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STRONG CONVERGENCE THEOREMS FOR FINITE
GENERALIZED NONEXPANSIVE MAPPINGS IN BANACH
SPACES

TAKANORI IBARAKI AND WATARU TAKAHASHI

ABSTRACT. In this paper, we introduce an iterative sequence to approximate
a common fixed point of finite generalized nonexpansive mappings in a Banach
space. We first study two nonlinear operators: a W-mapping and a block map-
ping generated by finite mappings in a Banach space. Next, we prove strong
convergence theorems by the hybrid methods for mathematical programming for
these mappings. Using these results, we deal with the problem for finding a com-
mon element of finite sets in Banach spaces. This problem is connected with the
problem of image recovery and the feasibility problem.

1. INTRODUCTION

Let H be a Hilbert space and let {C;}/_; be a family of nonempty closed convex
subsets of H such that Cy = N/_,C; is nonempty. Then the problem of image
recovery is to find an element of C{ by using an iterative sequence of the metric
projections P; of H onto C; (i =1,2,...,7), where

Pi(z) = argmin ||z — y||
yeC;
for all x € H. This problem is connected with the feasibility problem. In fact, if
{gi};_, is a family of continuous convex functions from H into R, then the convex
feasibility problem is to find an element of the feasibility set

ﬂ{ﬂﬂ € H:g(x) <0}
i=1

We know that each P; is a nonexpansive retraction of H onto C;, that is,
[Pz — Pyl < ||z —y||

for all x,y € H and P? = P,. Further, it holds that Cy = NI_,; F(P;), where F(P))
denotes the set of all fixed points of P; (i = 1,2,...,7). Thus the problem of image
recovery in a Hilbert space setting is extended to the problem of finding a common
fixed point of a family of nonexpansive mappings.

In 1997, Takahashi [27] introduced the following mapping: Let C' be a convex
subset of a Banach space E. Let T1,T5, ..., T, be finite mappings of C' into itself

and let a1, a9, ..., a, be real numbers such that 0 < a; <1 foreach¢=1,2,...,7r.
Then, a mapping W of C into itself is defined by
Uy = a1y + (1 — Ocl)I,
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Uy, = aThU; + (1 — OQ)I,

Ur—l = ar—lTr—lUT—Q + (1 - ar—l)I;
W=U = oTU-_1+(1—ay)l.

Such a mapping W is called the W-mapping generated by 11,75, ..., T, and a1, as,
..., . Using this mapping, Shimoji and Takahashi [26, 30] proved weak and strong
convergence theorems for finding a common fixed point of 11,75, ..., T, under suit-
able conditions. Recently, the authors [8, 9] introduced the notion of generalized
nonexpansive mappings and studied the asymptotic behavior of W-mappings gen-
erated by generalized nonexpansive mappings (see [10, 12]).

On the other hand, motivated by Aharoni and Censor [1], Kikkawa and Takahashi
[16] introduced the following mapping: Let C' be a convex subset of a Banach space
E. Let T1,T5,...,T, be finite mappings of C into itself and let wy,ws,...,w, and
ai, @, ...,a, be real numbers such that 0 < a; < 1 and 0 < w; < 1 for each
i=1,2,...,r,and )_;_; w; = 1. Then, a mapping U of C' into itself is defined by

-

U= Zwi(aﬂ + (1 —a)T3).

i=1

Such a mapping U is called the block mapping generated by 11,75, ..., T, a1, as,
.oy and wy, wa, ..., wy. Using this mapping, they proved a weak convergence the-
orem for finding a common fixed point of 17,75, ..., T, under suitable conditions.
Recently, the authors also studied the asymptotic behavior of block mappings gen-
erated by generalized nonexpansive mappings (see [11]).

The aim of this paper is to prove strong convergence theorems by the hybrid
methods for finding a common fixed point of finite generalized nonexpansive map-
pings in a Banach space. We first study sunny generalized nonexpansive retracts. In
particular, we show that the intersection of sunny generalized nonexpansive retracts
also is a sunny generalized nonexpansive retract. Next, we study the W-mappings
and the block mappings which are generated by finite generalized nonexpansive
mappings in Banach space. Using these mappings, we prove strong convergence
theorems by the hybrid methods introduced by Solodov and Svaiter [25] and Taka-
hashi, Takeuchi and Kubota [31]. Moreover, using these results, we deal with the
problem for finding a common element of finite sets in Banach spaces. This problem
is connected with the problem of image recovery and the feasibility problem.

2. PRELIMINARIES

Let E be a real Banach space with its dual £*. We denote the strong convergence
and weak convergence of a sequence {z,} to z in E by z, — x and z, — xo,
respectively. We also denote the weak™ convergence of a sequence {z}} to z* in E*
by 2 = z*. A Banach space F is said to be strictly convex if ||z|| = |ly|| = 1 and
x # y imply ||[(z +y)/2|| < 1. Also, E is said to be uniformly convex if for each
e € (0,2], there exists § > 0 such that

lzll =1yl =1, [lz—yl=e
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imply ||(x +y)/2|| < 1 — 4. The following result was proved by Xu [32] (see also
[33]).

Lemma 2.1 ([32]). Let s > 0 and let E be a uniformly convex Banach space. Then,
there exists a continuous, strictly increasing, and convex function g : [0,00) —
[0,00) with g(0) = 0 such that

(2.1) Iha + (1= Nyl < Mzl + (1= Nlyll* = 21 = X)g(llz —ylI)
forallz,y € Bs:={z€ E:|z|| <s} and A with 0 < X < 1.
A Banach space E is said to be smooth if

0 ety ]
’ t—0 t

exists for each z,y € {z € E : ||z]| = 1}(=: S(E)). A Banach space F is said to be
uniformly smooth if the limit (2.2) is attained uniformly for =,y € S(E).
The normalized duality mapping J from E into E* is defined by
Jo={z" € B* : (z,2") = ||z||* = |="||*}
for each x € E. We also know the following properties (see [5, 28, 29] for details):
(1) Jx # 0 for each z € FE.
(2) If E is reflexive, then J is surjective.
(3) If E is strictly convex, then J is one to one.
(4) If E is smooth, then J is single valued and norm to weak® continuous.
(5) If E is smooth, strictly convex and reflexive, then the duality mapping J.
from E* into E is the inverse of J, that is, J, = J 1.
(6) If E is uniformly smooth, then the duality mapping J is uniformly norm to
norm continuous on each bounded set of E.
(7) If E is uniformly convex, then FE is reflexive and strictly convex.
(8) E is uniformly convex if and only if E* is uniformly smooth.

Let E be a smooth Banach space and consider the following function studied in
Alber [2] and Kamimura and Takahashi [15]:

V(z,y) = [l|* = 2(z, Jy) + |yl
for each x,y € E. It is obvious from the definition of V' that

(2.3) (Il = llyID? < V(z,y) < (2]l + [lyl)?
for each z,y € E. We also know that
(2.4) V(z,y) =V(z,2) +V(z,y) +2(x — 2, Jz — Jy)

for each x,y, z € E (see [15]). It is also easy to see that if E is additionally assumed
to be strictly convex, then

V(z,y) =0 & z=y.
See [20] for more details. The following lemma was well-known.

Lemma 2.2 ([15]). Let E be a smooth and uniformly conver Banach space and
let {xn} and {yn} be sequences in E such that either {x,} or {yn} is bounded. If
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Let C be a nonempty closed convex subset of a smooth Banach space F and let
T be a mapping from C' into itself. We denote by F(T') the set of all fixed points
of T. A point p in C is said to be a generalized asymptotic fixed point [14] of T" if
C contains a sequence {z,,} such that Jz, — Jp and ||Jz, — JTz,|| — 0. The set
of all generalized asymptotic fixed points of T is denoted by F(T). A mapping T is
called generalized nonexpansive [8, 9] if F(T') # () and V(Tz,p) < V(x,p) for each
xe€Candpe F(T).

Let D be a nonempty subset of . A mapping R: F — D is said to be sunny if

R(Rx +t(x — Rz)) = Rz

for each z € E and t > 0. A mapping R : E — D is said to be a retraction if
Rz = x for each x € D. If E is smooth and strictly convex, then a sunny generalized
nonexpansive retraction of E onto D is uniquely decided (see [8, 9]). Then, such
a sunny generalized nonexpansive retraction of E onto D is denoted by Rp. A
nonempty subset D of E is said to be a sunny generalized nonexpansive retract
(resp. a generalized nonexpansive retract) of E if there exists a sunny generalized
nonexpansive retraction (resp. a generalized nonexpansive retraction) of E onto
D (see [8, 9] for more details). The set of fixed points of a sunny generalized
nonexpansive retraction of £ onto D is, of course, D.

We know the following results for sunny generalized nonexpansive retractions in
Banach spaces.

Lemma 2.3 ([8, 9]). Let D be a nonempty subset of a smooth and strictly con-
vex Banach space E. Let R be a retraction of E onto D. Then R is sunny and
generalized nonexpansive if and only if

(x — Rx, JRx — Jy) >0
for each x € E and y € D.

Lemma 2.4 ([9, 10]). Let D be a nonempty subset of a reflexive, strictly convex,
and smooth Banach space E. If R is the sunny generalized nonexpansive retraction
of E onto D, then

V(z,Rx) + V(Rzx,u) < V(x,u)
for each x € E and v € D.

Lemma 2.5 ([14]). Let D be a nonempty subset of a reflexive, strictly convex, and
smooth Banach space E. If R is the sunny generalized nonexpansive retraction of
E onto D, then F(R) = F(R).

3. SUNNY GENERALIZED NONEXPANSIVE RETRACTS

In this section, we deal with some properties for sunny generalized nonexpansive
retracts in a Banach space. We first recall the following results in [14, 17].

Theorem 3.1 ([17]). Let E be a smooth, reflexive, and strictly convex Banach space
and let C' be a nonempty subset of E. Then, the following conditions are equivalent.
(1) C is a sunny generalized nonexpansive retract of E;
(2) C is a generalized nonexpansive retract of E;
(3) JC is closed and conver.
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In this case, C is closed.

Lemma 3.2 ([14]). Let E be a reflexive, strictly convex, and smooth Banach space
and let T' be a generalized nonexpansive mapping from E into itself such that F(T)
is nonempty. Then F(T) is a sunny generalized nonexpansive retract of E.

Using Theorem 3.1, we can prove the following theorem.

Theorem 3.3. Let E be a reflexive, strictly convex, and smooth Banach space and
let € be a family of sunny generalized nonexpansive retracts of E such that NoegC
is nonempty. Then NoeywC is a sunny generalized nonexpansive retract of E.

Proof. 1t is obvious that J Noecy C = NoegJC. In fact, we have that

reJNoew C < Jlre NoeeC
s Jlrec, VCe¥
& rzeJC, VOe¥
S 2 €Neeywd C.

From Theorem 3.1, JC' is closed and convex for each C' € ¥ and hence Ngey JC' is
closed and convex. So, we have that JNgey C' is closed and convex. Therefore, from
Theorem 3.1, we have that NoecyC' is a sunny generalized nonexpansive retract of
E. O

As a direct consequence of Lemma 3.2 and Theorem 3.3, we obtain the following
result.

Theorem 3.4. Let E be a reflexive, strictly convex, and smooth Banach space and
let T be a family of generalized nonexpansive mappings T from E into itself such
that F(T) is nonempty, where F(T) is the set of all common fixed points of T.
Then F(T) is a sunny generalized nonexpansive retract of E.

Proof. By Lemma 3.2, F/(T) is a sunny generalized nonexpansive retract of E. Fur-
ther, since F(T) = NperF(T) is nonempty, by Theorem 3.3 we have the desired
result. 0

4. STRONG CONVERGENCE THEOREM

In this section, we first introduce a new condition for a family of generalized
nonexpansive mappings in a Banach space: Let F¥ be a Banach space and let C be
a nonempty closed convex subset of E. Let {T},} and 7 be families of generalized
nonexpansive mappings of C' into itself such that 0 # F(T) C NS, F(T,,), where
F(T,) is the set of all fixed pints of T}, and F'(T) is the set of all common fixed pints
of T. Motivated by Nakajo, Shimoji and Takahashi [21], we consider the following

condition concerning {7,} and T:

(xx) For each bounded sequence {z,} C C with lim,,_, ||z, — T2n|| = 0 and for
each T € T, there exists a sequence {u’} of C such that

Jim oy —Tug | = lim |Jz0 — ug]| = 0.
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Using condition (*x), we prove a strong convergence theorem for a family of gener-
alized nonexpansive mappings in a Banach space which unifies two hybrid methods
introduced by Solodov and Svaiter [25] and Takahashi, Takeuchi and Kubota [31].
This theorem is proved in more general Banach spaces.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach space,
let {T,,} and T be families of generalized nonexpansive mappings from E into itself
such that O # F(T) C N2, F(T;) and F(T) = F(T) for each T € T, and let {Y;,} be
a sequence of sunny generalized nonexpansive retracts of E such that F(T) C Y, for
each n € N. Suppose that {T,} satisfy the condition (xx). Let {x,} be a sequence
generated by x1 = x € E, and

Yn = Tny,

Xn={2z€ E:V(yp,2) <V(rpn,2)},

Tpt1 = Rx,ny,z, n=1,2,3,....
Suppose that the sequence {x,} satisfy x, = Ry,x for each n € N. Then {z,}

converges strongly to Rpiryx, where Rp() is a sunny generalized nonexpansive
retraction of E onto F(T).

Proof. We first show that JX), is closed and convex for each n € N. Let {z},} C JX,,
with limy, o 25, = 25 € E*. Then define 2, := J ~1z¢ € X,,. Since E is uniformly
convex, E* is uniformly smooth and hence the duality mapping J~! on E* is norm
to norm continuous. Therefore, we have

: B T -1 % _ 7—1_x
lim 2, = lim J "z, =J 2.
m— 00 m— 00

From the definition of X, and the uniformly smoothness of F, we know that X, is
closed. Hence J _126 € X,,. Therefore we obtain z; € JX,,. This implies that JX,,
is closed. We show that JX,, is convex. Let u*,v* € JX,,, and let A € (0,1). Then
there exist u,v € X,, such that u* = Ju and v* = Jv. Put z = J = (Au* + (1 —\)v*).
We have from the definition of X, that

V(n, 2) = V(yn, 2)

= aall® = lyall® = 2(zn — yn, J2)

lnll* = [lyall® = 2(an — g, Au™ + (1 = A)v*)
= aall® = llyall® = 2z — yn, Au+ (1 = X)Jv)

= All@all? = llyal? = 20 = yo, Ju)
+(1 = X)(llzal2 = [yall? = 2(@n = yo, J0))

= A(V@ayt) = V(o w)) + (1= ) (V(@0,0) = V(g v))

> A-04+(1-X)-0=0
and hence z € X,,. Therefore we obtain A\u* + (1 — A\)v* = Jz € JX,,. This implies
that JX,, is convex for each n € N.

We next show that F(7) C X, for each n € N. Let p € F(T) C N{°,F(T;) and
let n € N. Then from
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we have p € X,, and hence F(T) C X,,. Therefore, from Theorem 3.1, X, is a
sunny generalized nonexpansive retract for each n € N. Further, since F(7) C Y,
we obtain F(T) C X, NY, for each n € N. Since Y,, is a sunny generalized
nonexpansive retract for each n € N, by Theorem 3.3 we have that X, NY, is a
sunny generalized nonexpansive retract for each n € N. This implies that {x,} is
well defined.

Let pe F(T) C X,,NY,. Using z,11 = Rx,ny, = and Lemma 2.4, we have

(4.1) Vi, 2nt1) <V(z,p) = V(ent1,p) < V(z,p)

for each n € N. It is obvious that (4.1) holds for n = 0. In fact, we have V(z,x1) =
V(xz,z) = 0. Hence we obtain

V(Qf,l’n) < V($,p) - V(xn,p) < V(Ql‘,p)

for each n € N. Therefore, {V(z,x,)} is bounded. Moreover, from (2.3) we have
that {z,,} is bounded. From z, = Ry, z, xnt+1 = Rx,ny,* € Y, and Lemma 2.4,
we have

V(JI, Q?n) < V(.’E,.%'n_t,_l) - V(xnvxn-i-l) < V(.f,.%’n_t,_l)
for each n € N. Therefore {V(x,z,)} is nondecreasing. So, there exists the limit of
{V(x,zy)}. Since
V(il}n, l’n+1) < V(l’,i{}n_H) - V(x,:rn)
for each n € N, we have that lim,, oo V (2, zpt1) = 0. From 2,41 = Rx,ny,x € X,
and the definition of X,,, we also have
V(yna $n+1) < V(xna$n+1)

for each n € N. Tending n — oo, we have lim, o V(ypn, Zn+1) = 0. Using Lemma
2.2, we obtain

nh_)Holo |1 — ynll = nlggo [#n41 — an|| = 0.
From
[Tnwn — nll = lyn — 2nll < lyn — Zpgall + [Zn1 — @nll;
we have limy,_, ¢ | Tn®n — n|| = 0. From the assumption (*x), for each 7' € T, there

exists sequence {ul} of E to itself such that

. T o, TN 1 LT
i [uf — Tl = lim ||z, — ] = 0.
Since E is uniformly smooth, the duality mapping J is uniformly norm to norm
continuous on each bounded subset of E. Therefore, we obtain that

lim ||Jul — JTul|| = lim || Jz, — Jul| = 0.

n—oo n—oo
Let {Jxy, } be a subsequence of {Jz,, } such that Jx,, — p* for some p* € E*. Then,

for any T € T there exists {u}}, } C E such that Ju}, — p* and ||Jul, —JTu] || —

0. So, J~!p* € F(T). Putting p = J 'p*, we have p € F(T) = F(T). This implies
that p € F(T).

Finally, we show that z,, = Rp(mz. Let {Jx,, } be a subsequence of {Jx,} such
that Jx,, — Jp € JF(T) and let z = Rp¢yz. From Lemma 2.4, 2,11 = Rx,nv, 7,
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and z € F(T) C X, NY,, we have V(x,z,+1) < V(x,z) for each n € N. Since
x = x1, it is clear that 0 = V(x,z) < V(z, z). Therefore, we have
(4.2) V(z,xn) < V(z,2)
for each n € N. On the other hand, since the norm || - || is weakly lower semicontin-
uous, we have
V(z,p) = llz|* = 2z, Jp) + || Tpll?
< liminf(||z]]* — 2(z, Jon,) + || 20, ||?)
k—o0

(4.3)

= liminf V(x, z,,)
k—o0

<limsup V(z,zp,) < V(z,z).

k—o0

From (4.3) and Lemma 2.4, we get
V(x,2) +V(z,p) < V(x,p) < V(x,2)

This implies V(z,p) = 0. So, we have z = p and hence Jz = Jp = p*. From
z = Rp()r, we obtain that Jz, — Jz = JRp)z. By (2.4), we have

(4.4) Viz,xn) =Vi(z,x) + V(e,xn) + 2(z —x, Jx — Jay,)
for each n € N. By (4.2) and (4.4), we obtain

limsupV(z,z,) = lim sup{V(z, z)+V(r,xn) +2(z —x,Jr — Jﬂzn>}

n—o0 n—o0

< limsup{V(z, )+ V(x,z)+2(z —x, Jox — Jacn)}

n—o0
V(z,x)+V(z,2) +2(z —z,Jo — J=z)
= V(z,2)=0.
Therefore, we have limsup,,_,. V(2,2,) = 0. This implies lim, o V (2, 25) = 0.
From Lemma 2.2, we obtain lim,,_, ||z — 2| = 0. Therefore, we obtain that {z}
converges strongly to Rp(z. This completes the proof. O

5. FAMILIES OF GENERALIZED NONEXPANSIVE MAPPINGS WITH THE NEW
CONDITIONS

In this section, we give two examples of a family of generalized nonexpansive
mappings which satisfies the condition(s:x).

Let C be a nonempty convex subset of a Banach space E, let S1,59,...,S, be
mappings from C into itself and let oy 1, 2, ..., o, be real numbers such that
0 <ap; <1foreachi=1,2,...,r and n € N. Then, for each n € N, Takahashi
[27] introduced a mapping W of C' into itself as follows:

Un,l = an,lsl + (1 - an,1)17
Upo = an25Un1+ (1 —anp)l,

Un,r—l = an,r—lsr—lUn,r—Q + (1 - O‘n,r—l)lv
W, = nr — an,rSrUn,r—l + (1 - an,r)I-
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Recall that such a mapping W, is called a W-mapping generated by Si, So,...,S,
and oy, 1,0n2, ..., 0, (see also [26, 30]).

We recall the following result for a W-mapping generated by finite generalized
nonexpansive mappings in a Banach space.

Lemma 5.1 ([10]). Let C' be a nonempty closed convex subset of a smooth and
uniformly convex Banach space E, let {S;}I_; be a finite family of generalized
nonexpansiwve mappings from C' into itself such that N[_; F(S;) is nonempty, and
let {an; : n,i € N;1 < ¢ < r} be a set in (0,1] such that oy # 1 for each
i=1,2,...,7—1 andn € N. Let {W,,} be a sequence of W-mappings of C into it-
self generated by S1,S2,..., Sy and ap1,0n2,...,0n,. Then, F(Wy,) = NI_;F(S;)
for each n € N.

We obtain the following result for a W-mapping generated by finite generalized
nonexpansive mappings in a Banach space.

Lemma 5.2. Let C be a nonempty closed convex subset of a uniformly smooth
and uniformly convexr Banach space E, let {S;}I_; be a finite family of generalized
nonexpansive mappings from C' into itself such that N_, F(S;) is nonempty, and let
{an,in,ieN,1<i<r} beasetin (0,1] such that liminf,, o o i(1 — i) >0
and o, ; # 1 for eachi=1,2,...,7 —1 and n € N. Let {W,} be a sequence of W -
mappings of C into itself generated by S1,S2,...,5, and an1,0m.2,..., 0. Then
{T,} with T,, = W,, (Vn € N) and T = {S51,S52,...,5:} satisfy the condition (xx)
with N0 F(Ty,) = F(T) =N_, F(S;).

Proof. Let p € N_F(S;) and let {z,} be a bounded sequence in C such that
lim,, o0 ||2n — Whzn|| = 0. Then, from the definition of W,,, we have that
V(Wnzn,p) = V(Un,rzn,p)
V(S Upr—12n,p) + (1 — an )V (2, D)
anV(Unyr—12n,p) + (1 — any)V (20, p)
Qi -1V (Sy—1Un p—22n, p) + (1 — an 1)V (20, p)
+(1 = anr)V (20, p)
g1V (Unp—22n,0) + (1 — anpranr—1)V (20, p)
QO p—10, r—2V (Sp—2Up 32, D)
Fanranr—1(1 — anr—2)V(2n,p) + (1 — anronr—1)V (20, p)
Q100 2V (Unp—32n,p) + (1 — o pn r— 10 7 —2)V (20, p)

IN AN IA

IA A

IN

O -1 02V (Up12n,p) + (1 — apyranr—1- - an2)V(2n,p)
QprQp 1+ 0 200 1V (S12n, D)

+anranr—1- - ap2(l —on1)V(zn,p) + (1 — apranr—1- - an2)V(2n,p)
QO 1 -+ O 20 1V (8120, ) + (1 — ppnr—1 - - an20m1)V (20, D)
QO p—1 - 020y 1V (20, 0) + (1 — ap poty 1 -+ - O 200,.1)V (20, D)

V(zn, p)

VANV

IA I
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for each n € N. Since {z,} is bounded, from (2.3), {W,z2,} is bounded. Further,
we obtain that, for each i =1,2,...,7,

V(anmp) San,ran,r—l s an,iV(Un,i—lznyp)

+ (1 — OnrQpr—1""" an,i)v(zmp) < V(Znyp)

where Uy, g = I for each n € N. So, we have

(5.1)

52) Vo) =V Wior2n,p) < Lot = Vninp)

QprQpr—1-°Qng

From (2.4), we obtain
V(zn,p) = V(Wnzn, p)
= V(zn, Wnzn) + 2(zn — Wnzn, JWyz, — Jp)
< ||Zn||2 — 2(zn, JWhzn) + ||ann||2 + 2[|zn = Wazn [T Wz — JIp||
= (zn, Jz2n — IWhzn) — (zn — Wiz, JWyhzn)
+ 2|z — Whzn|[|| I Wz — JIp||
< znllllT2n = IWazn|l + (|20 — Wazal[|[ Wzl
+ 2|z — Whzn|[[| I Wz — JIp||
< lznllllJzn — JWhzn|l + [l2n — ann”(?’HannH + 2HJPH)'

Since E is uniformly smooth, the duality mapping J is uniformly norm to norm
continuous on each bounded set of . Hence we obtain

lim || Jz, — JWyz,|| = 0.
n—oo

(5.3)

From (5.3) and the boundedness of {z,} and {W,z,}, we have

(5.4) li_>m (V(zn,p) - V(ann,p)> =0.
From (5.2), (5.4) and liminf,, o o, i(1 — vy 3) > 0, we also have
(5.5) ILm (V(zn,p) — V(Unvi_lzn,p)> =0
for each ¢ =1,2,...,r, where U, g = I for each n € N.
Since {z,} is bounded, by (5.1) {Uyi—12,} is bounded and hence {S;Uy ;i—12n}
is also bounded for each ¢ = 1,2,...,r, where U, o = I. Put s,—1 = sup,en{||znll,

1Sy Unr—12n]|}. By Lemma 2.1, there exists a continuous, strictly increasing, and
convex function g : [0,00) — [0,00) with g(0) = 0 satisfying (2.1), where B, , =
{x e FE :|z|]| <s—1}. We have

V(Whzn, D)
= s SUnr—12n + (1 — any)zn)?
—2{0n,rSrUnr—12n + (1 = @)z, Jp) + ||pl>
< an | Unr—1z0)® + (1 — )|
= (1 = any)g([1S-Unr—12n — 2nl))
—200, (S Unp—120, ID) = 2(1 = i p) (20, Ip) + |19

Zn||2
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= s (I15:Un szl = 2(S:Unrr20, T} + o]

+(1 = o) (llzall® = 2(e0, Ip) + )
—anr(1 = ang)g([|SrUnr—12n — 2ull)
= an, V(SrUnr—12n,p) + (1 — any)V (20, p)
— (1 = an ) g(|[SrUnyr—12n — 2nl|)
< an,V(Unr—12n,p) + (1 — apn )V (2, p)
— (1 — any)g([1SrUnr—12n — 2nl|)
< any V(2 p) + (1 = ans)V (20, p) = anp(1 = anp)g(|SrUnyr—12n — 2al|)
= V(zn,p) = anp(1 = any)g([|SrUnr—120 — 2nl|)
and hence
(1 = ang)g(1SrUnp—12n — 2nl]) < V(zn,p) = V(Wnzn, p).

From (5.4) and liminf, o o (1 — ) > 0, we have

lim g(HSTUn,T—lzn - Zn”) =0.
n—oo
Then the properties of g yield that
lim ||S,Up r—12n — 2n| = 0.
n—oo
Next, put s,—2 = sup,en{||Unr—22nll; ||Sr—1Un r—22,||}. By Lemma 2.1, there exists
a continuous, strictly increasing, and convex function g : [0,00) — [0,00) with
g(0) = 0 satisfying (2.1), where Bs;_, = {r € E : ||z|| < s,_2}. Therefore we have
V(Un,rflzn’p)
= Hanﬂ“*l‘S’T*IUn,T72zn + (1 - Oln,rfl)an2
—2(anr—1Sr—1Unr—22n + (1 — np—1)2n, Jp) + ||pH2
an,r—l”Sr—lUn,r—2an2 + (1 - an,r—l)HanQ
_anﬂ”—l(l - an,r—l)g(HS’/‘—lUn,r—an - ZnH)
_2an,r—1<Sr—1Un7r—22n’ JP> - 2(1 - an,r—1)<zn, Jp> + ||p”2
< an,r—lv(sr—lUn,r—QZn,p) + (1 - Oénm_l)V(Zn,p)
_anﬂ”—l(l - an,r—l)g(HS’/‘—lUn,r—an - ZnH)
< V(Zmp) - O‘n,rfl(l - an,rfl)g(HSrflUn,r72Zn - ZnH)

IA

and hence
an,r—l(l - an,r—l)g(HS'r—lUn,r—an - Zn”) < V(Znap) - V(Un,r—lznyp)'
From (5.5) and liminf, o apnr—1(1 — apr—1) > 0, we obtain

lim g([[Sy—1Unr—220 — znl|) = 0.
n—00

Then the properties of g yield that

lim ||Sy-1Unr—22n — 2n|| = 0.
n—oo
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By such a method, we have

lim HSiUn,iflzn — ZnH = 0.
n—oo
for each i =r — 2,7 —3,...,1, where U, o = I for each n € N. So, from
Hzn - Un,ian = Hzn - an,iSiUn,i—lzn - (1 - an,i)an = an,iHZn - SiUn,i—lana
we have
(5.6) lim |z, — Upizall = 0
n—0o0

for each i = 1,2,...,7. Note that (5.6) hold for ¢ = 0. In fact, we have that
Hzn - n,Oan = HZn — ZnH = (0. Then from

||SiUn,i—1Zn - Un,i—lan S HSiUn,i—lzn - ZnH + ”Zn - Un,i—lzn”a

we also obtain
lim ||S;Upi—12n — Uni—12n|| = 0.
n—oo

Put uﬁl = Upi—12pn for each i = 1,2,...,7 and n € N. Then, we have that {T,,}
and 7T satisfy the condition (¥x). Further, from Lemma 5.1, we have N2, F(T},) =
F(T)=nNi_,F(S;). This completes the proof. O

Let C be a nonempty closed convex subset of a Banach space F and let Sy, So, ...,
S, be mappings from C into itself. Then, motivated by Aharoni and Censor [1],
Kikkawa and Takahashi [16] introduced a mappings U, of C into itself as follows:

(5.7) Un=>_ wn(i)(anil + (1 = an;)S;)
=1

for all n € N, where {ay; : n,i € N,1 < i < r} C [0,1], {wn(i) : n,i € N,;1 <
i <r} C[0,1] and Y ;_jwp(i) = 1 for each n € N. Recall that such a map-
ping U, is called a block mapping defined by S, S2,...,5:, an1,®n2,...,0,, and
wn(l)vwn(2)v s ,wn(”")'

We recall the following two results for a block mapping generated by finite gen-
eralized nonexpansive mappings in a Banach space.

Lemma 5.3 ([11]). Let C be a nonempty closed convex subset of a smooth Banach
space E, let {S;}I_; be a finite family of generalized nonexpansive mappings from
C' into itself such that NI_,F(S;) # 0 and let {U,} be a sequence of block mappings
defined by (5.7), where {ay; :n,i € N,1 <i<r}C[0,1], {wp(i):n,ieN,1<i<
r} C [0,1] and Y ;_wn(i) =1 for alln € N. Then V(Upx,z) < V(x,z) for each
xeC, zenN_F(S;) and n € N.

Theorem 5.4 ([11]). Let C be a nonempty closed convexr subset of a smooth and
strictly convexr Banach space E, let {S;}7_, be a finite family of generalized nonex-
pansive mappings from C into itself such that N]_ F(S;) # 0 and let {Uy,} be a se-
quence of block mappings defined by (5.7), where {ap,; 1 n,i € N;1 <i<r} C|0,1),
{wp(i) :myi € N1 < i <r} C (0,1 and > ;_jwn(i) =1 for alln € N. Then
F(Uy) =N_{F(S;) for each n € N.

Now, we obtain the following result for a block mapping generated by finite
generalized nonexpansive mappings in a smooth Banach space.
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Lemma 5.5. Let C' be a nonempty closed convexr subset of a smooth and umni-
formly convexr Banach space E, let {S;};_, be a finite family of generalized nonex-
pansive mappings from C into itself such that NI_yF(S;) # 0. Let {ay; : n,i €
N,1 <4 <r} Cl01) and {wy(i) : n,s € N,1 < ¢ < r} C (0,1] be sets such
that liminf, o, (1 — o) > 0, liminf, wy,(i) > 0 for each i = 1,2,...,r and
Yoijwn(i) =1 for all n € N, let {U,} be a sequence of block mappings gener-
ated by S1,5,...,5r, Qn1,0m2,...,0ny and wp(l),wn(2),...,wy(r). Then {T,}
with T,, = Uy, (Yn € N) and T = {S1,S2,...,S5:} satisfy the condition (xx) with
ML F(T,) = F(T) = (L, F(S)).

Proof. Let p € N_F(S;) and let {z,} be a bounded sequence in C such that
limy, o0 ||2n—Unznl|| = 0. Since S; is generalized nonexpansive and {z, } is bounded,
then {S;zy} is bounded for each i = 1,2,...,r. Take s > 0 such that {z,}, {Sizn} C
Bs (i=1,2,...,7), where B; = {z € E : ||z|| < s}. Then, Lemma 2.1 ensures the
existence of a strictly increasing, continuous and convex function g : [0, c0) — [0, 00)

such that ¢g(0) = 0 and
[t2n + (1 — t)SiZnH2 < tHZnHQ + (1 — t)HSiZn||2 —t(1 —t)g(|[zn — Siznll)

for each t € [0,1],n € N, and i = 1,2,...,r. Then we have

V(Unzn,p)
=V (Z wn,(7) (anﬂ-zn + (1 - an,i)Sizn)7p>
i=1
< Y wn(@)V (amizn + (1= n i) Sizn, p)
=1
= > wnd)(llaniza + (1 = i) Sizall
i=1

~2{anizn + (1= ani)Sizn, Jp) + ]°)

IA
\'M
£

(3) (millznl? + (1 = )| Sizall® = (1 = an)g(l120 — Sizall)
20032, Jp) — 2(1 — 0) (Si2, ) + 0]

= Y wali) (amV(zn,p) + (1= an i)V (Sizn, p)

—ani(1 = an)g(lzn — Sizall))

T

> wn(0) (anaV (0 0) + (1= an)V (20s2) = €ni(1 = ani)g(l1z0 = Sizal))

IN

= 3w (Vznp) — ani(l = ang(lzn — Sizal))
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= V(zn,p) — iwn(i)an,i(l - an,i)g(Hzn - Szzn”)
i=1
for each n € N and hence
(5.8) iwn(i)an,i(l — omg)g(llzn = Siznll) < V(zn,p) = V(Unzn, p).
i=1

From (2.4), we obtain
V(Zn,p) - V(Unznap)
=V (zn, Unzn) + 2(zn, — Upnzpn, JUpzp — Jp)
< lznll® = 2(zn, JUnzn) + |Unzall? + 2|20 — Unznlll| JUnzn — Jp|
= (zn, Jzn — JUpzn) — (2n — Upzpn, JUpzy)
(5.9) 420120 — Unzalll|JUnzn — Jp|
< |lznlllT2n = JUnznll + 120 — Unzal||Unznll
+ 2||zn, — Unzn||||JUnzn — Jp||

< Nzalll T2 = TUnznll + U120 = Unzall (31Unzall +211701))

Since E is uniformly smooth, the duality mapping J is uniformly norm to norm
continuous on each bounded set of . Hence we obtain

lim [|Jzp, — JUyz2y| = 0.
n—oo
From (5.9) and the boundedness of {z,} and {Uyz,}, we have

lim (V(Zn,p) - V(Unzn,p)) —0.

n—o0

Combining this with (5.8), we obtain
'
lim an(i)an,i(l — a,i)9(||zn — Sizn|) = 0.

n—00 £
=1

Since liminf,, wy (i) > 0 and liminf o, ;(1 — ap;) > 0 for each @ = 1,2,...,7, we
have

Tim_g((lzn — Sizal)) =0

for each ¢ = 1,2,...,7r. Then the properties of g yield that

lim |z, — Sizn|| =0
n—oo
for each i = 1,2,...,r. Put u) := z, for each i = 1,2,...,7. Then, we have

that {T,,} and T satisfy the condition (xx). Further, from Lemma 5.4, we have
N2, F(T,,) = F(T) =N;_,F(S;). This completes the proof. O
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6. HYBRID METHODS IN MATHEMATICAL PROGRAMING

In this section, using Theorem 4.1, we prove a strong convergence theorem for
a family of generalized nonexpansive mappings in a Banach space by the hybrid
method in mathematical programing introduced by Solodov and Svaiter [25]. This
theorem extend Nakajo-Takahashi’s result ([22]) for a nonexpansive mapping in a
Hilbert space to a more general Banach space and a famiily of mappings.

Theorem 6.1. Let E be a uniformly smooth and uniformly convexr Banach space
and let {T,,} and T be families of generalized nonexpansive mappings from E into
itself which satisfy O # F(T) € N2, F(T;), F(T) = F(T) for each T € T and the
condition (xx). Let {x,} be a sequence generated by x1 = x € E, and

Yn :anny

Cn={2€ E:V(yn,2) <V(zn,2)},
D,={z€FE:{(x—axy, Ja, — Jz) >0},
Tn+1 = Re,np,,z, n=1,2,3,....

Then {x,} converges strongly to Rp(ryx, where Rp(r) is a sunny generalized non-
expansive retraction of E onto F(T).

Proof. We first show that J D, is closed and convex for each n € N. Let {2} C JD,
with limy, o 25, = 25 € E*. Then define 2, := J ~125 € D,. Since E is uniformly
convex, E* is uniformly smooth and hence the duality mapping J~! on E* is norm
to norm continuous. Therefore, we have
. : —1_x% —1 _x

Jin o = fimg 712 = 7
From the definition of D,, and the uniformly smoothness of F, it is obvious that D,,
is closed. So, we have J *125 € D,,. Therefore we obtain z; € JD,,. This implies
that JD, is closed for each n € N. We show that JD,, is convex. Let u*,v* € JD,,
and let A € (0,1). Then there exist u,v € D,, such that v* = Ju and v* = Jv. Put
z=J Y wu* + (1 — A\)v*). We obtain from the definition of D,

(x — xp, Jxyn — J2)

= (z—xp,Jr, — ANJu— (1 —A)Jv)

= Nz -z, Jo, — Ju) + (1 — N){(z — 2, Ja,, — JV)
> A 0+(1-A)-0=0

and hence z € D,,. So, we have Jz = A\u* + (1 — A\)v* € JD,,. This implies that
JD,, is convex for each n € N.

We next show that F(7) C D,, for each n € N. It is clear that F(7T) C D; = E.
Suppose that F(T) C Dy for some k € N. As in the proof of Theorem 4.1, we have
that F(T) C Cy,, JC, is closed and convex for each n € N. Therefore Cy N Dy,
is nonempty. So, from Theorem 3.1 we have that Cy N Dy is a sunny generalized
nonexpansive retract of F. Then there exists an element x; 1 € Cy N Dy, such that
ZTp+1 = Roynp,®, where Re,np, is a sunny generalized nonexpansive retraction of
E onto C;, N Dy. From Lemma 2.3, there holds

(# — Tpq1, Jopg1 — J2) >0
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for each 2 € CyNDy. Since F(T) C CyN Dy, we have (x —xg41, Jrpr1—Jp) > 0 for
each p € F(T) and hence F(T) C Dg41. By induction, we have that F(7) C D, for
each n € N. Therefore, from Theorem 3.1 D,, is a sunny generalized nonexpansive
retract of E and F(T) C D,,.

Put X,, = C), and Y,, = D,,. It is obvious from Lemma 2.3 and the definition
of D,, that x,, = Ry, x for each n € N. Then X,, and Y,, satisfy the assumption of
Theorem 4.1. Therefore, by Theorem 4.1, the sequence {x,} converges strongly to
RF(T)SL‘. Il

Using Theorem 6.1 and Lemma 5.2, we obtain the following result for a W-
mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 6.2. Let E be a uniformly smooth and uniformly conver Banach space,
let {Si}i_; be a finite family of generalized nonexpansive mappings from E into itself
such that N_, F(S;) is nonempty and F(S;) = F(S;) for eachi=1,2,...,r, and let
{an,in,ie N1 <i<r} beasetin (0,1] such that liminf,, o oy i(1 — i) >0
and oy # 1 for each i = 1,2,...,r —1 and n € N. Let {W,} be a sequence of
W-mappings of E into itself generated by S1,S2,...,5, and 1,02, ..., 0. Let
{zn} be a sequence generated by 1 = x € E, and

Yn = Wnon,

Cpn={2€E:V(yp,2) <V(rpn, 2)}
D,={z€eFE:{x—x,, Jr, — Jz) >0},

Tn+1 = Re,np,x, n=1,2,3,....

(6.1)

Then {z,} converges strongly to Rz, where R is a sunny generalized nonexpansive
retraction of E onto NI_, F(S;).

Proof. Put T,, = W, for each n € N and 7 = {51, S52,...,5,}. From Lemma 5.2,
we have that {T},} and 7 satisfy the condition (xx) with N2, F(T,) = F(T) =
N_,F(S;). Therefore, using Theorem 6.1, we obtain the desired result. O

Using Theorem 6.1 and Lemma 5.5, we also obtain the following result for a block
mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 6.3. Let E be a uniformly smooth and uniformly convex Banach space,
let {Si}l_y be a finite family of generalized nonexpansive mappings from E into
itself such that F(S;) = F(S;) for each i = 1,2,...,r and Ni_F(S;) # 0. Let
{an; n,ie N1 <i<r}cC]|0,1)and {wy(i) : n,i € N,1 <4i <r} C (0,1] be
sets such that liminf, oy, (1 — @y, ;) > 0, liminf, wy, (i) > 0 for each i = 1,2,...,r
and Y i_ywn(i) =1 for alln € N, let {U,} be a sequence of block mappings gener-
ated by S1,S2,...,Sr, an1,0m2,...,Qny and wp(l),wn(2),...,wy(r). Let {z,} be
a sequence generated by r1 =x € E, and

Yn = Upwp,

Cn = {Z € E : V(ynaz) S V(ﬂfn,Z)},
D,={z€FE:{(x—x, Jr, — Jz) >0},

Tn+1 = Re,np,z, n=1,2,3,....

(6.2)

Then {x,} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto N_, F(S;).
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Proof. Put T,, = U, for each n € N and T = {S1,59,...,5,}. As in the proof of
Theorem 6.2, by Theorem 6.1 and Lemma 5.5 we obtain the desired result. O

As a direct consequence of Theorem 6.3, we have the following result which is
connected with [14].

Theorem 6.4. Let E be a uniformly smooth and uniformly convex Banach space, let
T be a generalized nonexpansive mapping from E into itself such that F(T) = F(T)
and let {an} be a sequence in [0,1) such that liminf, o, (1 — ay,) > 0. Let {z,} be
a sequence generated by r1 =x € E, and

Yn = QnTp + (1 - O‘n)Tﬂfna

Cn={2€ E:V(yn,2) < V(xpn,2)},

D, ={z€ E:{(x—x,,Jr, — Jz) > 0},
Tn+1 = Re,np,z, n=1,2,3,....

Then {x,} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto F(T).

Proof. In the case of r = 1, we know that U,, = ap,z, + (1 — )Ty, for each n € N.
Therefore, by Theorem 6.3 we obtain the desired result. O

7. SHRINKING PROJECTION METHODS

In this section, using Theorem 4.1, we prove a strong convergence theorem for
a family of generalized nonexpansive mappings in a Banach space by the shrinking
projection method introduced by Takahashi, Takeuchi and Kubota [31]. We extend
Takahashi-Takeuchi-Kubota’s result ([31]) to a more general Banach space and a
more general family of mappings.

Theorem 7.1. Let E be a uniformly smooth and uniformly convexr Banach space
and let {T,,} and T be families of generalized nonexpansive mappings from E into

itself which satisfy 0 # F(T) C N2, F(T;), F(T) = F(T) for each T € T, and the
condition (xx). Let {x,} be a sequence generated by xv1 =x € E, C;y = E, and

Yn = Tnan,

Cry1={2€Cp:V(yn,2) < V(zp,2)},

Tn+1 = Ro, v, n=1,2,3,....

Then {xn} converges strongly to Rp(ryw, where Rp(ry is a sunny generalized non-
expansive retraction of E onto F(T).

Proof. We first show that JC), is closed and convex for each n € N. Since FE is
reflexive, strictly convex and smooth, it is clear that JC; = JE = E* is closed and
convex. Suppose that JC} is closed and convex for some k € N. Let {z},} C JCi41
with lim,, o0 2, = 2* € E* and define z,, := J~12%. Then, {z,} C Cri1 C Ck.

Therefore, we have {2} C JC}. Since JC} is closed, then we obtain z* € JC}, and
hence J~!2* € C}. We also have from z,, € Cy,1 C C}, that

V(yk, J12*) = V(ag, J12¥)
= lwll® = llzrll® — 20k — 2, 2%)
_ : 2 2 _ *
= n}gnoo{Hka lzkll? = 2(yr — i, 25,) }
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- n}i—I)noo{V(ykv z2m) — V(zk, Zm)}
< lim 0=0

m—0o0
and hence J~!2* € Cyp1. So, we have z* € JCjyq. This implies that JCjyq is
closed. Let u*,v* € JCky1 and let A € (0,1). Then there exists u,v € Cx11 C Ck
such that v* = Ju and v* = Jv. Put z* := AJu+ (1 — A)Jv. From the convexity of
JCy, we obtain z* € JC}, and hence J~12* € C}. We also have from u,v € Cjyq C
C}. that

V(y, J L2*) = Vi(xg, JL2%)
= lll? =zl = 2(yx — 25, 2%)
= Nell® = llzxl® = 2(yx — ap, Au + (1 = A)Jv)
= Mlwel® = llzxl® = 20k — 21, Ju)}
(1= N {llyell® = lexl? = 2(yx — xx, Jo) }
= )\{V(yk, u) — V(a:k,u)} +(1- /\){V(yk,v) — V(xk,v)}
< A04+(1=X)-0=0

and hence J~!z* € Cpy1. So, we have z* € JCjy1. This implies that JCj,q is
convex. So, we have that JC%.1 is closed and convex. By induction, JC,, is closed
and convex for each n € N.

We next show that F(7) C C,, for each n € N. It is clear that F(T) C E = C}.
Suppose that F(T) C Cj for some k € N. Let p € F(T) € N2, F(T;). From the
definition of T}, we have

V(yk,p) = V(Trxk,p) < V(zk,p)

and hence p € Ci41. This means F(7) C Ck41. So, we have F(T) C C, for each
n € N. From Theorem 3.1, we have that C,, is a sunny generalized nonexpansive
retract of E for each n € N.

Put X,, ={z € E:V(yn, 2) < V(xp,2)} and Y;, = C,,. Then X,, and Y,, satisfies
the assumption of Theorem 4.1 and Cp 11 = X, NY,. Therefore, by Theorem 4.1,
the sequence {w,} converges strongly to Rpz. O

Using Theorem 7.1 and Lemma 5.2, we obtain the following result for a W-
mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 7.2. Let E be a uniformly smooth and uniformly convex Banach space,
let {Si}I_; be a finite family of generalized nonexpansive mappings from E into itself
such that Ni_, F(S;) is nonempty and F(S;) = F(S;) for eachi=1,2,...,r, and let
{an,in,i €N, 1 <i<r} beasetin (0,1] such that liminf,,_ o o i(1 — i) >0
and oy # 1 for each i = 1,2,...,r —1 and n € N. Let {W,} be a sequence of
W -mappings of E into itself generated by S1,S2,...,5, and ap 1,02, ..., 0. Let
{zn} be a sequence generated by xr1 =z € E, Cy = E, and

Yn = Wntn,
(7.1) Cnt1=1{2€Cy : V(yn,2) < V(xn,2)},
Tny1 = Re, v, n=1,2,3,....
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Then {x,} converges strongly to Rz, where R is a sunny generalized nonexpansive
retraction of E onto NI_, F(S;).

Proof. Put T,, = W, for each n € N and 7 = {51, 52,...,5,}. From Lemma 5.2,
we have that {T},} and 7 satisfy the condition (xx) with N2, F(T,) = F(T) =
N_,F(S;). Therefore, using Theorem 7.1, we obtain the desired result. O

Using Theorem 7.1 and Lemma 5.5, we also obtain the following result for a block
mapping generated by a finite family of generalized nonexpansive mappings.

Theorem 7.3. Let E be a uniformly smooth and uniformly conver Banach space,
let {Si}i_y be a finite family of generalized nonexpansive mappings from E into
itself such that F(S;) = F(S;) for each i = 1,2,...,r and Ni_ F(S;) # 0. Let
{an; n,ie N1 <i<r}cC]|0,1)and {wy(i) : n,i € N,1 <i <r} C (0,1] be
sets such that liminf, oy, (1 — @y, ;) > 0, liminf, wy (i) > 0 for each i = 1,2,...,r
and Y ;_ywy(i) =1 for alln € N, let {U,} be a sequence of block mappings gener-
ated by S1,S2,...,Sr, an1,0m2,...,Qn,y and wp(l),wn(2),...,wy(r). Let {z,} be
a sequence generated by r1 =x € £, C1 = E, and

Yn = Upxy,
(7.2) Cry1={2€Cp:V(yn,2) < V(zp,2)},
Tny1 = Ro, v, n=1,2,3,....

Then {x,} converges strongly to Rz, where R is a sunny generalized nonexpansive
retraction of E onto NI_, F(S;).

Proof. Put T,, = U,, for each n € N and 7 = {51, S2,...,5-}. As in the proof of
Theorem 7.2, by Theorem 7.1 and Lemma 5.5 we obtain the desired result. g

As a direct consequence of Theorem 7.3, we have the following result.

Theorem 7.4. Let E be a uniformly smooth and uniformly convex Banach space, let
T be a generalized nonexpansive mapping from E into itself such that F(T) = F(T)
and let {a,} be a sequence in [0,1) such that liminf, a,(1 — ay,) > 0. Let {z,} be
a sequence generated by xr1 =z € E, and

Yn = QpTp + (1 - an)Txny

Cn—|—1 = {Z S Cn : V(yn,Z) < V(xn)z)}a
Tny1 = Ro,yx, n=1,2,3,....

Then {z,} converges strongly to Rz, where R is a sunny generalized nonexpansive
retraction of E onto F(T).

Proof. In the case of r = 1, we know that U,, = ap,z, + (1 — )Tz, for each n € N.
Therefore, by Theorem 7.3 we obtain the desired result. U

8. DEDUCED RESULTS

In this section, we consider the problem of image recovery in a Banach space
by using the sunny generalized nonexpansive retraction which is a generalization
of the metric projection in a Hilbert space. These results for sunny generalized
nonexpansive retractions are new.
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Using Theorems 6.2 and 6.3, and Lemma 2.5, we first obtain the following two
results which are connected with the feasibility problem and the problem of image
recovery.

Corollary 8.1. Let E be a uniformly smooth and uniformly convex Banach space,
let {D;};_, be a finite family of sunny generalized nonexpansive retracts of E such
that NI_D; is nonempty, and let {on; : n,t € N;1 < i < r} be a set in (0,1]

such that iminf, ;o apni(1 — @) > 0 and oy # 1 for each i = 1,2,...,r — 1
and n € N. Let {W,} be a sequence of W-mappings of E into itself generated
by Ri,Ra,..., R, and oy, 1,002, . ..,00,, where each R; is the sunny generalized

nonezpansive retraction of E onto D;. Let {x,} be a sequence generated by (6.1).
Then {x,} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto N;_;D;.

Proof. From Lemma 2.5, we know that since each R; is a sunny generalized non-
expansive retraction, F'(R;) = F(R;) for each i. So, we have the desired result by
Theorem 6.2. g

Corollary 8.2. Let E be a uniformly smooth and uniformly convex Banach space,
let {D;}I_; be a finite family of sunny generalized nonexpansive retracts of E such
that N[_yD; # 0. Let {on; :n,i € N1 <i<r}Cl0,1) and {wy(i) : n,i € N,1 <
i <r} C(0,1] be sets such that liminf, oy ;(1—ay ;) > 0, liminf, wy, (i) > 0 for each
i=1,2,...,rand Y ;_jwn(i) =1 foralln € N, let {U,} be a sequence of block map-
pings generated by Ri,Ra,..., Ry, an1,0m2,...,0n, and wy(1),w,(2),...,wy(r),
where each R; is the sunny generalized nonexpansive retraction of E onto D;. Let
{zn} be a sequence generated by (6.2). Then {x,} converges strongly to Rx, where
R is a sunny generalized nonexpansive retraction of E onto N;_,D;.

Proof. In the same way as Corollary 8.1, we have the desired result by Theorem 6.3
and Lemma 2.5. O

Next, using Theorems 7.2 and 7.3, and Lemma 2.5, we obtain the following two
results which are connected with the feasibility problem and the problem of image
recovery.

Corollary 8.3. Let E be a uniformly smooth and uniformly convex Banach space,
let {D;};_, be a finite family of sunny generalized nonexpansive retracts of E such
that NI_yD; is nonempty, and let {on,; : n,t € N,;1 < i < r} be a set in (0,1]

such that iminf, ;o ani(1 — @) > 0 and o # 1 for each i = 1,2,...,r —1
and n € N. Let {W,} be a sequence of W-mappings of E into itself generated
by Ri,Ra,..., R, and oy, 1,042, . ..,00.,, where each R; is the sunny generalized

nonexpansive retraction of E onto D;. Let {x,} be a sequence generated by (7.1).
Then {x,} converges strongly to Rx, where R is a sunny generalized nonexpansive
retraction of E onto N;_;D;.

Proof. From Lemma 2.5, we know that since each R; is a sunny generalized non-
expansive retraction, F'(R;) = F(R;) for each i. So, we have the desired result by
Theorem 7.2. 0

Corollary 8.4. Let E be a uniformly smooth and uniformly convex Banach space,
let {D;}I_; be a finite family of sunny generalized nonexpansive retracts of E such



STRONG CONVERGENCE THEOREMS FOR FINITE NONLINEAR MAPPINGS 427

that N[_yD; # 0. Let {on; :n,i € N1 <i<r}C0,1) and {wy(i) : n,i € N,1 <
i <r} C(0,1] be sets such that liminf, ay ;(1—ay ;) > 0, liminf, wy, (i) > 0 for each
i=1,2,...,rand Y ;_wn(i) =1 for alln € N, let {U,} be a sequence of block map-
pings generated by Si,S2,...,5r, an1,0n2,..., 05, and wy(1l),w,(2),... ,wy(r),
where each R; is the sunny generalized nonexrpansive retraction of E onto D;. Let
{zn} be a sequence generated by (7.2). Then {x,} converges strongly to Rx, where
R is a sunny generalized nonexpansive retraction of E onto N;_,D;.

Proof. In the same way as Corollary 8.3, we have the desired result by Theorem 7.3
and Lemma 2.5. O
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