of the condition (3.1). So, the solution set of
(P1) can be determined as follows. Choose u1 = − cos(y−x), u2 = cos(y−x). Then
(u1, u2) ∈ ∂cf(x, y). For (x, y) ∈ C, we have

(u1, u2)
(
(0, 0)− (x, y)

)
= 0 ⇔ (x− y) cos(y − x) = 0 ⇔ y = x.

Hence,
S = {(x, y) ∈ C | x− y = 0, tx− y ≤ 0, t ∈ [0, 1]},

= {(x, y) ∈ C | x− y = 0, x− y ≤ 0, y ≥ 0},
= {(x, y) ∈ R2 | x = y, 0 ≤ x ≤

√
2
2 }.

Since a convex function is a semiconvex function [15], in case f is semiconvex on
C and ft, t ∈ T, are convex on Rn, it is easy to see that the conclusion of Theorem
3.3 is valid. In particular, if f and ft, t ∈ T , are convex functions, the Clarke
subdifferentials coincide with the ones in the sense of convex analysis. We obtain
the following corollary with noting that ∂f denotes the convex subdifferential of f .

Corollary 3.5. For Problem (P), let z be a given solution such that the condition
(3.1) holds. If f and ft, t ∈ T , are convex functions then S = S′

1 = S̄′
1 where

S′
1 = {x ∈ C | ∃u ∈ ∂f(z) ∩ ∂f(x), u(z − x) = 0, ft(x) = 0 ∀t ∈ T+

and ft(x) ≤ 0 ∀t ∈ T \ T+},
S̄′

1 = {x ∈ C | ∃u ∈ ∂f(x), u(z − x) = 0, ft(x) = 0 ∀t ∈ T+

and ft(x) ≤ 0 ∀t ∈ T \ T+}.

The formulas above were presented in [20] where convex infinite programs were
considered with T is an arbitrary index set.

We now give some more formulas of the solution set of (P). It is worth mentioning
that

[z ∈ A,
∑
t∈T+

λtft(z) = 0] ⇔ [x ∈ C, ft(z) = 0 ∀t ∈ T+, ft(z) ≤ 0 ∀t ∈ T \ T+]
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and, by Lemma 3.1, L(x, λ) = f(x) for all x ∈ S. We can deduce a following
corollary with the proof omitted.

Corollary 3.6. For Problem (P), suppose that f, ft, t ∈ T, and L(·, λ) are semi-
convex functions on C. Then S = S2 = S̄2, where

S2 = {x ∈ A |
∑

t∈T+
λtft(x) = 0, ∃u ∈ ∂cL(·, λ)(x), u(z − x) = 0}

S̄2 = {x ∈ A |
∑

t∈T+
λtft(x) = 0, ∃u ∈ ∂cL(·, λ)(z) ∩ ∂cL(·, λ)(x), u(z − x) = 0}.

3.2. Subgradient characterizations. Let z ∈ S be such that the condition (3.1)

is satisfied with λ ∈ R(T )
+ . We obtain(

∂cf(z) +
∑
t∈T

λt∂
cft(z)

)
∩
(
−N(C, z)

)
̸= ∅, λtft(z) = 0, ∀t ∈ T.

Note that

L(z, λ) = f(z) +
∑
t∈T

λtft(z) = f(z) +
∑
t∈T+

λtft(z) =
(
f +

∑
t∈T+

λtft
)
(z).

Hence,

∂cL(·, λ)(z) = ∂c
(
f+

∑
t∈T+

λtft
)
(z) ⊂ ∂cf(z)+

∑
t∈T+

λt∂
cft(z) = ∂cf(z)+

∑
t∈T

λt∂
cft(z).

Since the sum
∑

t∈T λtft(z) is a finite sum, if the functions f, ft, t ∈ T are regular
then, by applying Corollary 3 of [2], the following equality holds:

∂c
(
f +

∑
t∈T

λtft
)
(z) = ∂cf(z) +

∑
t∈T

λt∂
cft(z).

In this case we get ∂cL(·, λ)(z) ∩
(
−N(C, z)

)
̸= ∅.

In order to give characterizations of solution set of (P) via subgradients, we need
a following lemma.

Lemma 3.7. For Problem (P), let z be a given solution such that the condition
(3.1) holds. Suppose that f, ft, t ∈ T, are regular over C and L(·, λ) is semiconvex
on C. For each y ∈ S, it holds

∂cL(·, λ)(z) ∩
(
−N(C, z)

)
= ∂cL(·, λ)(y) ∩

(
−N(C, y)

)
.

Proof. Suppose that z is a solution of (P) such that the condition (3.1) holds with

some λ ∈ R(T )
+ . Firstly, for each y ∈ S, we prove that

∂cL(·, λ)(y) ∩
(
−N(C, y)

)
⊂ ∂cL(·, λ)(z) ∩

(
−N(C, z)

)
.

Let y ∈ S and let u ∈ ∂cL(·, λ)(y) ∩
(
−N(C, y)

)
. Then

(3.7)

{
u ∈ ∂cL(·, λ)(y),
u ∈ −N(C, y).

Since u ∈ ∂cL(·, λ)(y) and L(·, λ) is regular at y,

L
′
(·, λ)(y; d) = Lc(·, λ)(y; d) ≥ u(d), ∀d ∈ X.

Since u ∈ −N(C, y), u(x − y) ≥ 0 for all x ∈ C. Hence, L(x, λ) ≥ L(y, λ) for all
x ∈ C by the semiconvexity of L(·, λ) on C. Thus, the point y minimizes L(·, λ)
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over C. Since y, z ∈ S, by Lemma 3.1, we get L(y, λ) = L(z, λ). Hence, z also
minimizes L(·, λ) over C. Using the same arguments as in the second part of the
proof of Theorem 3.2, we can see that u ∈ ∂cL(·, λ)(z).

We now prove that u ∈ −N(C, z), i.e., u(x − z) ≥ 0 for all x ∈ C. Since
u ∈ −N(C, y) and C is convex, u(x− y) ≥ 0 for all x ∈ C. On the other hand, we
have u(x − z) = u(x − y) + u(y − z). We claim that u(y − z) = 0. Indeed, from
(3.7), we get u(z − y) ≥ 0. The conclusion u(y − z) = 0 is fulfilled if the inequality
u(z − y) > 0 does not hold. Suppose to contrary that u(z − y) > 0. Then, by the
regularity of L(·, λ) at y, we have

lim
θ↓0

L(y + θ(z − y), λ)− L(y, λ)

θ
= L(·, λ)′(y; z−y) = L(·, λ)c(y; z−y) ≥ u(z−y) > 0.

Since L(y, λ) = L(z, λ),

lim
θ↓0

L(y + θ(z − y), λ)− L(z, λ)

θ
> 0.

Hence, there exist θ0 ∈ (0, 1) and α > 0 small enough such that if θ ∈ (0, θ0) then

(3.8) L(y + θ(z − y), λ)− L(z, λ) > α > 0.

It is easy to see that the function G(θ) := L(y+ θ(z− y), λ) is continuous at θ = 0.
By letting θ → 0 in (3.8), we obtain L(y, λ) > L(z, λ), a contradiction. Hence,
u(y − z) = 0 and we get u(x − z) ≥ 0 for all x ∈ C, i.e., u ∈ −N(C, z). Thus,
u ∈ ∂cL(·, λ)(z) ∩ (−N(C, z)). So,

∂cL(·, λ)(y) ∩
(
−N(C, y)

)
⊂ ∂cL(·, λ)(z) ∩

(
−N(C, z)

)
.

Using similar arguments we can show that

∂cL(·, λ)(z) ∩
(
−N(C, z)

)
⊂ ∂cL(·, λ)(y) ∩

(
−N(C, y)

)
.

�

Theorem 3.8. For Problem (P), let z be a given solution such that the condition
(3.1) holds. Suppose that f, ft, t ∈ T, are regular over C and L(·, λ) is semiconvex
on C. Then S = S3, where

S3 := {x ∈ C | ∂cL(·, λ)(x) ∩
(
−N(C, x)

)
= ∂cL(·, λ)(z) ∩

(
−N(C, z)

)
,

ft(x) = 0 ∀t ∈ T+ and ft(x) ≤ 0 ∀t ∈ T \ T+}.

Proof. Let x ∈ S. Then x ∈ A, i.e., ft(x) ≤ 0 for all t ∈ T . On the other hand,
by Lemma 3.1, ft(x) = 0 for all t ∈ T+. Hence, we obtain x ∈ C, ft(x) = 0 for all
t ∈ T+ and ft(x) ≤ 0 for all t ∈ T \ T+. In addition, if x ∈ S, then, by applying
Lemma 3.7, we get ∂cL(·, λ)(x) ∩

(
− N(C, x)

)
= ∂cL(·, λ)(z) ∩

(
− N(C, z)

)
. So,

S ⊂ S3.
Let x ∈ S3. Then x ∈ C and ft(x) = 0 for all t ∈ T+ and ft(x) ≤ 0 for all t

∈ T \ T+, and there exists u ∈ ∂cL(·, λ)(x) ∩
(
−N(C, x)

)
. Hence, u ∈ ∂cL(·, λ)(x)

and u ∈ −N(C, x), i.e., u(y − x) ≥ 0 for all y ∈ C. This implies that

L
′
(·, λ)(x; y − x) ≥ 0,∀y ∈ C.
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Since L(·, λ) is semiconvex on C, it follows that L(z, λ) ≥ L(x, λ), i.e.,

f(z) +
∑
t∈T+

λtft(z) ≥ f(x) +
∑
t∈T+

λtft(x).

Note that we have ft(z) = 0 for t ∈ T+ by (3.1) and ft(x) = 0 for all t ∈ T+ as
x ∈ S3. These and the inequality above imply that f(z) ≥ f(x), i.e., x ∈ S. Hence,
S3 ⊂ S. �

3.3. Minimizing sequence characterizations. In this subsection characteriza-
tions of solution set of (P) will be given by using minimizing sequences. This result
is an extension of the one applied to convex programs presented recently in [20].
To start with it, we suppose that inf{f(x) : x ∈ A} = α is finite. Recall that a
sequence {an} ⊂ A, A is the feasible set of (P), is called a minimizing sequence of
(P) if lim

n→+∞
f(an) = α.

Theorem 3.9. Suppose that {an} ⊂ A is a minimizing sequence of (P). If f is a
semiconvex function on C and A is a closed convex subset of X then the solution
set of (P) is

S4 = {x ∈ A | ∃u ∈ ∂cf(x), u(an − x) ≥ 0, ∀n ∈ N}.

Proof. Let x ∈ S4. Then x ∈ A and there exists u ∈ ∂cf(x) such that u(an−x) ≥ 0
for all n ∈ N. Since f is semiconvex at x, by (2.1), we obtain

f(an)− f(x) ≥ 0, ∀n ∈ N.
Letting n → +∞, we get f(x) ≤ α. Since x ∈ A, x is a solution of (P).

Conversely, suppose that x is a solution of (P). Then,

(3.9) 0 ∈ ∂c(f + δA)(x) ⊂ ∂cf(z) + ∂cδA(x).

Thus there exists u ∈ ∂cf(x) such that −u ∈ ∂cδA(x). Since A is a closed convex
subset of Rn, ∂cδA(x) = NA(x). It follows that u(y − x) ≥ 0 for all y ∈ A. Hence,
u(an − x) ≥ 0, for all n ∈ N . The proof is complete. �

As ft, t ∈ T , are semiconvex functions on C, the feasible set A is convex (dis-
cussion in the last part of Section 2). We get a following corollary with the proof
omitted.

Corollary 3.10. Suppose that {an} ⊂ A is a minimizing sequence of (P). If f and
ft, t ∈ T , are semiconvex functions on C then S = S4 where

S4 = {x ∈ A | ∃u ∈ ∂cf(x), u(an − x) ≥ 0, ∀n ∈ N}.

Example 3.11.

(P2) Minimize ex−y

subject to ft(x, y) ≤ 0, t ∈ [1, 2]
(x, y) ∈ C.

where ft(x, y) =

{
tx3 − y ≤ 0, t ∈ [0, 1],

ty − 2x ≤ 0, t ∈ (1, 2],
and C := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤

y ≤ 1}.
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Set f(x, y) = ex−y, T = [0, 2] and

ft(x, y) =

{
tx3 − y, t ∈ [0, 1],

ty − 2x, t ∈ (1, 2].

We can check that the feasible set of (P2) is

(3.10)
A = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x ≥ y ≥ x3}

= {(x, y) | 0 ≤ x ≤ 1, x ≥ y ≥ x3}

and ex−y ≥ 1 for any (x, y) ∈ A.
It is easy to check f is semiconvex on C and ft are not semiconvex for all t ∈ T .

So, Corollary 3.10 can not be applied. However, since the feasible set of (P2) is
closed and convex, the solution set can be determined by Theorem 3.9. Note that

∂cf(x, y) = {(u, v) | ud1 + vd2 ≤ (d1 − d2)e
x−y}, ∀(d1, d2) ∈ R2.

Choose (u, v) = (ex−y,−ex−y). Then (u, v) ∈ ∂cf(x, y). Now, by using a minimizing
sequence (an) = (1/n, 1/n)n, we have

S = {(x, y) ∈ A | ∃(u, v) ∈ ∂cf(x, y), (u, v)
(
(1/n, 1/n)− (x, y)

)
≥ 0}, ∀n ∈ N.

A simple computation gives

S = {(x, y) ∈ R2 | y = x, 0 ≤ x ≤ 1}.
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