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U2 = α2T2U1 + (1− α2)I,

...

Ur−1 = αr−1Tr−1Ur−2 + (1− αr−1)I,

W = Ur = αrTrUr−1 + (1− αr)I.

Such a mapping W is called the W -mapping generated by T1, T2, . . . , Tr and α1, α2,
. . . , αr. Using this mapping, Shimoji and Takahashi [26, 30] proved weak and strong
convergence theorems for finding a common fixed point of T1, T2, . . . , Tr under suit-
able conditions. Recently, the authors [8, 9] introduced the notion of generalized
nonexpansive mappings and studied the asymptotic behavior of W -mappings gen-
erated by generalized nonexpansive mappings (see [10, 12]).

On the other hand, motivated by Aharoni and Censor [1], Kikkawa and Takahashi
[16] introduced the following mapping: Let C be a convex subset of a Banach space
E. Let T1, T2, . . . , Tr be finite mappings of C into itself and let ω1, ω2, . . . , ωr and
α1, α2, . . . , αr be real numbers such that 0 ≤ αi ≤ 1 and 0 ≤ ωi ≤ 1 for each
i = 1, 2, . . . , r, and

∑r
i=1 ωi = 1. Then, a mapping U of C into itself is defined by

U =
r∑

i=1

ωi(αiI + (1− αi)Ti).

Such a mapping U is called the block mapping generated by T1, T2, . . . , Tr, α1, α2,
. . . , αr and ω1, ω2, . . . , ωr. Using this mapping, they proved a weak convergence the-
orem for finding a common fixed point of T1, T2, . . . , Tr under suitable conditions.
Recently, the authors also studied the asymptotic behavior of block mappings gen-
erated by generalized nonexpansive mappings (see [11]).

The aim of this paper is to prove strong convergence theorems by the hybrid
methods for finding a common fixed point of finite generalized nonexpansive map-
pings in a Banach space. We first study sunny generalized nonexpansive retracts. In
particular, we show that the intersection of sunny generalized nonexpansive retracts
also is a sunny generalized nonexpansive retract. Next, we study the W -mappings
and the block mappings which are generated by finite generalized nonexpansive
mappings in Banach space. Using these mappings, we prove strong convergence
theorems by the hybrid methods introduced by Solodov and Svaiter [25] and Taka-
hashi, Takeuchi and Kubota [31]. Moreover, using these results, we deal with the
problem for finding a common element of finite sets in Banach spaces. This problem
is connected with the problem of image recovery and the feasibility problem.

2. Preliminaries

Let E be a real Banach space with its dual E∗. We denote the strong convergence
and weak convergence of a sequence {xn} to x in E by xn → x and xn ⇀ x0,
respectively. We also denote the weak∗ convergence of a sequence {x∗n} to x∗ in E∗

by x∗n
∗
⇀ x∗. A Banach space E is said to be strictly convex if ∥x∥ = ∥y∥ = 1 and

x ̸= y imply ∥(x + y)/2∥ < 1. Also, E is said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 such that

∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ε
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imply ∥(x + y)/2∥ ≤ 1 − δ. The following result was proved by Xu [32] (see also
[33]).

Lemma 2.1 ([32]). Let s > 0 and let E be a uniformly convex Banach space. Then,
there exists a continuous, strictly increasing, and convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that

(2.1) ∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)
for all x, y ∈ Bs := {z ∈ E : ∥z∥ ≤ s} and λ with 0 ≤ λ ≤ 1.

A Banach space E is said to be smooth if

(2.2) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ {z ∈ E : ∥z∥ = 1}(=: S(E)). A Banach space E is said to be
uniformly smooth if the limit (2.2) is attained uniformly for x, y ∈ S(E).

The normalized duality mapping J from E into E∗ is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for each x ∈ E. We also know the following properties (see [5, 28, 29] for details):

(1) Jx ̸= ∅ for each x ∈ E.
(2) If E is reflexive, then J is surjective.
(3) If E is strictly convex, then J is one to one.
(4) If E is smooth, then J is single valued and norm to weak∗ continuous.
(5) If E is smooth, strictly convex and reflexive, then the duality mapping J∗

from E∗ into E is the inverse of J , that is, J∗ = J−1.
(6) If E is uniformly smooth, then the duality mapping J is uniformly norm to

norm continuous on each bounded set of E.
(7) If E is uniformly convex, then E is reflexive and strictly convex.
(8) E is uniformly convex if and only if E∗ is uniformly smooth.

Let E be a smooth Banach space and consider the following function studied in
Alber [2] and Kamimura and Takahashi [15]:

V (x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for each x, y ∈ E. It is obvious from the definition of V that

(2.3) (∥x∥ − ∥y∥)2 ≤ V (x, y) ≤ (∥x∥+ ∥y∥)2

for each x, y ∈ E. We also know that

(2.4) V (x, y) = V (x, z) + V (z, y) + 2⟨x− z, Jz − Jy⟩
for each x, y, z ∈ E (see [15]). It is also easy to see that if E is additionally assumed
to be strictly convex, then

V (x, y) = 0 ⇔ x = y.

See [20] for more details. The following lemma was well-known.

Lemma 2.2 ([15]). Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞ V (xn, yn) = 0, then limn→∞ ∥xn − yn∥ = 0.
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Let C be a nonempty closed convex subset of a smooth Banach space E and let
T be a mapping from C into itself. We denote by F (T ) the set of all fixed points
of T . A point p in C is said to be a generalized asymptotic fixed point [14] of T if

C contains a sequence {xn} such that Jxn
∗
⇀ Jp and ∥Jxn − JTxn∥ → 0. The set

of all generalized asymptotic fixed points of T is denoted by F̌ (T ). A mapping T is
called generalized nonexpansive [8, 9] if F (T ) ̸= ∅ and V (Tx, p) ≤ V (x, p) for each
x ∈ C and p ∈ F (T ).

Let D be a nonempty subset of E. A mapping R : E → D is said to be sunny if

R(Rx+ t(x−Rx)) = Rx

for each x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction if
Rx = x for each x ∈ D. If E is smooth and strictly convex, then a sunny generalized
nonexpansive retraction of E onto D is uniquely decided (see [8, 9]). Then, such
a sunny generalized nonexpansive retraction of E onto D is denoted by RD. A
nonempty subset D of E is said to be a sunny generalized nonexpansive retract
(resp. a generalized nonexpansive retract) of E if there exists a sunny generalized
nonexpansive retraction (resp. a generalized nonexpansive retraction) of E onto
D (see [8, 9] for more details). The set of fixed points of a sunny generalized
nonexpansive retraction of E onto D is, of course, D.

We know the following results for sunny generalized nonexpansive retractions in
Banach spaces.

Lemma 2.3 ([8, 9]). Let D be a nonempty subset of a smooth and strictly con-
vex Banach space E. Let R be a retraction of E onto D. Then R is sunny and
generalized nonexpansive if and only if

⟨x−Rx, JRx− Jy⟩ ≥ 0

for each x ∈ E and y ∈ D.

Lemma 2.4 ([9, 10]). Let D be a nonempty subset of a reflexive, strictly convex,
and smooth Banach space E. If R is the sunny generalized nonexpansive retraction
of E onto D, then

V (x,Rx) + V (Rx, u) ≤ V (x, u)

for each x ∈ E and u ∈ D.

Lemma 2.5 ([14]). Let D be a nonempty subset of a reflexive, strictly convex, and
smooth Banach space E. If R is the sunny generalized nonexpansive retraction of
E onto D, then F̌ (R) = F (R).

3. Sunny generalized nonexpansive retracts

In this section, we deal with some properties for sunny generalized nonexpansive
retracts in a Banach space. We first recall the following results in [14, 17].

Theorem 3.1 ([17]). Let E be a smooth, reflexive, and strictly convex Banach space
and let C be a nonempty subset of E. Then, the following conditions are equivalent.

(1) C is a sunny generalized nonexpansive retract of E;
(2) C is a generalized nonexpansive retract of E;
(3) JC is closed and convex.
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In this case, C is closed.

Lemma 3.2 ([14]). Let E be a reflexive, strictly convex, and smooth Banach space
and let T be a generalized nonexpansive mapping from E into itself such that F (T )
is nonempty. Then F (T ) is a sunny generalized nonexpansive retract of E.

Using Theorem 3.1, we can prove the following theorem.

Theorem 3.3. Let E be a reflexive, strictly convex, and smooth Banach space and
let C be a family of sunny generalized nonexpansive retracts of E such that ∩C∈CC
is nonempty. Then ∩C∈CC is a sunny generalized nonexpansive retract of E.

Proof. It is obvious that J ∩C∈C C = ∩C∈C JC. In fact, we have that

x ∈ J ∩C∈C C ⇔ J−1x ∈ ∩C∈CC

⇔ J−1x ∈ C, ∀C ∈ C

⇔ x ∈ JC, ∀C ∈ C

⇔ x ∈ ∩C∈C JC.

From Theorem 3.1, JC is closed and convex for each C ∈ C and hence ∩C∈C JC is
closed and convex. So, we have that J∩C∈C C is closed and convex. Therefore, from
Theorem 3.1, we have that ∩C∈CC is a sunny generalized nonexpansive retract of
E. �

As a direct consequence of Lemma 3.2 and Theorem 3.3, we obtain the following
result.

Theorem 3.4. Let E be a reflexive, strictly convex, and smooth Banach space and
let T be a family of generalized nonexpansive mappings T from E into itself such
that F (T ) is nonempty, where F (T ) is the set of all common fixed points of T .
Then F (T ) is a sunny generalized nonexpansive retract of E.

Proof. By Lemma 3.2, F (T ) is a sunny generalized nonexpansive retract of E. Fur-
ther, since F (T ) = ∩T∈T F (T ) is nonempty, by Theorem 3.3 we have the desired
result. �

4. Strong convergence theorem

In this section, we first introduce a new condition for a family of generalized
nonexpansive mappings in a Banach space: Let E be a Banach space and let C be
a nonempty closed convex subset of E. Let {Tn} and T be families of generalized
nonexpansive mappings of C into itself such that ∅ ̸= F (T ) ⊂ ∩∞

n=1F (Tn), where
F (Tn) is the set of all fixed pints of Tn and F (T ) is the set of all common fixed pints
of T . Motivated by Nakajo, Shimoji and Takahashi [21], we consider the following
condition concerning {Tn} and T :

(∗∗) For each bounded sequence {zn} ⊂ C with limn→∞ ∥zn−Tnzn∥ = 0 and for
each T ∈ T , there exists a sequence {uTn} of C such that

lim
n→∞

∥uTn − TuTn∥ = lim
n→∞

∥zn − uTn∥ = 0.
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Using condition (∗∗), we prove a strong convergence theorem for a family of gener-
alized nonexpansive mappings in a Banach space which unifies two hybrid methods
introduced by Solodov and Svaiter [25] and Takahashi, Takeuchi and Kubota [31].
This theorem is proved in more general Banach spaces.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space,
let {Tn} and T be families of generalized nonexpansive mappings from E into itself
such that ∅ ̸= F (T ) ⊂ ∩∞

i=1F (Ti) and F̌ (T ) = F (T ) for each T ∈ T , and let {Yn} be
a sequence of sunny generalized nonexpansive retracts of E such that F (T ) ⊂ Yn for
each n ∈ N. Suppose that {Tn} satisfy the condition (∗∗). Let {xn} be a sequence
generated by x1 = x ∈ E, and yn = Tnxn,

Xn = {z ∈ E : V (yn, z) ≤ V (xn, z)},
xn+1 = RXn∩Ynx, n = 1, 2, 3, . . . .

Suppose that the sequence {xn} satisfy xn = RYnx for each n ∈ N. Then {xn}
converges strongly to RF (T )x, where RF (T ) is a sunny generalized nonexpansive
retraction of E onto F (T ).

Proof. We first show that JXn is closed and convex for each n ∈ N. Let {z∗m} ⊂ JXn

with limm→∞ z∗m = z∗0 ∈ E∗. Then define zm := J−1z∗m ∈ Xn. Since E is uniformly
convex, E∗ is uniformly smooth and hence the duality mapping J−1 on E∗ is norm
to norm continuous. Therefore, we have

lim
m→∞

zm = lim
m→∞

J−1z∗m = J−1z∗0 .

From the definition of Xn and the uniformly smoothness of E, we know that Xn is
closed. Hence J−1z∗0 ∈ Xn. Therefore we obtain z∗0 ∈ JXn. This implies that JXn

is closed. We show that JXn is convex. Let u∗, v∗ ∈ JXn, and let λ ∈ (0, 1). Then
there exist u, v ∈ Xn such that u∗ = Ju and v∗ = Jv. Put z = J−1(λu∗+(1−λ)v∗).
We have from the definition of Xn that

V (xn, z)− V (yn, z)

= ∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, Jz⟩
= ∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, λu

∗ + (1− λ)v∗⟩
= ∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, λJu+ (1− λ)Jv⟩

= λ
(
∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, Ju⟩

)
+(1− λ)

(
∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, Jv⟩

)
= λ

(
V (xn, u)− V (yn, u)

)
+ (1− λ)

(
V (xn, v)− V (yn, v)

)
≥ λ · 0 + (1− λ) · 0 = 0

and hence z ∈ Xn. Therefore we obtain λu∗ + (1− λ)v∗ = Jz ∈ JXn. This implies
that JXn is convex for each n ∈ N.

We next show that F (T ) ⊂ Xn for each n ∈ N. Let p ∈ F (T ) ⊂ ∩∞
i=1F (Ti) and

let n ∈ N. Then from

V (yn, p) = V (Tnxn, p) ≤ V (xn, p),
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we have p ∈ Xn and hence F (T ) ⊂ Xn. Therefore, from Theorem 3.1, Xn is a
sunny generalized nonexpansive retract for each n ∈ N. Further, since F (T ) ⊂ Yn,
we obtain F (T ) ⊂ Xn ∩ Yn for each n ∈ N. Since Yn is a sunny generalized
nonexpansive retract for each n ∈ N, by Theorem 3.3 we have that Xn ∩ Yn is a
sunny generalized nonexpansive retract for each n ∈ N. This implies that {xn} is
well defined.

Let p ∈ F (T ) ⊂ Xn ∩ Yn. Using xn+1 = RXn∩Ynx and Lemma 2.4, we have

(4.1) V (x, xn+1) ≤ V (x, p)− V (xn+1, p) ≤ V (x, p)

for each n ∈ N. It is obvious that (4.1) holds for n = 0. In fact, we have V (x, x1) =
V (x, x) = 0. Hence we obtain

V (x, xn) ≤ V (x, p)− V (xn, p) ≤ V (x, p)

for each n ∈ N. Therefore, {V (x, xn)} is bounded. Moreover, from (2.3) we have
that {xn} is bounded. From xn = RYnx, xn+1 = RXn∩Ynx ∈ Yn and Lemma 2.4,
we have

V (x, xn) ≤ V (x, xn+1)− V (xn, xn+1) ≤ V (x, xn+1)

for each n ∈ N. Therefore {V (x, xn)} is nondecreasing. So, there exists the limit of
{V (x, xn)}. Since

V (xn, xn+1) ≤ V (x, xn+1)− V (x, xn)

for each n ∈ N, we have that limn→∞ V (xn, xn+1) = 0. From xn+1 = RXn∩Ynx ∈ Xn

and the definition of Xn, we also have

V (yn, xn+1) ≤ V (xn, xn+1)

for each n ∈ N. Tending n → ∞, we have limn→∞ V (yn, xn+1) = 0. Using Lemma
2.2, we obtain

lim
n→∞

∥xn+1 − yn∥ = lim
n→∞

∥xn+1 − xn∥ = 0.

From

∥Tnxn − xn∥ = ∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥,
we have limn→∞ ∥Tnxn−xn∥ = 0. From the assumption (∗∗), for each T ∈ T , there
exists sequence {uTn} of E to itself such that

lim
n→∞

∥uTn − TuTn∥ = lim
n→∞

∥xn − uTn∥ = 0.

Since E is uniformly smooth, the duality mapping J is uniformly norm to norm
continuous on each bounded subset of E. Therefore, we obtain that

lim
n→∞

∥JuTn − JTuTn∥ = lim
n→∞

∥Jxn − JuTn∥ = 0.

Let {Jxnk
} be a subsequence of {Jxn} such that Jxnk

⇀ p∗ for some p∗ ∈ E∗. Then,
for any T ∈ T there exists {uTnk

} ⊂ E such that JuTnk
⇀ p∗ and ∥JuTnk

−JTuTnk
∥ →

0. So, J−1p∗ ∈ F̌ (T ). Putting p = J−1p∗, we have p ∈ F̌ (T ) = F (T ). This implies
that p ∈ F (T ).

Finally, we show that xn → RF (T )x. Let {Jxnk
} be a subsequence of {Jxn} such

that Jxnk
⇀ Jp ∈ JF (T ) and let z = RF (T )x. From Lemma 2.4, xn+1 = RXn∩Ynx,
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and z ∈ F (T ) ⊂ Xn ∩ Yn, we have V (x, xn+1) ≤ V (x, z) for each n ∈ N. Since
x = x1, it is clear that 0 = V (x, x) ≤ V (x, z). Therefore, we have

(4.2) V (x, xn) ≤ V (x, z)

for each n ∈ N. On the other hand, since the norm ∥ · ∥ is weakly lower semicontin-
uous, we have

V (x, p) = ∥x∥2 − 2⟨x, Jp⟩+ ∥Jp∥2

≤ lim inf
k→∞

(
∥x∥2 − 2⟨x, Jxnk

⟩+ ∥Jxnk
∥2
)

= lim inf
k→∞

V (x, xnk
)

≤ lim sup
k→∞

V (x, xnk
) ≤ V (x, z).

(4.3)

From (4.3) and Lemma 2.4, we get

V (x, z) + V (z, p) ≤ V (x, p) ≤ V (x, z).

This implies V (z, p) = 0. So, we have z = p and hence Jz = Jp = p∗. From
z = RF (T )x, we obtain that Jxn ⇀ Jz = JRF (T )x. By (2.4), we have

(4.4) V (z, xn) = V (z, x) + V (x, xn) + 2⟨z − x, Jx− Jxn⟩
for each n ∈ N. By (4.2) and (4.4), we obtain

lim sup
n→∞

V (z, xn) = lim sup
n→∞

{
V (z, x) + V (x, xn) + 2⟨z − x, Jx− Jxn⟩

}
≤ lim sup

n→∞

{
V (z, x) + V (x, z) + 2⟨z − x, Jx− Jxn⟩

}
= V (z, x) + V (x, z) + 2⟨z − x, Jx− Jz⟩
= V (z, z) = 0.

Therefore, we have lim supn→∞ V (z, xn) = 0. This implies limn→∞ V (z, xn) = 0.
From Lemma 2.2, we obtain limn→∞ ∥z − xn∥ = 0. Therefore, we obtain that {xn}
converges strongly to RF (T )x. This completes the proof. �

5. Families of generalized nonexpansive mappings with the new
conditions

In this section, we give two examples of a family of generalized nonexpansive
mappings which satisfies the condition(∗∗).

Let C be a nonempty convex subset of a Banach space E, let S1, S2, . . . , Sr be
mappings from C into itself and let αn,1, αn,2, . . . , αn,r be real numbers such that
0 ≤ αn,i ≤ 1 for each i = 1, 2, . . . , r and n ∈ N. Then, for each n ∈ N, Takahashi
[27] introduced a mapping W of C into itself as follows:

Un,1 = αn,1S1 + (1− αn,1)I,

Un,2 = αn,2S2Un,1 + (1− αn,2)I,

...

Un,r−1 = αn,r−1Sr−1Un,r−2 + (1− αn,r−1)I,

Wn = Un,r = αn,rSrUn,r−1 + (1− αn,r)I.
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Recall that such a mapping Wn is called a W -mapping generated by S1, S2, . . . , Sr

and αn,1, αn,2, . . . , αn,r (see also [26, 30]).
We recall the following result for a W -mapping generated by finite generalized

nonexpansive mappings in a Banach space.

Lemma 5.1 ([10]). Let C be a nonempty closed convex subset of a smooth and
uniformly convex Banach space E, let {Si}ri=1 be a finite family of generalized
nonexpansive mappings from C into itself such that ∩r

i=1F (Si) is nonempty, and
let {αn,i : n, i ∈ N, 1 ≤ i ≤ r} be a set in (0, 1] such that αn,i ̸= 1 for each
i = 1, 2, . . . , r− 1 and n ∈ N. Let {Wn} be a sequence of W -mappings of C into it-
self generated by S1, S2, . . . , Sr and αn,1, αn,2, . . . , αn,r. Then, F (Wn) = ∩r

i=1F (Si)
for each n ∈ N.

We obtain the following result for a W -mapping generated by finite generalized
nonexpansive mappings in a Banach space.

Lemma 5.2. Let C be a nonempty closed convex subset of a uniformly smooth
and uniformly convex Banach space E, let {Si}ri=1 be a finite family of generalized
nonexpansive mappings from C into itself such that ∩r

i=1F (Si) is nonempty, and let
{αn,i : n, i ∈ N, 1 ≤ i ≤ r} be a set in (0, 1] such that lim infn→∞ αn,i(1− αn,i) > 0
and αn,i ̸= 1 for each i = 1, 2, . . . , r − 1 and n ∈ N. Let {Wn} be a sequence of W -
mappings of C into itself generated by S1, S2, . . . , Sr and αn,1, αn,2, . . . , αn,r. Then
{Tn} with Tn = Wn (∀n ∈ N) and T = {S1, S2, . . . , Sr} satisfy the condition (∗∗)
with ∩∞

n=1F (Tn) = F (T ) = ∩r
i=1F (Si).

Proof. Let p ∈ ∩r
i=1F (Si) and let {zn} be a bounded sequence in C such that

limn→∞ ∥zn −Wnzn∥ = 0. Then, from the definition of Wn, we have that

V (Wnzn, p) = V (Un,rzn, p)

≤ αn,rV (SrUn,r−1zn, p) + (1− αn,r)V (zn, p)

≤ αn,rV (Un,r−1zn, p) + (1− αn,r)V (zn, p)

≤ αn,rαn,r−1V (Sr−1Un,r−2zn, p) + αn,r(1− αn,r−1)V (zn, p)

+(1− αn,r)V (zn, p)

≤ αn,rαn,r−1V (Un,r−2zn, p) + (1− αn,rαn,r−1)V (zn, p)

≤ αn,rαn,r−1αn,r−2V (Sr−2Un,r−3zn, p)

+αn,rαn,r−1(1− αn,r−2)V (zn, p) + (1− αn,rαn,r−1)V (zn, p)

≤ αn,rαn,r−1αn,r−2V (Un,r−3zn, p) + (1− αn,rαn,r−1αn,r−2)V (zn, p)

...

≤ αn,rαn,r−1 · · ·αn,2V (Un,1zn, p) + (1− αn,rαn,r−1 · · ·αn,2)V (zn, p)

≤ αn,rαn,r−1 · · ·αn,2αn,1V (S1zn, p)

+αn,rαn,r−1 · · ·αn,2(1− αn,1)V (zn, p) + (1− αn,rαn,r−1 · · ·αn,2)V (zn, p)

= αn,rαn,r−1 · · ·αn,2αn,1V (S1zn, p) + (1− αn,rαn,r−1 · · ·αn,2αn,1)V (zn, p)

≤ αn,rαn,r−1 · · ·αn,2αn,1V (zn, p) + (1− αn,rαn,r−1 · · ·αn,2αn,1)V (zn, p)

= V (zn, p)
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for each n ∈ N. Since {zn} is bounded, from (2.3), {Wnzn} is bounded. Further,
we obtain that, for each i = 1, 2, . . . , r,

V (Wnzn, p) ≤αn,rαn,r−1 · · ·αn,iV (Un,i−1zn, p)

+ (1− αn,rαn,r−1 · · ·αn,i)V (zn, p) ≤ V (zn, p)
(5.1)

where Un,0 = I for each n ∈ N. So, we have

(5.2) V (zn, p)− V (Un,i−1zn, p) ≤
V (zn, p)− V (Wnzn, p)

αn,rαn,r−1 · · ·αn,i
.

From (2.4), we obtain

V (zn, p)− V (Wnzn, p)

= V (zn,Wnzn) + 2⟨zn −Wnzn, JWnzn − Jp⟩
≤ ∥zn∥2 − 2⟨zn, JWnzn⟩+ ∥Wnzn∥2 + 2∥zn −Wnzn∥∥JWnzn − Jp∥
= ⟨zn, Jzn − JWnzn⟩ − ⟨zn −Wnzn, JWnzn⟩

+ 2∥zn −Wnzn∥∥JWnzn − Jp∥
≤ ∥zn∥∥Jzn − JWnzn∥+ ∥zn −Wnzn∥∥Wnzn∥

+ 2∥zn −Wnzn∥∥JWnzn − Jp∥
≤ ∥zn∥∥Jzn − JWnzn∥+ ∥zn −Wnzn∥

(
3∥Wnzn∥+ 2∥Jp∥

)
.

(5.3)

Since E is uniformly smooth, the duality mapping J is uniformly norm to norm
continuous on each bounded set of E. Hence we obtain

lim
n→∞

∥Jzn − JWnzn∥ = 0.

From (5.3) and the boundedness of {zn} and {Wnzn}, we have

(5.4) lim
n→∞

(
V (zn, p)− V (Wnzn, p)

)
= 0.

From (5.2), (5.4) and lim infn→∞ αn,i(1− αn,i) > 0, we also have

(5.5) lim
n→∞

(
V (zn, p)− V (Un,i−1zn, p)

)
= 0

for each i = 1, 2, . . . , r, where Un,0 = I for each n ∈ N.
Since {zn} is bounded, by (5.1) {Un,i−1zn} is bounded and hence {SiUn,i−1zn}

is also bounded for each i = 1, 2, . . . , r, where Un,0 = I. Put sr−1 = supn∈N{∥zn∥,
∥SrUn,r−1zn∥}. By Lemma 2.1, there exists a continuous, strictly increasing, and
convex function g : [0,∞) → [0,∞) with g(0) = 0 satisfying (2.1), where Bsr−1 =
{x ∈ E : ∥x∥ ≤ sr−1}. We have

V (Wnzn, p)

= ∥αn,rSrUn,r−1zn + (1− αn,r)zn∥2

−2⟨αn,rSrUn,r−1zn + (1− αn,r)zn, Jp⟩+ ∥p∥2

≤ αn,r∥SrUn,r−1zn∥2 + (1− αn,r)∥zn∥2

−αn,r(1− αn,r)g(∥SrUn,r−1zn − zn∥)
−2αn,r⟨SrUn,r−1zn, Jp⟩ − 2(1− αn,r)⟨zn, Jp⟩+ ∥p∥2
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= αn,r

(
∥SrUn,r−1zn∥2 − 2⟨SrUn,r−1zn, Jp⟩+ ∥p∥2

)
+(1− αn,r)

(
∥zn∥2 − 2⟨zn, Jp⟩+ ∥p∥2

)
−αn,r(1− αn,r)g(∥SrUn,r−1zn − zn∥)

= αn,rV (SrUn,r−1zn, p) + (1− αn,r)V (zn, p)

−αn,r(1− αn,r)g(∥SrUn,r−1zn − zn∥)
≤ αn,rV (Un,r−1zn, p) + (1− αn,r)V (zn, p)

−αn,r(1− αn,r)g(∥SrUn,r−1zn − zn∥)
≤ αn,rV (zn, p) + (1− αn,r)V (zn, p)− αn,r(1− αn,r)g(∥SrUn,r−1zn − zn∥)
= V (zn, p)− αn,r(1− αn,r)g(∥SrUn,r−1zn − zn∥)

and hence

αn,r(1− αn,r)g(∥SrUn,r−1zn − zn∥) ≤ V (zn, p)− V (Wnzn, p).

From (5.4) and lim infn→∞ αn,r(1− αn,r) > 0, we have

lim
n→∞

g(∥SrUn,r−1zn − zn∥) = 0.

Then the properties of g yield that

lim
n→∞

∥SrUn,r−1zn − zn∥ = 0.

Next, put sr−2 = supn∈N{∥Un,r−2zn∥, ∥Sr−1Un,r−2zn∥}. By Lemma 2.1, there exists
a continuous, strictly increasing, and convex function g : [0,∞) → [0,∞) with
g(0) = 0 satisfying (2.1), where Bsr−2 = {x ∈ E : ∥x∥ ≤ sr−2}. Therefore we have

V (Un,r−1zn, p)

= ∥αn,r−1Sr−1Un,r−2zn + (1− αn,r−1)zn∥2

−2⟨αn,r−1Sr−1Un,r−2zn + (1− αn,r−1)zn, Jp⟩+ ∥p∥2

≤ αn,r−1∥Sr−1Un,r−2zn∥2 + (1− αn,r−1)∥zn∥2

−αn,r−1(1− αn,r−1)g(∥Sr−1Un,r−2zn − zn∥)
−2αn,r−1⟨Sr−1Un,r−2zn, Jp⟩ − 2(1− αn,r−1)⟨zn, Jp⟩+ ∥p∥2

≤ αn,r−1V (Sr−1Un,r−2zn, p) + (1− αn,r−1)V (zn, p)

−αn,r−1(1− αn,r−1)g(∥Sr−1Un,r−2zn − zn∥)
≤ V (zn, p)− αn,r−1(1− αn,r−1)g(∥Sr−1Un,r−2zn − zn∥)

and hence

αn,r−1(1− αn,r−1)g(∥Sr−1Un,r−2zn − zn∥) ≤ V (zn, p)− V (Un,r−1zn, p).

From (5.5) and lim infn→∞ αn,r−1(1− αn,r−1) > 0, we obtain

lim
n→∞

g(∥Sr−1Un,r−2zn − zn∥) = 0.

Then the properties of g yield that

lim
n→∞

∥Sr−1Un,r−2zn − zn∥ = 0.
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By such a method, we have

lim
n→∞

∥SiUn,i−1zn − zn∥ = 0.

for each i = r − 2, r − 3, . . . , 1, where Un,0 = I for each n ∈ N. So, from
∥zn − Un,izn∥ = ∥zn − αn,iSiUn,i−1zn − (1− αn,i)zn∥ = αn,i∥zn − SiUn,i−1zn∥,

we have

(5.6) lim
n→∞

∥zn − Un,izn∥ = 0

for each i = 1, 2, . . . , r. Note that (5.6) hold for i = 0. In fact, we have that
∥zn − Un,0zn∥ = ∥zn − zn∥ = 0. Then from

∥SiUn,i−1zn − Un,i−1zn∥ ≤ ∥SiUn,i−1zn − zn∥+ ∥zn − Un,i−1zn∥,
we also obtain

lim
n→∞

∥SiUn,i−1zn − Un,i−1zn∥ = 0.

Put uSi
n := Un,i−1zn for each i = 1, 2, . . . , r and n ∈ N. Then, we have that {Tn}

and T satisfy the condition (∗∗). Further, from Lemma 5.1, we have ∩∞
i=1F (Tn) =

F (T ) = ∩r
i=1F (Si). This completes the proof. �

Let C be a nonempty closed convex subset of a Banach space E and let S1, S2, . . . ,
Sr be mappings from C into itself. Then, motivated by Aharoni and Censor [1],
Kikkawa and Takahashi [16] introduced a mappings Un of C into itself as follows:

(5.7) Un =
r∑

i=1

ωn(i)(αn,iI + (1− αn,i)Si)

for all n ∈ N, where {αn,i : n, i ∈ N, 1 ≤ i ≤ r} ⊂ [0, 1], {ωn(i) : n, i ∈ N, 1 ≤
i ≤ r} ⊂ [0, 1] and

∑r
i=1 ωn(i) = 1 for each n ∈ N. Recall that such a map-

ping Un is called a block mapping defined by S1, S2, . . . , Sr, αn,1, αn,2, . . . , αn,r and
ωn(1), ωn(2), . . . , ωn(r).

We recall the following two results for a block mapping generated by finite gen-
eralized nonexpansive mappings in a Banach space.

Lemma 5.3 ([11]). Let C be a nonempty closed convex subset of a smooth Banach
space E, let {Si}ri=1 be a finite family of generalized nonexpansive mappings from
C into itself such that ∩r

i=1F (Si) ̸= ∅ and let {Un} be a sequence of block mappings
defined by (5.7), where {αn,i : n, i ∈ N, 1 ≤ i ≤ r} ⊂ [0, 1], {ωn(i) : n, i ∈ N, 1 ≤ i ≤
r} ⊂ [0, 1] and

∑r
i=1 ωn(i) = 1 for all n ∈ N. Then V (Unx, z) ≤ V (x, z) for each

x ∈ C, z ∈ ∩r
i=1F (Si) and n ∈ N.

Theorem 5.4 ([11]). Let C be a nonempty closed convex subset of a smooth and
strictly convex Banach space E, let {Si}ri=1 be a finite family of generalized nonex-
pansive mappings from C into itself such that ∩r

i=1F (Si) ̸= ∅ and let {Un} be a se-
quence of block mappings defined by (5.7), where {αn,i : n, i ∈ N, 1 ≤ i ≤ r} ⊂ [0, 1),
{ωn(i) : n, i ∈ N, 1 ≤ i ≤ r} ⊂ (0, 1] and

∑r
i=1 ωn(i) = 1 for all n ∈ N. Then

F (Un) = ∩r
i=1F (Si) for each n ∈ N.

Now, we obtain the following result for a block mapping generated by finite
generalized nonexpansive mappings in a smooth Banach space.



STRONG CONVERGENCE THEOREMS FOR FINITE NONLINEAR MAPPINGS 419

Lemma 5.5. Let C be a nonempty closed convex subset of a smooth and uni-
formly convex Banach space E, let {Si}ri=1 be a finite family of generalized nonex-
pansive mappings from C into itself such that ∩r

i=1F (Si) ̸= ∅. Let {αn,i : n, i ∈
N, 1 ≤ i ≤ r} ⊂ [0, 1) and {ωn(i) : n, i ∈ N, 1 ≤ i ≤ r} ⊂ (0, 1] be sets such
that lim infn αn,i(1 − αn,i) > 0, lim infn ωn(i) > 0 for each i = 1, 2, . . . , r and∑r

i=1 ωn(i) = 1 for all n ∈ N, let {Un} be a sequence of block mappings gener-
ated by S1, S2, . . . , Sr, αn,1, αn,2, . . . , αn,r and ωn(1), ωn(2), . . . , ωn(r). Then {Tn}
with Tn = Un (∀n ∈ N) and T = {S1, S2, . . . , Sr} satisfy the condition (∗∗) with
∩∞
n=1F (Tn) = F (T ) = ∩r

i=1F (Si).

Proof. Let p ∈ ∩r
i=1F (Si) and let {zn} be a bounded sequence in C such that

limn→∞ ∥zn−Unzn∥ = 0. Since Si is generalized nonexpansive and {zn} is bounded,
then {Sizn} is bounded for each i = 1, 2, . . . , r. Take s > 0 such that {zn}, {Sizn} ⊂
Bs (i = 1, 2, . . . , r), where Bs = {x ∈ E : ∥x∥ ≤ s}. Then, Lemma 2.1 ensures the
existence of a strictly increasing, continuous and convex function g : [0,∞) → [0,∞)
such that g(0) = 0 and

∥tzn + (1− t)Sizn∥2 ≤ t∥zn∥2 + (1− t)∥Sizn∥2 − t(1− t)g(∥zn − Sizn∥)

for each t ∈ [0, 1], n ∈ N, and i = 1, 2, . . . , r. Then we have

V (Unzn, p)

= V

(
r∑

i=1

ωn(i)
(
αn,izn + (1− αn,i)Sizn

)
, p

)

≤
r∑

i=1

ωn(i)V
(
αn,izn + (1− αn,i)Sizn, p

)
=

r∑
i=1

ωn(i)
(
∥αn,izn + (1− αn,i)Sizn∥2

−2⟨αn,izn + (1− αn,i)Sizn, Jp⟩+ ∥p∥2
)

≤
r∑

i=1

ωn(i)
(
αn,i∥zn∥2 + (1− αn,i)∥Sizn∥2 − αn,i(1− αn,i)g(∥zn − Sizn∥)

−2αn,i⟨zn, Jp⟩ − 2(1− αn,i)⟨Sizn, Jp⟩+ ∥p∥2
)

=
r∑

i=1

ωn(i)
(
αn,iV (zn, p) + (1− αn,i)V (Sizn, p)

−αn,i(1− αn,i)g(∥zn − Sizn∥)
)

≤
r∑

i=1

ωn(i)
(
αn,iV (zn, p) + (1− αn,i)V (zn, p)− αn,i(1− αn,i)g(∥zn − Sizn∥)

)
=

r∑
i=1

ωn(i)
(
V (zn, p)− αn,i(1− αn,i)g(∥zn − Sizn∥)

)
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= V (zn, p)−
r∑

i=1

ωn(i)αn,i(1− αn,i)g(∥zn − Sizn∥)

for each n ∈ N and hence

(5.8)

r∑
i=1

ωn(i)αn,i(1− αn,i)g(∥zn − Sizn∥) ≤ V (zn, p)− V (Unzn, p).

From (2.4), we obtain

V (zn, p)− V (Unzn, p)

= V (zn, Unzn) + 2⟨zn − Unzn, JUnzn − Jp⟩
≤ ∥zn∥2 − 2⟨zn, JUnzn⟩+ ∥Unzn∥2 + 2∥zn − Unzn∥∥JUnzn − Jp∥
= ⟨zn, Jzn − JUnzn⟩ − ⟨zn − Unzn, JUnzn⟩

+ 2∥zn − Unzn∥∥JUnzn − Jp∥
≤ ∥zn∥∥Jzn − JUnzn∥+ ∥zn − Unzn∥∥Unzn∥

+ 2∥zn − Unzn∥∥JUnzn − Jp∥

≤ ∥zn∥∥Jzn − JUnzn∥+ ∥zn − Unzn∥
(
3∥Unzn∥+ 2∥Jp∥

)
(5.9)

Since E is uniformly smooth, the duality mapping J is uniformly norm to norm
continuous on each bounded set of E. Hence we obtain

lim
n→∞

∥Jzn − JUnzn∥ = 0.

From (5.9) and the boundedness of {zn} and {Unzn}, we have

lim
n→∞

(
V (zn, p)− V (Unzn, p)

)
= 0.

Combining this with (5.8), we obtain

lim
n→∞

r∑
i=1

ωn(i)αn,i(1− αn,i)g(∥zn − Sizn∥) = 0.

Since lim infn ωn(i) > 0 and lim inf αn,i(1 − αn,i) > 0 for each i = 1, 2, . . . , r, we
have

lim
n→∞

g(∥zn − Sizn∥) = 0

for each i = 1, 2, . . . , r. Then the properties of g yield that

lim
n→∞

∥zn − Sizn∥ = 0

for each i = 1, 2, . . . , r. Put uSi
n := zn for each i = 1, 2, . . . , r. Then, we have

that {Tn} and T satisfy the condition (∗∗). Further, from Lemma 5.4, we have
∩∞
i=1F (Tn) = F (T ) = ∩r

i=1F (Si). This completes the proof. �
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6. Hybrid methods in mathematical programing

In this section, using Theorem 4.1, we prove a strong convergence theorem for
a family of generalized nonexpansive mappings in a Banach space by the hybrid
method in mathematical programing introduced by Solodov and Svaiter [25]. This
theorem extend Nakajo-Takahashi’s result ([22]) for a nonexpansive mapping in a
Hilbert space to a more general Banach space and a famiily of mappings.

Theorem 6.1. Let E be a uniformly smooth and uniformly convex Banach space
and let {Tn} and T be families of generalized nonexpansive mappings from E into
itself which satisfy ∅ ̸= F (T ) ⊂ ∩∞

i=1F (Ti), F̌ (T ) = F (T ) for each T ∈ T and the
condition (∗∗). Let {xn} be a sequence generated by x1 = x ∈ E, and

yn = Tnxn,
Cn = {z ∈ E : V (yn, z) ≤ V (xn, z)},
Dn = {z ∈ E : ⟨x− xn, Jxn − Jz⟩ ≥ 0},
xn+1 = RCn∩Dnx, n = 1, 2, 3, . . . .

Then {xn} converges strongly to RF (T )x, where RF (T ) is a sunny generalized non-
expansive retraction of E onto F (T ).

Proof. We first show that JDn is closed and convex for each n ∈ N. Let {z∗m} ⊂ JDn

with limm→∞ z∗m = z∗0 ∈ E∗. Then define zm := J−1z∗m ∈ Dn. Since E is uniformly
convex, E∗ is uniformly smooth and hence the duality mapping J−1 on E∗ is norm
to norm continuous. Therefore, we have

lim
m→∞

zm = lim
m→∞

J−1z∗m = J−1z∗0 .

From the definition of Dn and the uniformly smoothness of E, it is obvious that Dn

is closed. So, we have J−1z∗0 ∈ Dn. Therefore we obtain z∗0 ∈ JDn. This implies
that JDn is closed for each n ∈ N. We show that JDn is convex. Let u∗, v∗ ∈ JDn,
and let λ ∈ (0, 1). Then there exist u, v ∈ Dn such that u∗ = Ju and v∗ = Jv. Put
z = J−1(λu∗ + (1− λ)v∗). We obtain from the definition of Dn

⟨x− xn, Jxn − Jz⟩
= ⟨x− xn, Jxn − λJu− (1− λ)Jv⟩
= λ⟨x− xn, Jxn − Ju⟩+ (1− λ)⟨x− xn, Jxn − Jv⟩
≥ λ · 0 + (1− λ) · 0 = 0

and hence z ∈ Dn. So, we have Jz = λu∗ + (1 − λ)v∗ ∈ JDn. This implies that
JDn is convex for each n ∈ N.

We next show that F (T ) ⊂ Dn for each n ∈ N. It is clear that F (T ) ⊂ D1 = E.
Suppose that F (T ) ⊂ Dk for some k ∈ N. As in the proof of Theorem 4.1, we have
that F (T ) ⊂ Cn, JCn is closed and convex for each n ∈ N. Therefore Ck ∩ Dk

is nonempty. So, from Theorem 3.1 we have that Ck ∩ Dk is a sunny generalized
nonexpansive retract of E. Then there exists an element xk+1 ∈ Ck ∩Dk such that
xk+1 = RCk∩Dk

x, where RCk∩Dk
is a sunny generalized nonexpansive retraction of

E onto Ck ∩Dk. From Lemma 2.3, there holds

⟨x− xk+1, Jxk+1 − Jz⟩ ≥ 0
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for each z ∈ Ck∩Dk. Since F (T ) ⊂ Ck∩Dk, we have ⟨x−xk+1, Jxk+1−Jp⟩ ≥ 0 for
each p ∈ F (T ) and hence F (T ) ⊂ Dk+1. By induction, we have that F (T ) ⊂ Dn for
each n ∈ N. Therefore, from Theorem 3.1 Dn is a sunny generalized nonexpansive
retract of E and F (T ) ⊂ Dn.

Put Xn = Cn and Yn = Dn. It is obvious from Lemma 2.3 and the definition
of Dn that xn = RYnx for each n ∈ N. Then Xn and Yn satisfy the assumption of
Theorem 4.1. Therefore, by Theorem 4.1, the sequence {xn} converges strongly to
RF (T )x. �

Using Theorem 6.1 and Lemma 5.2, we obtain the following result for a W -
mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 6.2. Let E be a uniformly smooth and uniformly convex Banach space,
let {Si}ri=1 be a finite family of generalized nonexpansive mappings from E into itself

such that ∩r
i=1F (Si) is nonempty and F (Si) = F̌ (Si) for each i = 1, 2, . . . , r, and let

{αn,i : n, i ∈ N, 1 ≤ i ≤ r} be a set in (0, 1] such that lim infn→∞ αn,i(1− αn,i) > 0
and αn,i ̸= 1 for each i = 1, 2, . . . , r − 1 and n ∈ N. Let {Wn} be a sequence of
W -mappings of E into itself generated by S1, S2, . . . , Sr and αn,1, αn,2, . . . , αn,r. Let
{xn} be a sequence generated by x1 = x ∈ E, and

(6.1)


yn = Wnxn,
Cn = {z ∈ E : V (yn, z) ≤ V (xn, z)},
Dn = {z ∈ E : ⟨x− xn, Jxn − Jz⟩ ≥ 0},
xn+1 = RCn∩Dnx, n = 1, 2, 3, . . . .

Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto ∩r

i=1F (Si).

Proof. Put Tn = Wn for each n ∈ N and T = {S1, S2, . . . , Sr}. From Lemma 5.2,
we have that {Tn} and T satisfy the condition (∗∗) with ∩∞

n=1F (Tn) = F (T ) =
∩r
i=1F (Si). Therefore, using Theorem 6.1, we obtain the desired result. �
Using Theorem 6.1 and Lemma 5.5, we also obtain the following result for a block

mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 6.3. Let E be a uniformly smooth and uniformly convex Banach space,
let {Si}ri=1 be a finite family of generalized nonexpansive mappings from E into

itself such that F (Si) = F̌ (Si) for each i = 1, 2, . . . , r and ∩r
i=1F (Si) ̸= ∅. Let

{αn,i : n, i ∈ N, 1 ≤ i ≤ r} ⊂ [0, 1) and {ωn(i) : n, i ∈ N, 1 ≤ i ≤ r} ⊂ (0, 1] be
sets such that lim infn αn,i(1 − αn,i) > 0, lim infn ωn(i) > 0 for each i = 1, 2, . . . , r
and

∑r
i=1 ωn(i) = 1 for all n ∈ N, let {Un} be a sequence of block mappings gener-

ated by S1, S2, . . . , Sr, αn,1, αn,2, . . . , αn,r and ωn(1), ωn(2), . . . , ωn(r). Let {xn} be
a sequence generated by x1 = x ∈ E, and

(6.2)


yn = Unxn,
Cn = {z ∈ E : V (yn, z) ≤ V (xn, z)},
Dn = {z ∈ E : ⟨x− xn, Jxn − Jz⟩ ≥ 0},
xn+1 = RCn∩Dnx, n = 1, 2, 3, . . . .

Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto ∩r

i=1F (Si).
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Proof. Put Tn = Un for each n ∈ N and T = {S1, S2, . . . , Sr}. As in the proof of
Theorem 6.2, by Theorem 6.1 and Lemma 5.5 we obtain the desired result. �

As a direct consequence of Theorem 6.3, we have the following result which is
connected with [14].

Theorem 6.4. Let E be a uniformly smooth and uniformly convex Banach space, let
T be a generalized nonexpansive mapping from E into itself such that F (T ) = F̌ (T )
and let {αn} be a sequence in [0, 1) such that lim infn αn(1− αn) > 0. Let {xn} be
a sequence generated by x1 = x ∈ E, and

yn = αnxn + (1− αn)Txn,
Cn = {z ∈ E : V (yn, z) ≤ V (xn, z)},
Dn = {z ∈ E : ⟨x− xn, Jxn − Jz⟩ ≥ 0},
xn+1 = RCn∩Dnx, n = 1, 2, 3, . . . .

Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto F (T ).

Proof. In the case of r = 1, we know that Un = αnxn+(1−αn)Txn for each n ∈ N.
Therefore, by Theorem 6.3 we obtain the desired result. �

7. Shrinking projection methods

In this section, using Theorem 4.1, we prove a strong convergence theorem for
a family of generalized nonexpansive mappings in a Banach space by the shrinking
projection method introduced by Takahashi, Takeuchi and Kubota [31]. We extend
Takahashi-Takeuchi-Kubota’s result ([31]) to a more general Banach space and a
more general family of mappings.

Theorem 7.1. Let E be a uniformly smooth and uniformly convex Banach space
and let {Tn} and T be families of generalized nonexpansive mappings from E into
itself which satisfy ∅ ̸= F (T ) ⊂ ∩∞

i=1F (Ti), F̌ (T ) = F (T ) for each T ∈ T , and the
condition (∗∗). Let {xn} be a sequence generated by x1 = x ∈ E, C1 = E, and yn = Tnxn,

Cn+1 = {z ∈ Cn : V (yn, z) ≤ V (xn, z)},
xn+1 = RCn+1x, n = 1, 2, 3, . . . .

Then {xn} converges strongly to RF (T )x, where RF (T ) is a sunny generalized non-
expansive retraction of E onto F (T ).

Proof. We first show that JCn is closed and convex for each n ∈ N. Since E is
reflexive, strictly convex and smooth, it is clear that JC1 = JE = E∗ is closed and
convex. Suppose that JCk is closed and convex for some k ∈ N. Let {z∗m} ⊂ JCk+1

with limm→∞ z∗m = z∗ ∈ E∗ and define zm := J−1z∗m. Then, {zm} ⊂ Ck+1 ⊂ Ck.
Therefore, we have {z∗m} ⊂ JCk. Since JCk is closed, then we obtain z∗ ∈ JCk and
hence J−1z∗ ∈ Ck. We also have from zm ∈ Ck+1 ⊂ Ck that

V (yk, J
−1z∗)− V (xk, J

−1z∗)

= ∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, z
∗⟩

= lim
m→∞

{
∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, z

∗
m⟩
}
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= lim
m→∞

{
V (yk, zm)− V (xk, zm)

}
≤ lim

m→∞
0 = 0

and hence J−1z∗ ∈ Ck+1. So, we have z∗ ∈ JCk+1. This implies that JCk+1 is
closed. Let u∗, v∗ ∈ JCk+1 and let λ ∈ (0, 1). Then there exists u, v ∈ Ck+1 ⊂ Ck

such that u∗ = Ju and v∗ = Jv. Put z∗ := λJu+(1−λ)Jv. From the convexity of
JCk, we obtain z∗ ∈ JCk and hence J−1z∗ ∈ Ck. We also have from u, v ∈ Ck+1 ⊂
Ck that

V (yk, J
−1z∗)− V (xk, J

−1z∗)

= ∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, z
∗⟩

= ∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, λJu+ (1− λ)Jv⟩
= λ

{
∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, Ju⟩

}
+(1− λ)

{
∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, Jv⟩

}
= λ

{
V (yk, u)− V (xk, u)

}
+ (1− λ)

{
V (yk, v)− V (xk, v)

}
≤ λ · 0 + (1− λ) · 0 = 0

and hence J−1z∗ ∈ Ck+1. So, we have z∗ ∈ JCk+1. This implies that JCk+1 is
convex. So, we have that JCk+1 is closed and convex. By induction, JCn is closed
and convex for each n ∈ N.

We next show that F (T ) ⊂ Cn for each n ∈ N. It is clear that F (T ) ⊂ E = C1.
Suppose that F (T ) ⊂ Ck for some k ∈ N. Let p ∈ F (T ) ⊂ ∩∞

i=1F (Ti). From the
definition of Tk, we have

V (yk, p) = V (Tkxk, p) ≤ V (xk, p)

and hence p ∈ Ck+1. This means F (T ) ⊂ Ck+1. So, we have F (T ) ⊂ Cn for each
n ∈ N. From Theorem 3.1, we have that Cn is a sunny generalized nonexpansive
retract of E for each n ∈ N.

Put Xn = {z ∈ E : V (yn, z) ≤ V (xn, z)} and Yn = Cn. Then Xn and Yn satisfies
the assumption of Theorem 4.1 and Cn+1 = Xn ∩ Yn. Therefore, by Theorem 4.1,
the sequence {xn} converges strongly to RF (T )x. �

Using Theorem 7.1 and Lemma 5.2, we obtain the following result for a W -
mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 7.2. Let E be a uniformly smooth and uniformly convex Banach space,
let {Si}ri=1 be a finite family of generalized nonexpansive mappings from E into itself

such that ∩r
i=1F (Si) is nonempty and F (Si) = F̌ (Si) for each i = 1, 2, . . . , r, and let

{αn,i : n, i ∈ N, 1 ≤ i ≤ r} be a set in (0, 1] such that lim infn→∞ αn,i(1− αn,i) > 0
and αn,i ̸= 1 for each i = 1, 2, . . . , r − 1 and n ∈ N. Let {Wn} be a sequence of
W -mappings of E into itself generated by S1, S2, . . . , Sr and αn,1, αn,2, . . . , αn,r. Let
{xn} be a sequence generated by x1 = x ∈ E, C1 = E, and

(7.1)

 yn = Wnxn,
Cn+1 = {z ∈ Cn : V (yn, z) ≤ V (xn, z)},
xn+1 = RCn+1x, n = 1, 2, 3, . . . .
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Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto ∩r

i=1F (Si).

Proof. Put Tn = Wn for each n ∈ N and T = {S1, S2, . . . , Sr}. From Lemma 5.2,
we have that {Tn} and T satisfy the condition (∗∗) with ∩∞

n=1F (Tn) = F (T ) =
∩r
i=1F (Si). Therefore, using Theorem 7.1, we obtain the desired result. �

Using Theorem 7.1 and Lemma 5.5, we also obtain the following result for a block
mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 7.3. Let E be a uniformly smooth and uniformly convex Banach space,
let {Si}ri=1 be a finite family of generalized nonexpansive mappings from E into

itself such that F (Si) = F̌ (Si) for each i = 1, 2, . . . , r and ∩r
i=1F (Si) ̸= ∅. Let

{αn,i : n, i ∈ N, 1 ≤ i ≤ r} ⊂ [0, 1) and {ωn(i) : n, i ∈ N, 1 ≤ i ≤ r} ⊂ (0, 1] be
sets such that lim infn αn,i(1 − αn,i) > 0, lim infn ωn(i) > 0 for each i = 1, 2, . . . , r
and

∑r
i=1 ωn(i) = 1 for all n ∈ N, let {Un} be a sequence of block mappings gener-

ated by S1, S2, . . . , Sr, αn,1, αn,2, . . . , αn,r and ωn(1), ωn(2), . . . , ωn(r). Let {xn} be
a sequence generated by x1 = x ∈ E, C1 = E, and

(7.2)

 yn = Unxn,
Cn+1 = {z ∈ Cn : V (yn, z) ≤ V (xn, z)},
xn+1 = RCn+1x, n = 1, 2, 3, . . . .

Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto ∩r

i=1F (Si).

Proof. Put Tn = Un for each n ∈ N and T = {S1, S2, . . . , Sr}. As in the proof of
Theorem 7.2, by Theorem 7.1 and Lemma 5.5 we obtain the desired result. �

As a direct consequence of Theorem 7.3, we have the following result.

Theorem 7.4. Let E be a uniformly smooth and uniformly convex Banach space, let
T be a generalized nonexpansive mapping from E into itself such that F (T ) = F̌ (T )
and let {αn} be a sequence in [0, 1) such that lim infn αn(1− αn) > 0. Let {xn} be
a sequence generated by x1 = x ∈ E, and yn = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : V (yn, z) ≤ V (xn, z)},
xn+1 = RCn+1x, n = 1, 2, 3, . . . .

Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto F (T ).

Proof. In the case of r = 1, we know that Un = αnxn+(1−αn)Txn for each n ∈ N.
Therefore, by Theorem 7.3 we obtain the desired result. �

8. Deduced results

In this section, we consider the problem of image recovery in a Banach space
by using the sunny generalized nonexpansive retraction which is a generalization
of the metric projection in a Hilbert space. These results for sunny generalized
nonexpansive retractions are new.
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Using Theorems 6.2 and 6.3, and Lemma 2.5, we first obtain the following two
results which are connected with the feasibility problem and the problem of image
recovery.

Corollary 8.1. Let E be a uniformly smooth and uniformly convex Banach space,
let {Di}ri=1 be a finite family of sunny generalized nonexpansive retracts of E such
that ∩r

i=1Di is nonempty, and let {αn,i : n, i ∈ N, 1 ≤ i ≤ r} be a set in (0, 1]
such that lim infn→∞ αn,i(1 − αn,i) > 0 and αn,i ̸= 1 for each i = 1, 2, . . . , r − 1
and n ∈ N. Let {Wn} be a sequence of W -mappings of E into itself generated
by R1, R2, . . . , Rr and αn,1, αn,2, . . . , αn,r, where each Ri is the sunny generalized
nonexpansive retraction of E onto Di. Let {xn} be a sequence generated by (6.1).
Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto ∩r

i=1Di.

Proof. From Lemma 2.5, we know that since each Ri is a sunny generalized non-
expansive retraction, F̌ (Ri) = F (Ri) for each i. So, we have the desired result by
Theorem 6.2. �
Corollary 8.2. Let E be a uniformly smooth and uniformly convex Banach space,
let {Di}ri=1 be a finite family of sunny generalized nonexpansive retracts of E such
that ∩r

i=1Di ̸= ∅. Let {αn,i : n, i ∈ N, 1 ≤ i ≤ r} ⊂ [0, 1) and {ωn(i) : n, i ∈ N, 1 ≤
i ≤ r} ⊂ (0, 1] be sets such that lim infn αn,i(1−αn,i) > 0, lim infn ωn(i) > 0 for each
i = 1, 2, . . . , r and

∑r
i=1 ωn(i) = 1 for all n ∈ N, let {Un} be a sequence of block map-

pings generated by R1, R2, . . . , Rr, αn,1, αn,2, . . . , αn,r and ωn(1), ωn(2), . . . , ωn(r),
where each Ri is the sunny generalized nonexpansive retraction of E onto Di. Let
{xn} be a sequence generated by (6.2). Then {xn} converges strongly to Rx, where
R is a sunny generalized nonexpansive retraction of E onto ∩r

i=1Di.

Proof. In the same way as Corollary 8.1, we have the desired result by Theorem 6.3
and Lemma 2.5. �

Next, using Theorems 7.2 and 7.3, and Lemma 2.5, we obtain the following two
results which are connected with the feasibility problem and the problem of image
recovery.

Corollary 8.3. Let E be a uniformly smooth and uniformly convex Banach space,
let {Di}ri=1 be a finite family of sunny generalized nonexpansive retracts of E such
that ∩r

i=1Di is nonempty, and let {αn,i : n, i ∈ N, 1 ≤ i ≤ r} be a set in (0, 1]
such that lim infn→∞ αn,i(1 − αn,i) > 0 and αn,i ̸= 1 for each i = 1, 2, . . . , r − 1
and n ∈ N. Let {Wn} be a sequence of W -mappings of E into itself generated
by R1, R2, . . . , Rr and αn,1, αn,2, . . . , αn,r, where each Ri is the sunny generalized
nonexpansive retraction of E onto Di. Let {xn} be a sequence generated by (7.1).
Then {xn} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto ∩r

i=1Di.

Proof. From Lemma 2.5, we know that since each Ri is a sunny generalized non-
expansive retraction, F̌ (Ri) = F (Ri) for each i. So, we have the desired result by
Theorem 7.2. �
Corollary 8.4. Let E be a uniformly smooth and uniformly convex Banach space,
let {Di}ri=1 be a finite family of sunny generalized nonexpansive retracts of E such
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that ∩r
i=1Di ̸= ∅. Let {αn,i : n, i ∈ N, 1 ≤ i ≤ r} ⊂ [0, 1) and {ωn(i) : n, i ∈ N, 1 ≤

i ≤ r} ⊂ (0, 1] be sets such that lim infn αn,i(1−αn,i) > 0, lim infn ωn(i) > 0 for each
i = 1, 2, . . . , r and

∑r
i=1 ωn(i) = 1 for all n ∈ N, let {Un} be a sequence of block map-

pings generated by S1, S2, . . . , Sr, αn,1, αn,2, . . . , αn,r and ωn(1), ωn(2), . . . , ωn(r),
where each Ri is the sunny generalized nonexpansive retraction of E onto Di. Let
{xn} be a sequence generated by (7.2). Then {xn} converges strongly to Rx, where
R is a sunny generalized nonexpansive retraction of E onto ∩r

i=1Di.

Proof. In the same way as Corollary 8.3, we have the desired result by Theorem 7.3
and Lemma 2.5. �
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