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EXTENDING THE CLASSICAL VECTOR WOLFE AND

MOND-WEIR DUALITY CONCEPTS VIA PERTURBATIONS

RADU IOAN BOŢ AND SORIN-MIHAI GRAD

Abstract. Considering a general vector optimization problem, we attach to it
by means of perturbation theory new vector duals. When the primal problem
and the perturbation function are particularized different vector dual problems
are obtained. In the special case of a constrained vector optimization problem the
classical Wolfe and Mond-Weir duals to the latter, respectively, can be obtained
from the general ones by using the Lagrange perturbation.

1. Introduction and preliminaries

The already classical duality concepts due to Wolfe and, respectively, Mond and
Weir, were considered first in the scalar case, but soon they were extended for
vector optimization problems, too. Thus, a flourishing literature dealing with this
topic appeared, developing mainly in the differential case by means of various gen-
eralized convexity notions. This is a direction we do not embrace in this paper
where we embed the Wolfe and Mond-Weir duality concepts in two classes of vector
optimization problems defined via perturbations, respectively, extending thus the
investigations performed in the scalar case in [1]. Even if most of the literature on
vector Wolfe duality and vector Mond-Weir duality is done in finitely dimensional
spaces, we work here in the very general setting of separated locally convex vector
spaces. However, when the framework is particularized to the classical one from the
literature we rediscover as special cases of the vector duals we introduce here the
classical vector Wolfe and Mond-Weir dual problems.

Consider two separated locally convex vector spaces X and Y and their topolog-
ical dual spaces X∗ and Y ∗, respectively, endowed with the corresponding weak∗

topologies, and denote by ⟨x∗, x⟩ = x∗(x) the value at x ∈ X of the linear contin-
uous functional x∗ ∈ X∗. A cone K ⊆ X is a nonempty subset of X which fulfills
λK ⊆ K for all λ ≥ 0. A cone K ⊆ X is said to be nontrivial if K ̸= {0} and
K ̸= X and pointed if K ∩ (−K) = {0}. On Y we consider the partial ordering
“5C” induced by the convex cone C ⊆ Y , defined by z 5C y ⇔ y − z ∈ C when
z, y ∈ Y . We use also the notation z ≤C y to write more compact that z 5C y
and z ̸= y, where z, y ∈ Y . To Y we attach a greatest element with respect to
“5C”, which does not belong to Y , denoted by ∞C and let Y • = Y ∪ {∞C}.
Then for any y ∈ Y • one has y 5C ∞C and we consider on Y • the operations
y+∞C = ∞C +y = ∞C for all y ∈ Y and t ·∞C = ∞C for all t ≥ 0. The dual cone

2010 Mathematics Subject Classification. 49N15, 90C25, 90C29.
Key words and phrases. Wolfe duality, Mond-Weir duality, conjugate functions, convex subdif-

ferentials, vector duality.
Research partially supported by DFG (German Research Foundation), project WA 922/1-3.
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of C is C∗ = {y∗ ∈ Y ∗ : ⟨y∗, y⟩ ≥ 0 ∀y ∈ C}. By convention, ⟨v∗,∞C⟩ = +∞ for all
v∗ ∈ C∗. Given a subset U of X, by cl(U), lin(U), aff(U), cone(U), ri(U), dim(U),
δU and σU we denote its closure, linear hull, affine hull, conical hull, relative inte-
rior, dimension, indicator function and support function, respectively. Moreover,
if U is convex its strong quasi relative interior is sqri(U) =

{
x ∈ U : cone(U − x)

is a closed linear subspace
}
. In vector optimization it is often used also the quasi

interior of the dual cone of K, K∗0 :=
{
x∗ ∈ K∗ : ⟨x∗, x⟩ > 0 for all x ∈ K\{0}

}
.

Note that in the literature it is a common practice to name the set from above like
this and in [2, Proposition 2.1.1] and the comments following it one can find justi-
ficatory explanations. We consider also the projection function PrX : X × Y → X,
defined by PrX(x, y) = x for all (x, y) ∈ X × Y .

Having a function f : X → R we use the classical notations for domain dom f =
{x ∈ X : f(x) < +∞}, epigraph epi f = {(x, r) ∈ X × R : f(x) ≤ r}, lower
semicontinuous hull f̄ : X → R and conjugate function f∗ : X∗ → R, f∗(x∗) =
sup{⟨x∗, x⟩ − f(x) : x ∈ X}. We call f proper if f(x) > −∞ for all x ∈ X and
dom f ̸= ∅. For f proper, if f(x) ∈ R the (convex) subdifferential of f at x is
∂f(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥ ⟨x∗, y − x⟩ ∀y ∈ X}, while if f(x) = +∞ we
take by convention ∂f(x) = ∅. Note that for U ⊆ X we have for all x ∈ U that
∂δU (x) = NU (x), the latter being the normal cone of U at x. Between a function
and its conjugate there is the Young-Fenchel inequality f∗(x∗)+f(x) ≥ ⟨x∗, x⟩ for all
x ∈ X and x∗ ∈ X∗. This inequality is fulfilled as equality if and only if x∗ ∈ ∂f(x).
Considering for each λ ∈ R the function λf : X → R, (λf)(x) = λf(x) for x ∈ X,
note that when λ = 0 we take 0f = δdom f . Given a linear continuous mapping
A : X → Y , we have its adjoint A∗ : Y ∗ → X∗ given by ⟨A∗y∗, x⟩ = ⟨y∗, Ax⟩ for
any (x, y∗) ∈ X × Y ∗.
For a vector function h : X → Y • one has

· h is proper if its domain domh = {x ∈ X : h(x) ∈ Y } is nonempty,
· h is C-convex if h(tx+(1− t)y) 5C th(x)+(1− t)h(y) ∀x, y ∈ X ∀t ∈ [0, 1],
· h is C-epi-closed if C is closed and its C-epigraph epiCh = {(x, y) ∈ X×Y :
y ∈ h(x) + C} is closed,

· h is C-lower semicontinuous if for every x ∈ X, each neighborhood W of
zero in Y and for any b ∈ Y satisfying b 5C h(x), there exists a neighborhood
U of x in X such that h(U) ⊆ b+W + Y ∪ {+∞C}.

Consider also, for v∗ ∈ C∗ the function (v∗h) : X → R defined by (v∗h)(x) =
⟨v∗, h(x)⟩, x ∈ X. One can show that if h is C-lower semicontinuous then (v∗h) is
lower semicontinuous whenever v∗ ∈ C∗\{0}. Moreover, if C is closed, then every
C-lower semicontinuous vector function is also C-epi-closed, but, as [2, Example
2.2.6] shows, not all C-epi-closed vector functions are C-lower semicontinuous.

The vector optimization problems we consider in this paper consist of vector-
minimizing and vector-maximizing a vector function with respect to the partial
ordering induced in the image space of the vector function by a pointed convex
cone. As notions of solutions for vector optimization problems we rely on the
classical efficient and properly efficient solutions, the latter considered with respect
to the linear scalarization. For an exhaustive review of the proper efficiency notions
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considered in the literature and the relations between them we refer to [2, Section
2.4].

2. General Wolfe and Mond-Weir type duals via perturbations

Let X, Y and V be separated locally convex vector spaces, with V partially
ordered by the nontrivial pointed convex cone K ⊆ V . Let F : X → V • be a proper
vector function and consider the general vector-minimization problem

(PV G) Min
x∈X

F (x).

The solution concepts we consider for this vector optimization problem are the
following ones.

Definition 2.1. An element x̄ ∈ X is said to be an efficient solution to the vector
optimization problem (PV G) if x̄ ∈ domF and for all x ∈ domF from F (x) 5K

F (x̄) follows F (x̄) = F (x).

Definition 2.2. An element x̄ ∈ X is said to be a properly efficient solution to the
vector optimization problem (PV G) if there exists v∗ ∈ K∗0 such that (v∗F )(x̄) ≤
(v∗F )(x) for all x ∈ X. The set of all properly efficient solutions to (PV G) is called
the proper efficiency set of (PV G), being denoted by PE(PV G). Denote also by
PMin(PV G) the set ∪x∈PE(PV G)F (x).

Remark 2.3. Every properly efficient solution to (PV G) belongs to domF and it is
also an efficient solution to the same vector optimization problem.

Consider now the vector perturbation function Φ : X × Y → V • which fulfills
Φ(x, 0) = F (x) for all x ∈ X. We call Y the perturbation space and its elements
perturbation variables. Then 0 ∈ PrY (domΦ) and thus Φ is proper. The primal
vector optimization problem introduced above can be reformulated as

(PV G) Min
x∈X

Φ(x, 0).

Inspired by the way conjugate dual problems are attached to a given primal
problem via perturbations in the scalar case and by the investigations from [1], where
we embedded the classical Wolfe and Mond-Weir duality concepts into classes of
scalar dual problems obtained via perturbation theory, incorporating also ideas from
different papers on Wolfe and Mond-Weir vector duality like [4, 17, 11, 6, 12, 15],
we attach to (PV G) the following vector dual problems with respect to properly
efficient solutions

(DVGW ) Max
(v∗,y∗,u,y,r)∈BG

W

hGW (v∗, y∗, u, y, r),

where

BG
W =

{
(v∗, y∗, u, y, r) ∈ K∗0 × Y ∗ ×X × Y × (K\{0}) : (0, y∗) ∈ ∂(v∗Φ)(u, y)

}
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and

hGW (v∗, y∗, u, y, r) = Φ(u, y)− ⟨y∗, y⟩
⟨v∗, r⟩

r

and, respectively,

(DVGM ) Max
(v∗,y∗,u)∈BG

M

hGM (v∗, y∗, u),

where
BG
M =

{
(v∗, y∗, u) ∈ K∗0 × Y ∗ ×X : (0, y∗) ∈ ∂(v∗Φ)(u, 0)

}
and

hGM (v∗, y∗, u) = Φ(u, 0).

Remark 2.4. Fixing r ∈ K\{0}, we can construct, starting from (DVGW ), another
dual problem to (PV G), namely

(DVGW r) Max
(v∗,y∗,u,y)∈BG

Wr

hGW r(v∗, y∗, u, y),

where

BG
W r =

{
(v∗, y∗, u, y) ∈ K∗0 × Y ∗ ×X × Y : (0, y∗) ∈ ∂(v∗Φ)(u, y), ⟨v∗, r⟩ = 1

}
and

hGW r(v∗, y∗, u, y) = Φ(u, y)− ⟨y∗, y⟩r.
In this way one introduces a whole family of vector duals to (PV G).

For these vector-maximization problems we consider efficient solutions, defined
below for (DVGW ) and analogously for the others.

Definition 2.5. An element (v̄∗, ȳ∗, ū, ȳ, r̄) ∈ BG
W is said to be an efficient solu-

tion to the vector optimization problem (DVGW ) if (v̄∗, ȳ∗, ū, ȳ, r̄) ∈ domhGW and
for all (v∗, y∗, u, y, r) ∈ BG

W from hGW (v̄∗, ȳ∗, ū, ȳ, r̄) 5K hGW (v∗, y∗, u, y, r) follows

hGW (v̄∗, ȳ∗, ū, ȳ, r̄) = hGW (v∗, y∗, u, y, r). The set of all efficient solutions to (DVGW )
is called the efficiency set of (DVGW ), being denoted by E(DVGW ). Denote also
by Max(DVGW ) the set ∪(v∗,y∗,u,y,r)∈E(DV GW )h

G
W (v∗, y∗, u, y, r), called the maximal

set of the problem (DVGW ).

From the way the vector duals are defined above one can obtain the following
results involving the images of their feasible sets via their objective functions.

Proposition 2.6. It holds

hGM (BG
M ) ⊆

∪
r∈K\{0}

hGW r(BG
W r) = hGW (BG

W ).

Proof. Take (v∗, y∗, u) ∈ BG
M . Then v∗ ∈ K∗0 and there exists r ∈ K\{0} such

that ⟨v∗, r⟩ = 1. Thus (v∗, y∗, u, 0) ∈ BG
W r and hGW r(v∗, y∗, u, 0) = hGM (v∗, y∗, u) =

Φ(u, 0) = F (u).
Let now r ∈ K\{0} and (v∗, y∗, u, y) ∈ BG

W r . It is obvious that (v∗, y∗, u, y, r)

∈ BG
W and hGW (v∗, y∗, u, y, r) = hGW r(v∗, y∗, u, y) = Φ(u, y)− ⟨y∗, y⟩r.

Finally, if (v∗, y∗, u, y, r) ∈ BG
W , then taking s = (1/⟨v∗, r⟩)r ∈ K\{0}, it follows

⟨v∗, s⟩ = 1 and, consequently, (v∗, y∗, u, y) ∈ BG
W s . Moreover, hGW (v∗, y∗, u, y, r) =

hGW s(v∗, y∗, u, y) = Φ(u, y)− ⟨y∗, y⟩s. �
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A situation where the inclusion from Proposition 2.6 is strictly fulfilled will be
given later in Example 4.3.

Remark 2.7. It is a simple verification to show that if (v∗, y∗, u, y, r), (v∗, y∗, u, y, r̄) ∈
BG
W such that ⟨y∗, y⟩ ̸= 0 and hGW (v∗, y∗, u, y, r)−hGW (v∗, y∗, u, y, r̄) ∈ K, then r = r̄.

Let us prove now that for the just introduced dual problems there is weak duality.

Theorem 2.8. There are no x ∈ X and (v∗, y∗, u, y, r) ∈ BG
W such that F (x) ≤K

hGW (v∗, y∗, u, y, r).

Proof. Assume to the contrary that there exist x ∈ X and (v∗, y∗, u, y, r) ∈ BG
W

fulfilling F (x) ≤K hGW (v∗, y∗, u, y, r). Then x ∈ domF and it follows

(1)

⟨
v∗,Φ(u, y)− ⟨y∗, y⟩

⟨v∗, r⟩
r − Φ(x, 0)

⟩
> 0.

On the other hand, from the feasibility of (v∗, y∗, u, y, r) to (DVGW ), it follows
(v∗Φ)(x, 0)− (v∗Φ)(u, y) ≥ ⟨y∗, 0− y⟩, from which⟨

v∗,Φ(u, y)− ⟨y∗, y⟩
⟨v∗, r⟩

r − Φ(x, 0)

⟩
≤ ⟨y∗, y⟩ −

⟨
v∗,

⟨y∗, y⟩
⟨v∗, r⟩

r

⟩
= 0.

This leads to a contradiction to the strict inequality proven above. �
By making use of Theorem 2.8 and Proposition 2.6, one can prove also the fol-

lowing two weak duality statements involving the other vector duals to (PV G)
introduced above.

Theorem 2.9. There are no x ∈ X and (v∗, y∗, u) ∈ BG
M such that F (x) ≤K

hGM (v∗, y∗, u).

Theorem 2.10. Let r ∈ K\{0}. Then there are no x ∈ X and (v∗, y∗, u, y) ∈ BG
W r

such that F (x) ≤K hGW r(v∗, y∗, u, y).

One of the directions in which both Wolfe and Mond-Weir duality concepts were
developed is towards introducing dual problems for which strong duality holds with-
out asking the fulfillment of a regularity condition (see [14, 7, 16]). Having the
following results, (DVGM ) can be considered as such a vector dual problem to
(PV G).

Proposition 2.11. One always has BG
M = E(DVGM ) and hGM (BG

M ) = Max (DVGM )
⊆ PMin(PV G).

Proof. If BG
M = ∅ there is nothing to prove. Assume thus that there is some

(v∗, y∗, u) ∈ BG
M . Then (v∗Φ)∗(0, y∗) + (v∗Φ)(u, 0) = 0, which implies (v∗Φ)(u, 0) =

infx∈X,y∈Y [(v
∗Φ)(x, y)−⟨y∗, y⟩] ≤ infx∈X(v∗Φ)(x, 0). Consequently, u ∈ PE(PV G)

and Φ(u, 0) = F (u) is a value taken by the objective functions of both (PV G)
and (DVGM ). Assuming that (v∗, y∗, u) /∈ E(DVGM ), a contradiction is im-
mediately obtained by employing Theorem 2.9. Consequently, BG

M = E(DVGM )
and using that u ∈ PE(PV G) we obtain also that hGM (BG

M ) = Max(DVGM ) ⊆
PMin(PV G). �

Two immediate consequences of this assertion follow.
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Corollary 2.12. If (v̄∗, ȳ∗, ū, 0, r̄) ∈ BG
W , then (v̄∗, ȳ∗, ū, 0, r̄) ∈ E(DVGW ), ū ∈

PE(PV G) and F (ū) = hGW (v̄∗, ȳ∗, ū, 0, r̄).

Proof. If (v̄∗, ȳ∗, ū, 0, r̄) ∈ BG
W , then it can be immediately verified that

F (ū) = hGW (v̄∗, ȳ∗, ū, 0, r̄) and (v̄∗, ȳ∗, ū) ∈ BG
M . By Proposition 2.11 it follows that

(v̄∗, ȳ∗, ū) ∈ E(DVGM ) and, consequently, ū ∈ PE(PV G). Knowing these, the
efficiency of (v̄∗, ȳ∗, ū, 0, r̄) to (DVGW ) follows by employing Theorem 2.8. �
Corollary 2.13. Let r̄ ∈ K\{0}. If (v̄∗, ȳ∗, ū, 0) ∈ BG

W r̄ , then (v̄∗, ȳ∗, ū, 0, r̄) ∈
E(DVGW ), (v̄∗, ȳ∗, ū, 0) ∈ E(DVGW r̄), ū ∈ PE(PV G) and F (ū) = hGW (v̄∗, ȳ∗,
ū, 0, r̄) = hGW r̄(v̄∗, ȳ∗, ū, 0).

Next we give some results involving the maximal sets of the vector duals in-
troduced above. Combining Proposition 2.6 and Proposition 2.11, we obtain the
following statement.

Proposition 2.14. It holds

hGM (BG
M ) = Max(DVGM ) ⊆ Max(DVGW ) ⊆

∪
r∈K\{0}

Max(DVGW r).

Proof. From Proposition 2.6 and Proposition 2.11 it is known that hGM (BG
M ) =

Max(DVGM ) ⊆ PMin(PV G) ∩ hGW (BG
W ). On the other hand, Theorem 2.8 yields

that PMin(PV G) ∩ hGW (BG
W ) ⊆ Max(DVGW ) and the first inclusion is proven.

To demonstrate the second one, let d̄ ∈ Max(DVGW ). This means that there
exists (v̄∗, ȳ∗, ū, ȳ, r̄) ∈ E(DVGW ) such that hGW (v̄∗, ȳ∗, ū, ȳ, r̄) = d̄. Taking s̄ =

(1/⟨v̄∗, r̄⟩)r̄, we obtain that (v̄∗, ȳ∗, ū, ȳ) ∈ BG
W s̄ and hGW s̄(v̄∗, ȳ∗, ū, ȳ) = d̄. Assuming

that (v̄∗, ȳ∗, ū, ȳ) were not efficient to (DVGW s̄) would bring, via Proposition 2.6,
a contradiction to the efficiency of (v̄∗, ȳ∗, ū, ȳ, r̄) to (DVGW ). �

Now we turn our attention to strong duality for the vector duals introduced in
this paper. As usual in convex optimization, we consider regularity conditions that
ensure the disappearance of the duality gap. Following [2], we introduce four types
of regularity conditions, namely a classical one involving continuity

(RCΦ
1 ) ∃x′ ∈ X such that (x′, 0) ∈ domΦ and Φ(x′, ·) is continuous at 0,

a weak interiority type one

(RCΦ
2 ) X and Y are Fréchet spaces, Φ is C-lower semicontinuous

and 0 ∈ sqri(PrY (domΦ)),

another interiority type one which works in finitely dimensional spaces

(RCΦ
3 ) dim(lin(PrY (domΦ))) < +∞ and 0 ∈ ri(PrY (domΦ)),

and finally a closedness type one

(RCΦ
4 ) Φ is C-lower semicontinuous and PrX∗×R(epi(v

∗Φ)∗) is
closed in the topology w(X∗, X)× R for all v∗ ∈ K∗0.

Theorem 2.15. Let r̄ ∈ K\{0}. Assume that Φ is a K-convex function and one
of the regularity conditions (RCΦ

i ), i ∈ {1, 2, 3, 4}, is fulfilled. If x̄ ∈ PE(PV G),
then there exist v̄∗ ∈ K∗0 and ȳ∗ ∈ Y ∗ such that (v̄∗, ȳ∗, x̄, 0, r̄) ∈ E(DVGW ),
(v̄∗, ȳ∗, x̄, 0) ∈ E(DVGW r̄), (v̄∗, ȳ∗, x̄) ∈ E(DVGM ) and F (x̄) = hGW (v̄∗, ȳ∗, x̄, 0, r̄) =

hGW r̄(v̄∗, ȳ∗, x̄, 0) = hGM (v̄∗, ȳ∗, x̄).
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Proof. Since x̄ ∈ PE(PV G), there exists v̄∗ ∈ K∗0 such that ⟨v̄∗, F (x̄)⟩ ≤ ⟨v̄∗, F (x)⟩
for all x ∈ X. As r̄ ∈ K\{0} assuming that ⟨v̄∗, r̄⟩ = 1 does not imply losing the
generality. From [2] it is known that each of the regularity conditions (RCΦ

i ),
i ∈ {1, 2, 3, 4}, ensures the stability of the scalar optimization problem

inf
x∈X

(v̄∗Φ)(x, 0),

i.e. there exists ȳ∗ ∈ Y ∗ such that infx∈X(v̄∗Φ)(x, 0) = −(v̄∗Φ)∗ (0,−ȳ∗). This
relation and the inequality regarding the proper efficiency of x̄ yield (v̄∗Φ)(x̄, 0) +
(v̄∗Φ)∗(0, ȳ∗) = 0, which is nothing but (0, ȳ∗) ∈ ∂(v̄∗Φ)(x̄, 0). Then (v̄∗, ȳ∗, x̄) ∈
BG
M and, moreover, (v̄∗, ȳ∗, x̄, 0) ∈ BG

W r̄ . The conclusion follows by using Proposition
2.11 and Corollary 2.13. �

Remark 2.16. In case V = R and K = R+, identifying V • with R ∪ {+∞} and
∞R+ with +∞, and taking the function F : X → R proper we rediscover the
Wolfe and Mond-Weir type scalar duality schemes from [1]. More precisely the
problem (PV G) becomes then the general scalar optimization problem (PG) from
the mentioned paper, while the duals (DVGW ) and (DVGW r), r > 0, turn out to
coincide with the general scalar Wolfe type dual to (PG), denoted in [1] (DGW ),
and (DVGM ) is nothing but the general scalar Mond-Weir type dual (DGM ). This
sustains the way we named the vector duals introduced in this paper and the claim
that we extend to vector duality the investigations from the scalar case presented
in [1].

In the next sections we consider as special instances of (PV G) the two main
classes of vector optimization problems, namely we work with an unconstrained
and a constrained vector optimization problem, respectively. To these problems we
attach vector duals that are special cases of (DVGM ), (DVGW ) and (DVGW r),
r > 0, obtained for different choices of the perturbation vector function Φ.

3. Wolfe and Mond-Weir type vector duals for unconstrained
vector optimization problems

Let X, Y and V be separated locally convex vector spaces, with V partially
ordered by the nontrivial pointed convex cone K ⊆ V . Further, let f : X → V • and
g : Y → V • be given proper vector functions and A : X → Y a linear continuous
mapping such that dom f ∩A−1(dom g) ̸= ∅.

The primal unconstrained vector optimization problem we consider is

(PV A) Min
x∈X

[f(x) + g(Ax)].

We work with properly efficient solutions in the sense of linear scalarization to
(PV A), while for the vector dual we assign to it in this section we consider efficient
solutions. Since (PV A) is a special case of (PV G) obtained by taking F = f+g◦A,
we use the approach developed in the previous section in order to deal with it via
duality. More precisely, for a “good” choice of the vector perturbation function Φ
we obtain vector duals to (PV A) which are special cases of (DVGM ) and (DVGW ).
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In order to attach vector dual problems to (PV A), consider the vector perturba-
tion function

ΦA : X × Y → V •, ΦA(x, y) = f(x) + g(Ax+ y).

For v∗ ∈ K∗0, u ∈ X, y ∈ Y and y∗ ∈ Y ∗ one has (0, y∗) ∈ ∂(v∗ΦA)(u, y) if
and only if (v∗ΦA)∗(0, y∗) + (v∗ΦA)(u, y) = ⟨y∗, y⟩. This is further equivalent to
(v∗f)∗(−A∗y∗) + (v∗g)∗(y∗) + f(u) + g(Au+ y) = ⟨y∗, y⟩. Using the Young-Fenchel
inequality, the last equality yields that (0, y∗) ∈ ∂(v∗ΦA)(u, y) if and only if y∗ ∈
∂(v∗g)(Au+ y) and −A∗y∗ ∈ ∂(v∗f)(u). Now we are ready to formulate the vector
duals to (PV A) that are special cases of (DVGM ) and (DVGW ), namely

(DV AW ) Max
(v∗,y∗,u,y,r)∈BA

W

hAW (v∗, y∗, u, y, r),

where

BA
W =

{
(v∗, y∗, u, y, r) ∈ K∗0 × Y ∗ ×X × Y × (K\{0}) :

y∗ ∈ (A∗)−1(−∂(v∗f)(u)) ∩ ∂(v∗g)(Au+ y)
}

and

hAW (v∗, y∗, u, y, r) = f(u) + g(Au+ y)− ⟨y∗, y⟩
⟨v∗, r⟩

r

and

(DV AM ) Max
(v∗,u)∈BA

M

hAM (v∗, u),

where

BA
M =

{
(v∗, u) ∈ K∗0 ×X : 0 ∈ (A∗)−1(−∂(v∗f)(u))− ∂(v∗g)(Au)

}
and

hAW (v∗, u) = f(u) + g(Au).

We can consider also the particularizations of the family of vector duals intro-
duced in Remark 2.4. For each r ∈ K\{0} we have the vector dual

(DV AW r) Max
(v∗,y∗,u,y)∈BA

Wr

hAW r(v∗, y∗, u, y),

where

BA
W r =

{
(v∗, y∗, u, y) ∈ K∗0 × Y ∗ ×X × Y : ⟨v∗, r⟩ = 1,

y∗ ∈ (A∗)−1(−∂(v∗f)(u)) ∩ ∂(v∗g)(Au+ y)
}

and

hAW (v∗, y∗, u, y) = f(u) + g(Au+ y)− ⟨y∗, y⟩r.
The propositions, corollaries and theorems from Section 2, as well as Remark 2.7

and Remark 2.16 can be particularized for the framework considered in this section.
We give here only the weak and strong duality statements and the connection to
the scalar case.

Theorem 3.1. There are no x ∈ X and (v∗, y∗, u, y, r) ∈ BA
W such that f(x) +

g(Ax) ≤K hAW (v∗, y∗, u, y, r).
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Theorem 3.2. There are no x ∈ X and (v∗, u) ∈ BA
M such that f(x) + g(Ax) ≤K

hAM (v∗, u).

Theorem 3.3. Let r ∈ K\{0}. Then there are no x ∈ X and (v∗, y∗, u, y) ∈ BA
W r

such that f(x) + g(Ax) ≤K hAW r(v∗, y∗, u, y).

For strong duality, which follows directly from Theorem 2.15, besides convexity
assumptions which guarantee the K-convexity of the vector perturbation function
we use regularity conditions, too, obtained by particularizing (RCΦ

i ), i ∈ {1, 2, 3, 4},
namely

(RCA
1 ) ∃x′ ∈ dom f ∩A−1(dom g) such that g is continuous at Ax′,

(RCA
2 ) X and Y are Fréchet spaces, f and g are C-lower

semicontinuous and 0 ∈ sqri(dom g −A(dom f)),

(RCA
3 ) dim(lin(dom g−A(dom f)))<+∞ and ri(A(dom f))∩ri(dom g) ̸=∅,

and, respectively,

(RCA
4 ) f and g are C-lower semicontinuous and epi(v∗f)∗+(A∗×idR)

(epi(v∗g)∗) is closed in the topology w(X∗, X)×R for all v∗∈K∗0,

where (A∗ × idR)(epi(v
∗g)∗) = {(x∗, r) ∈ X∗ × R : ∃y∗ ∈ Y ∗ such that A∗y∗ = x∗

and (y∗, r) ∈ epi(v∗g)∗}.

Theorem 3.4. Let r̄ ∈ K\{0}. Assume that f and g are K-convex vector functions
and one of the regularity conditions (RCA

i ), i ∈ {1, 2, 3, 4}, is fulfilled. If x̄ ∈
PE(PV A), then there exist v̄∗ ∈ K∗0 and ȳ∗ ∈ Y ∗ such that (v̄∗, ȳ∗, x̄, 0, r̄) ∈
E(DV AW ), (v̄∗, ȳ∗, x̄, 0) ∈ E(DV AW r̄), (v̄∗, x̄) ∈ E(DV AM ) and f(x̄) + g(Ax̄) =
hAW (v̄∗, ȳ∗, x̄, 0, r̄) = hAW r̄(v̄∗, ȳ∗, x̄, 0) = hAM (v̄∗, x̄).

Remark 3.5. In case V = R and K = R+, taking the functions f : X → R and
g : Y → R proper we rediscover the Wolfe and Mond-Weir duality schemes for
unconstrained scalar optimization problems from [1]. More precisely the problem
(PV A) becomes then the unconstrained scalar optimization problem (PA) from the
mentioned paper, the duals (DV AW ) and (DV AW r), r > 0, turn out to coincide
with the scalar Wolfe type dual to (PA) denoted (DA

W ) and (DV AM ) is nothing
but the Mond-Weir type dual (DA

M ).

4. Wolfe and Mond-Weir type vector duals for constrained vector
optimization problems

Let X, Y and V be separated locally convex vector spaces, with Y partially
ordered by the convex cone C ⊆ Y and V partially ordered by the nontrivial pointed
convex cone K ⊆ V . Consider the nonempty convex set S ⊆ X and the proper
vector functions f : X → V • and g : X → Y • fulfilling dom f ∩ S ∩ g−1(C) ̸= ∅.
Let the primal vector optimization problem with geometric and cone constraints

(PV C) Min
x∈A

f(x),

where

A =
{
x ∈ S : g(x) ∈ −C

}
.
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We work with properly efficient solutions in the sense of linear scalarization to it,
while for the vector dual we assign to it in this section we consider efficient solutions.
Since (PV C) is a special case of (PV G) obtained by taking

F : X → V •, F (x) =

{
f(x), if x ∈ A,
∞K , otherwise,

we use the approach developed in Section 2 in order to deal with it via duality.
More precisely, for convenient choices of the vector perturbation function Φ we
obtain vector duals to (PV C) which are special cases of (DVGM ) and (DVGW ).

Consider first the Lagrange type vector perturbation function

ΦCL : X × Y → V •, ΦCL(x, y) =

{
f(x), if x ∈ S, g(x) ∈ y − C,
∞K , otherwise.

For u ∈ X, y ∈ Y , v∗ ∈ K∗0 and y∗ ∈ Y ∗ we have (0, y∗) ∈ ∂(v∗ΦCL)(u, y) if and
only if (v∗ΦCL)∗(0, y∗) + (v∗ΦCL)(u, y) = ⟨y∗, y⟩, i.e. ((v∗f) − (y∗g) + δS)

∗(0) +
δC∗(−y∗) + f(u) + δS(u) + δ−C(g(u)− y) = ⟨y∗, y⟩. Using that δ∗−C = δC∗ , this can

be rewritten as
(
((v∗f)− (y∗g) + δS)

∗(0) + ((v∗f)− (y∗g) + δS)(u)
)
+
(
δ∗−C(−y∗) +

δ−C(g(u)− y)−⟨−y∗, g(u)− y⟩
)
= 0. Having the Young-Fenchel inequality and the

characterization of the subdifferential by its equality case, it follows that (0, y∗) ∈
∂(v∗ΦCL)(u, y) if and only if 0 ∈ ∂((v∗f)−(y∗g)+δS)(u), y

∗ ∈ −C∗ and δ−C(g(u)−
y)− ⟨−y∗, g(u)− y⟩ = 0. Thus, from (DVGW ) we obtain the following vector dual
to (PV C)

(DV CL
W ) Max

(v∗,y∗,u,y,r)∈BCL
W̃

hCL

W̃
(v∗, y∗, u, y, r),

where

BCL

W̃
=

{
(v∗, y∗, u, y, r) ∈ K∗0 × C∗ × S × Y × (K\{0}) : g(u)− y ∈ −C,

(y∗g)(u) = ⟨y∗, y⟩, 0 ∈ ∂((v∗f) + (y∗g) + δS)(u)
}

and

hCL

W̃
(v∗, y∗, u, y, r) = f(u) +

⟨y∗, y⟩
⟨v∗, r⟩

r,

which can be equivalently rewritten as

(DV CL
W ) Max

(v∗,y∗,u,r)∈BCL
W

hCL
W (v∗, y∗, u, r),

where

BCL
W =

{
(v∗, y∗, u, r) ∈ K∗0 × C∗ × S × (K\{0}) : 0 ∈ ∂((v∗f) + (y∗g) + δS)(u)

}
and

hCL
W (v∗, y∗, u, r) = f(u) +

⟨y∗, g(u)⟩
⟨v∗, r⟩

r,

further referred to as the vector Wolfe dual of Lagrange type, while the vector dual
to (PV C) that results from (DVGM ) is
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(DV CL
M ) Max

(v∗,y∗,u)∈BCL
M

hCL
M (v∗, y∗, u),

where

BCL
M =

{
(v∗, y∗, u) ∈K∗0 × C∗ × S : (y∗g)(u) ≥ 0, g(u) ∈ −C,

0 ∈ ∂((v∗f) + (y∗g) + δS)(u)
}

and

hCL
M (v∗, y∗, u, r) = f(u).

Note that in the constraints of this dual one can replace (y∗g)(u) ≥ 0 by (y∗g)(u) =

0 without altering anything since g(u) ∈ −C and y∗ ∈ C∗. Removing from BCL
M the

constraint g(u) ∈ −C, we obtain another vector dual to (PV C), namely

(DV CL
MW ) Max

(v∗,y∗,u)∈BCL
MW

hCL
MW (v∗, y∗, u),

where

BCL
MW =

{
(v∗, y∗, u) ∈ K∗0 × C∗ × S : (y∗g)(u) ≥ 0, 0 ∈ ∂((v∗f) + (y∗g) + δS)(u)

}
and

hCL
MW (v∗, y∗, u, r) = f(u),

further called the vector Mond-Weir dual of Lagrange type to (PV C). We can con-
sider also the particularizations of the family of vector duals introduced in Remark
2.4. For each r ∈ K\{0} we have the vector dual

(DV CL
W r) Max

(v∗,y∗,u)∈BCL
Wr

hCL
W r(v∗, y∗, u),

where

BCL
W r =

{
(v∗, y∗, u) ∈ K∗0 × C∗ ×X : ⟨v∗, r⟩ = 1, 0 ∈ ∂((v∗f) + (y∗g) + δS)(u)

}
and

hCL
W r(v

∗, y∗, u) = f(u) + ⟨y∗, g(u)⟩r.

Remark 4.1. Due to the way (DV CL
MW ) is constructed it is clear that hCL

M (BCL
M ) ⊆

hCL
MW (BCL

MW ). The following example shows that there are situations when the
inclusion is strict.

Example 4.2. Let X = R, Y = R, C = R+, Y
• = R ∪ {+∞}, V = R2, K = R2

+,

S = [0,+∞), f : R → R2, f(x) = (x, x)T , and g : R → R ∪ {+∞},

g(x) =

 −x, if x > 0,
2, if x = 0,
+∞, if x < 0.

For v̄∗ = (1/2, 1/2)T we have 0 ∈ ∂((v̄∗f)+(0g)+δS)(0) = (−∞, 1] and (0g)(0) = 0,

thus (v̄∗, 0, 0) ∈ BCL
MW , therefore (0, 0)T ∈ hCL

MW (BCL
MW ). On the other hand it can

be shown that BCL
M = ∅. Consequently, hCL

M (BCL
M ) ̸= hCL

MW (BCL
MW ).
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We give also an example where hCL
W r(BCL

W r)\hCL
M (BCL

M ) ̸= ∅, for an r ∈ K\{0}, i.e.
hCL
M (BCL

M ) ̸= hCL
W (BCL

W ) in general. Recall that via Proposition 2.6 one obtains that

hCL
M (BCL

M ) ⊆ ∪r∈K\{0}h
CL
W r(BCL

W r) = hCL
W (BCL

W ).

Example 4.3. Let X = R, Y = R2, C = R2
+, V = R2, K = R2

+, V
• = (R2)• =

R2 ∪ {∞R2
+
}, S = R+, f : R → (R2)•,

f(x) =


(

1
1

)
x if x > 0,

∞R2
+
, otherwise,

and g : R → R2, g(x) = (x− 1,−x)T . Like in [1, Example 2], it can be shown that

hCL
M (BCL

M ) = ∅, while for r = (1, 1)T , one has
(
(1/2, 1/2)T , (2, 3)T , 1

)
∈ BCL

W r , con-

sequently, (−2,−2)T ∈ hCL
W r(BCL

W r). Note that in this case BCL
MW = ∅, too. However,

the question whether hCL
MW (BCL

MW ) is in general a subset of hCL
W (BCL

W ) is still open.

Remark 4.4. Assume that f is aK-convex vector function and g is a C-convex vector
function. Since S is a convex set, it is a simple verification to see that the vector
perturbation function ΦCL is K-convex. Denote further ∆X3 = {(x, x, x) : x ∈ X}.
When one of the following conditions (see [2])

(i) f and g are continuous at a point in dom f ∩ dom g ∩ S;
(ii) dom f ∩ int(S) ∩ dom g ̸= ∅ and f or g is continuous at a point in dom f ∩

dom g;
(iii) X is a Fréchet space, S is closed, f is K-lower semicontinuous, g is C-lower

semicontinuous and 0 ∈ sqri(dom f × S × dom g −∆X3);
(iv) dim(lin(dom f×S×dom g−∆X3)) < +∞ and ri(dom f)∩ri(S)∩ri(dom g) ̸=

∅;
is satisfied, then, for all v∗ ∈ K∗0 and all y∗ ∈ C∗, it holds

∂((v∗f) + (y∗g) + δS)(x) = ∂(v∗f)(x) + ∂(y∗g)(x) +NS(x) ∀x ∈ X.

Consequently, when one of these situations occurs the constraint involving the sub-
differential in (DV CL

W ), (DV CL
W r), (DV CL

M ) and (DV CL
MW ) can be modified cor-

respondingly.

Remark 4.5. If X = Rn, Y = Rm, C = Rm
+ , V = Rk, K = Rk

+, f = (f1, . . . , fk)
T :

Rn → Rk and g = (g1, . . . , gm)T : Rn → Rm, and the functions fi, i = 1, . . . , k, and
gj , j = 1, . . . ,m, are convex, then (DV CL

W e), where e = (1, . . . , 1)T ∈ Rk, turns out
to be the nondifferentiable vector Wolfe dual problem mentioned in the literature
(see [7, 16, 9]), while (DV CL

MW ) is the nondifferentiable vector Mond-Weir dual
problem to (PV C). In case the functions fi, i = 1, . . . , k, and gj , j = 1, . . . ,m,
are moreover differentiable on S which is taken to be open and the subdifferentials
are replaced by gradients in the constraints, (DV CL

W r) turns out to be the classical
vector Wolfe dual problem from the literature (see [17] and, for the case r = e,
[11, 12, 15, 5]), while (DV CL

MW ) is the classical vector Mond-Weir dual problem to
(PV C) (cf. [14, 6, 11, 15, 5, 13]).

Like in the previous section, the results involving (PV G) and its vector duals
can be particularized for the problems introduced above, however we give here only
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the weak and strong duality statements involving (PV C) and its vector duals of
Lagrange type.

Theorem 4.6. There are no x ∈ A and (v∗, y∗, u, r) ∈ BCL
W such that f(x) ≤K

hCL
W (v∗, y∗, u, r)

Theorem 4.7. There are no x ∈ A and (v∗, y∗, u) ∈ BCL
M such that f(x) ≤K

hCL
M (v∗, y∗, u).

Theorem 4.8. r ∈ K\{0}. Then there are no x ∈ A and (v∗, y∗, u) ∈ BCL
W r such

that f(x) ≤K hCL
W r(v∗, y∗, u).

Analogously, one can prove also the following weak duality statement involving
(PV C) and (DV CL

MW ).

Theorem 4.9. There are no x ∈ A and (v∗, y∗, u) ∈ BCL
MW such that f(x) ≤K

hCL
MW (v∗, y∗, u).

For strong duality we particularize the regularity conditions (RCΦ
i ), i ∈ {1, 2, 3, 4},

obtaining (see [2, 1])

(RCCL
1 ) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − int(C),

which is the classical Slater constraint qualification extended to the vector case,

(RCCL
2 ) X and Y are Fréchet spaces, S is closed, f is K-lower

semicontinuous, g is C-epi-closed and
0 ∈ sqri

(
g(dom f ∩ S ∩ dom g) + C

)
,

(RCCL
3 ) dim (lin (g(dom f ∩ S ∩ dom g) + C)) < +∞ and

0 ∈ ri (g(dom f ∩ S ∩ dom g) + C),

and, respectively,

(RCCL
4 ) S is closed, f is K-lower semicontinuous, g is C-epi-closed

and
∪

y∗∈C∗
epi((v∗f) + (y∗g) + δS)

∗ is closed in the topology

w(X∗, X)× R for all v∗ ∈ K∗0.

Theorem 4.10. r̄ ∈ K\{0}. Assume that f is a K-convex vector function, g is a C-

convex vector function and one of the regularity conditions (RCCL
i ), i ∈ {1, 2, 3, 4},

is fulfilled. If x̄ ∈ PE(PV C), then there exist v̄∗ ∈ K∗0 and ȳ∗ ∈ C∗ such that
(v̄∗, ȳ∗, x̄, r̄) ∈ E(DV CL

W ), (v̄∗, ȳ∗, x̄) ∈ E(DV CL
W r̄)∩ E(DV CL

M )∩ E(DV CL
MW ) and

f(x̄) = hCL
W (v̄∗, ȳ∗, x̄, r̄) = hCL

W r̄(v̄∗, ȳ∗, x̄) = hCL
M (v̄∗, ȳ∗, x̄) = hCL

MW (v̄∗, ȳ∗, x̄).

Remark 4.11. When L ∈ Rk×n, A ∈ Rm×n, b ∈ Rm and Rk is partially ordered by
the nontrivial pointed closed convex cone K ⊆ Rk, one can consider the classical
linear vector optimization problem (cf. [8], see also [10])

(PV l) Min
x∈Rn

+,
Ax=b

Lx.

Among the interesting features of this vector optimization problem are the co-
incidence of its efficient and properly efficient solutions and also the fact that no
regularity condition is necessary in order to achieve strong duality. Of interest could
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be to see how do the vector duals to (PV l) derived from (DV CL
M ), (DV CL

MW ) and

(DV CL
W ), respectively, look like and then to compare them with the vector duals

to (PV l) treated in [3].

A second vector perturbation function that can be considered for (PV C) is the
Fenchel type vector perturbation function

ΦCF : X × Y → V •, ΦCF (x, y) =

{
f(x+ y), if x ∈ A,

∞K , otherwise.

Using it the following vector duals obtained as special cases of (DVGW ), (DVGM )
and (DVGW r), r ∈ K\{0}, can be attached to (PV C)

(DV CF
W ) Max

(v∗,y∗,u,y,r)∈BCF
W

hCF
W (v∗, y∗, u, y, r),

where

BCF
W =

{
(v∗, y∗, u, y, r) ∈ K∗0 × C∗ ×X × Y × (K\{0}) :

y∗ ∈ ∂(v∗f)(u+ y) ∩ (−NA(u))
}

and

hCF
W (v∗, y∗, u, y, r) = f(u+ y)− ⟨y∗, y⟩

⟨v∗, r⟩
r,

further referred to as the vector Wolfe dual of Fenchel type, the vector Mond-Weir
dual of Fenchel type

(DV CF
W ) Max

(v∗,u)∈BCF
M

hCF
M (v∗, u),

where

BCF
M =

{
(v∗, u) ∈ K∗0 ×X : 0 ∈ ∂(v∗f)(u) +NA(u)

}
and

hCF
M (v∗, u) = f(u),

and, for r ∈ K\{0},

(DV CF
W r) Max

(v∗,y∗,u,y)∈BCF
Wr

hCF
W r(v∗, y∗, u, y),

where

BCF
W r =

{
(v∗, y∗, u, y) ∈K∗0 × C∗ ×X × Y : ⟨v∗, r⟩ = 1,

y∗ ∈ ∂(v∗f)(u+ y) ∩ (−NA(u))
}

and

hCF
W r(v

∗, y∗, u, y) = f(u+ y)− ⟨y∗, y⟩r.
Rewriting (PV C) in the form of (PV A) (where g is taken to be δA and A the identity
operator), one can derive the vector duals of Fenchel type to (PV C) directly from
the vector duals considered in Section 3. Therefore in this case we do not give again
the weak and strong duality statements, since they can be obtained directly from
both the general case and the unconstrained case.
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The last vector perturbation function we consider in this section is the Fenchel-
Lagrange type vector perturbation function ΦCFL : X ×X × Y → V •,

ΦCFL(x, z, y) =

{
f(x+ z), if x ∈ S, g(x) ∈ y − C,

∞K , otherwise.

For v∗ ∈ K∗0, y∗ ∈ Y ∗, z∗ ∈ X∗, y ∈ Y and z ∈ X, one has (0, z∗, y∗) ∈
∂ΦCFL(u, z, y) if and only if u ∈ S, g(u) ∈ y − C and (v∗f)∗(z∗) + (−(y∗g) +
δS)

∗(−z∗) + δ−C∗(y∗) + f(u+ z) + δ−C(g(u)− y) + δS(u) = ⟨y∗, y⟩+ ⟨z∗, z⟩, which
is nothing but u ∈ S, g(u) ∈ y − C and(
(v∗f)∗(z∗) + (v∗f)(u+ z)− ⟨z∗, u+ z⟩) +

(
(−(y∗g)+ δS)

∗(−z∗) + (−(y∗g) + δS)(u)

−⟨−z∗, u⟩
)
+

(
δ∗−C(−y∗) + δ−C(g(u)− y)− ⟨−y∗, g(u)− y⟩

)
= 0.

Consequently, (0, z∗, y∗) ∈ ∂ΦCFL(u, z, y) if and only if u ∈ S, y∗ ∈ −C∗, g(u)−y ∈
−C, z∗ ∈ ∂f(u+ z) ∩ (−∂(−(y∗g) + δS)(u)) and (y∗g)(u) = ⟨y∗, y⟩. Consequently,
the vector duals to (PV C) obtained, by making use of the vector perturbation
function ΦCFL , from the vector duals introduced in Section 2 are

(DV CFL
W ) Max

(v∗,z∗,y∗,u,z,y,r)∈BCFL
W̃

hCFL

W̃
(v∗, z∗, y∗, u, z, y, r),

where

BCFL

W̃
=

{
(v∗, z∗, y∗, u, z, y, r) ∈ K∗0 ×X∗ × C∗ × S ×X × Y × (K\{0}) :

g(u)− y ∈ −C, (y∗g)(u) = ⟨y∗, y⟩,
z∗ ∈ ∂(v∗f)(u+ z) ∩ (−∂((y∗g) + δS))(u)

}
and

hCFL

W̃
(v∗, z∗, y∗, u, z, y, r) = f(u+ z)− ⟨y∗, y⟩+ ⟨z∗, z⟩

⟨v∗, r⟩
r,

which can be equivalently rewritten as

(DV CFL
W ) Max

(v∗,z∗,y∗,u,z,r)∈BCFL
W

hCFL
W (v∗, z∗, y∗, u, z, r),

where

BCFL
W =

{
(v∗, z∗, y∗, u, z, r) ∈ K∗0 ×X∗ × C∗ × S ×X × (K\{0}) :

z∗ ∈ ∂(v∗f)(u+ z) ∩ (−∂((y∗g) + δS))(u)
}

and

hCFL
W (v∗, z∗, y∗, u, z, r) = f(u+ z) +

(y∗g)(u)− ⟨z∗, z⟩
⟨v∗, r⟩

r,

which is the vector Wolfe dual of Fenchel-Lagrange type,

(DV CFL
M ) Max

(v∗,y∗,u)∈BCFL
M

hCFL
M (v∗, y∗, u),

where

BCFL
M =

{
(v∗, y∗, u) ∈ K∗0 × C∗ × S : (y∗g)(u) ≥ 0, g(u) ∈ −C,

0 ∈ ∂(v∗f)(u) + ∂((y∗g) + δS)(u)
}
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and
hCFL
M (v∗, y∗, u) = f(u)

and, for each r ∈ K\{0},

(DV CFL
W r) Max

(v∗,z∗,y∗,u,z)∈BCFL
Wr

hCFL
W r (v∗, z∗, y∗, u, z),

where

BCFL
W r =

{
(v∗, z∗, y∗, u, z) ∈ K∗0 ×X∗ × C∗ × S ×X : ⟨v∗, r⟩ = 1,

z∗ ∈ ∂(v∗f)(u+ z) ∩ (−∂((y∗g) + δS))(u)
}

and
hCFL
W r (v∗, z∗, y∗, u, z, r) = f(u+ z) +

(
(y∗g)(u)− ⟨z∗, z⟩

)
r.

Note that in the constraints of (DV CFL
M ) one can replace (y∗g)(u) ≥ 0 by

(y∗g)(u) = 0 without altering anything. Removing the constraint g(u) ∈ −C from

BCFL
M , one obtains from (DV CFL

M ) the vector Mond-Weir dual of Fenchel-Lagrange
type to (PV C)

(DV CFL
MW ) Max

(v∗,y∗,u)∈BCFL
MW

hCFL
MW (v∗, y∗, u),

where

BCFL
MW=

{
(v∗, y∗, u)∈K∗0 × C∗ × S : (y∗g)(u) ≥ 0, 0∈∂(v∗f)(u) + ∂((y∗g) + δS)(u)

}
and

hCFL
MW (v∗, y∗, u) = f(u).

Remark 4.12. Note that hCFL
M (BCFL

M ) ⊆ hCFL
MW (BCFL

MW ). The inclusion is actually

strict, since in the situation presented in Example 4.2 we have hCFL
M (BCFL

M ) = ∅ and

hCFL
MW (BCFL

MW ) ̸= ∅.

Remark 4.13. For sufficient conditions to “split” the subdifferentials from the Fenchel-
Lagrange type vector duals, analogous to the ones delivered in Remark 4.4 for the
Lagrange type vector duals, we refer to [2].

The results involving (PV G) and its vector duals can be particularized for the
Fenchel-Lagrange type vector duals, but here we give only the weak and strong
duality statements involving (PV C) and these vector duals.

Theorem 4.14. There are no x ∈ A and (v∗, z∗, y∗, u, z, r) ∈ BCFL
W such that

f(x) ≤K hCFL
W (v∗, z∗, y∗, u, z, r)

Theorem 4.15. There are no x ∈ A and (v∗, y∗, u) ∈ BCFL
M such that f(x) ≤K

hCFL
M (v∗, y∗, u).

Theorem 4.16. Let r ∈ K\{0}. Then there are no x ∈ A and (v∗, z∗, y∗, u, z)

∈ BCFL
W r such that f(x) ≤K hCFL

W r (v∗, z∗, y∗, u, z).

Analogously, one can prove also the following weak duality statement involving
(PV C) and (DV CFL

MW ).
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Theorem 4.17. There are no x ∈ A and (v∗, y∗, u) ∈ BCFL
MW such that f(x) ≤K

hCFL
MW (v∗, y∗, u).

For strong duality, besides some convexity hypotheses which ensure the
K-convexity of the vector perturbation function ΦCFL we also particularize the
regularity conditions (RCΦ

i ), i ∈ {1, 2, 3, 4}, obtaining (see [2, 1])

(RCCFL
1 ) ∃x′ ∈ dom f ∩ S such that f is continuous at x′ and

g(x′) ∈ − int(C),

(RCCFL
2 ) X and Y are Fréchet spaces, S is closed, f is K-lower

semicontinuous, g is C-epi-closed and
0 ∈ sqri

(
dom f × C − epi(−C)(−g) ∩ (S × Y )

)
,

(RCCFL
3 ) dim

(
lin

(
dom f × C − epi(−C)(−g) ∩ (S × Z)

))
< +∞ and

0 ∈ ri
(
dom f × C − epi(−C)(−g) ∩ (S × Z)

)
.

and, respectively,

(RCCFL
4 ) S is closed, f is K-lower semicontinuous, g is C-epi-closed

and epi(v∗f)∗ +
∪

z∗∈C∗
epi((z∗g) + δS)

∗ is closed in the topology

w(X∗, X)× R for every v∗ ∈ K∗0.

Theorem 4.18. Let r̄ ∈ K\{0}. Assume that f is a K-convex vector function,
g is a C-convex vector function and one of the regularity conditions

(RCCFL
i ), i ∈ {1, 2, 3, 4}, is fulfilled. If x̄ ∈ PE(PV C), then there exist v̄∗ ∈

K∗0, z̄∗ ∈ X∗, ȳ∗ ∈ C∗ and z̄ ∈ X such that (v̄∗, z̄∗, ȳ∗, x̄, z̄, r̄) ∈ E(DV CFL
W ),

(v̄∗, z̄∗, ȳ∗, x̄, z̄) ∈ E(DV CFL
W r̄), (v̄∗, ȳ∗, x̄) ∈ E(DV CFL

M ) ∩ E(DV CFL
MW ) and f(x̄) =

hCFL
W (v̄∗, z̄∗, ȳ∗, x̄, z̄, r̄) = hCFL

W r̄ (v̄∗, z̄∗, ȳ∗, x̄, z̄, ) = hCFL
M (v̄∗, ȳ∗, x̄) = hCFL

MW (v̄∗, ȳ∗, x̄).

Remark 4.19. In case V = R and K = R+, taking the functions f : X → R
and g : X → Y • proper we rediscover the Wolfe and Mond-Weir duality schemes
for constrained scalar optimization problems from [1]. More precisely the problem
(PV C) becomes then the constrained scalar optimization problem (PC) from the
mentioned paper and the vector duals considered in this section turn out to be to
the duals introduced to (PC) in [1].

Besides the inclusion relations that can be obtained as particularizations of
Proposition 2.6 and the ones given in Remark 4.1 and Remark 4.12, there are other
connections between the images of the feasible sets of the vector duals to (PV C)
introduced in this section through their objective functions. In the following we
prove some of them. First we deal with the vector duals obtained from (DVGM ).

Theorem 4.20. It holds

(a) hCFL
M (BCFL

M ) ⊆ hCF
M (BCF

M );

(b) hCFL
M (BCFL

M ) ⊆ hCL
M (BCL

M );

(c) hCFL
MW (BCFL

MW ) ⊆ hCL
MW (BCL

MW ).

Proof. (a) Let (v∗, y∗, u) ∈ BCFL
M . This means that (v∗, y∗, u) ∈ K∗0 × C∗ × S,

(y∗g)(u) ≥ 0, g(u) ∈ −C and 0 ∈ ∂(v∗f)(u) + ∂((y∗g) + δS)(u). Then u ∈ A and
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∂((y∗g) + δS)(u) ⊆ NA(u), which yields 0 ∈ ∂(v∗f)(u) + NA(u). Consequently,

(v∗, u) ∈ BCF
M . As hCFL

M (v∗, y∗, u) = f(u) = hCF
M (v∗, u), we are done.

(b) Let (v∗, y∗, u) ∈ BCFL
M . Then u ∈ S, v∗ ∈ K∗0, y∗ ∈ C∗, (y∗g)(u) ≥ 0 and

g(u) ∈ −C and, because 0 ∈ ∂(v∗f)(u) + ∂((y∗g) + δS)(u) ⊆ ∂
(
(v∗f)(u) + (y∗g) +

δS
)
(u), it follows that (v∗, y∗, u) ∈ BCL

M . As hCFL
M (v∗, y∗, u) = f(u) = hCL

M (v∗, y∗, u),
the conclusion follows.

(c) The proof is analogous to the one in (b). �

The question if similar inclusions are valid for the vector Wolfe type duals is
very natural, but has a negative answer, even if the primal problem is convex. The
following examples (adapted from the scalar case treated in [1]) demonstrate this.
Fixing r ∈ K\{0}, they can be used also to show the similar facts for the vector
duals obtained as special cases of (DVGW r).

Example 4.21. Let X = R2, Y = R, C = R+, V = R2, K = R2
+, V • = R2 ∪

{∞R2
+
},

S =

{
(x1, x2)

T ∈ R2 : 0 ≤ x1 ≤ 2,
3 ≤ x2 ≤ 4, if x1 = 0,
1 ≤ x2 ≤ 4, if x1 ∈ (0, 2]

}
,

f : R2 → (R2)•, f(x1, x2) =


(

1
1

)
x2, if x1 ≤ 0,

∞R2
+
, otherwise,

and g : R2 → R, g(x1, x2) = 0. Then for v̄∗ = (1/2, 1/2)T and any y∗ ∈ R+ we

get (0, 0) ∈ ∂((v̄∗f) + (y∗g) + δS)(0, 3), thus (3, 3)T ∈ hCL
W (BCL

W ). Trying to find

(v∗, z∗, y∗, u, z, r) ∈ BCFL
W such that (3, 3)T ∈ hCFL

W (BCFL
W ) leads to a contradiction,

consequently, hCL
W (BCL

W ) * hCFL
W (BCFL

W ).

Example 4.22. Let X = R, Y = R, C = R+, V = R2, K = R2
+, V

• = R2∪{∞R2
+
},

S = R,

f : R → (R2)•, f(x) =


(

1
1

)
x, if x > 0,

∞R2
+
, otherwise,

and

g : R → R, g(x) =

{
−x, if x ≤ 0,
0, otherwise.

Note that for all v∗ = (v∗1, v
∗
2)

T ∈ int(R2
+) and y∗ ≥ 0 one has

∂((v∗f) + (z∗g) + δS)(u) = ∂(v∗f)(u) =

{
{v∗1 + v∗2}, if u > 0,
∅, otherwise.

Consequently, BCL
W = ∅. On the other hand it can be shown that

(
(1/2, 1/2)T ,

1, 1, 0, 1, (1, 1)T
)
∈ BCFL

W , thus (0, 0)T ∈ hCFL
W (BCFL

W ). Therefore, hCFL
W (BCFL

W ) *
hCL
W (BCL

W ).
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Example 4.23. Let X = R2, Y = R, C = R+, V = R2, K = R2
+,

S =

{
(x1, x2)

T ∈ R2 : 0 ≤ x1 ≤ 2,
3 ≤ x2 ≤ 4, if x1 = 0,
1 ≤ x2 ≤ 4, if x1 ∈ (0, 2]

}
,

f : R2 → R2, f(x1, x2) = (x2, x2)
T and g : R2 → R, g(x1, x2) = x1. Since,

for v̄∗ = (1/2, 1/2)T it holds (0, 1)T ∈ ∂(v̄∗f)(0, 3) ∩ (−NA(0, 3)), it follows that

(3, 3)T ∈ hCF
W (BCF

W ). On the other hand, assuming that (3, 3)T ∈ hCFL
W (BCFL

W ) leads

to a contradiction, consequently, hCF
W (BCF

W ) * hCFL
W (BCFL

W ).

Example 4.24. Consider again the situation from Example 4.2. We have A =
(0,+∞), NA(u) = {0} for all u ∈ A, ∂(v∗f)(u) = {v∗1 + v∗2} for all v∗ = (v∗1, v

∗
2)

T ∈
int(R2

+) and u ∈ R, thus ∂(v∗f)(u + z) ∩ (−NA(u)) = ∅ for all u ∈ S and

all z ∈ R. Consequently, BCF
W = ∅. On the other hand, it can be shown that(

(1/2, 1/2)T , 0, 1, 0, 1, (1, 1)T
)
∈ hCFL

W (BCFL
W ), thus (0, 0)T ∈ hCFL

W (BCFL
W ). There-

fore, hCFL
W (BCFL

W ) * hCF
W (BCF

W ).

Remark 4.25. One can wonder why we considered in this paper only the classical
vector duality scheme involving properly efficient solutions to the primal vector
optimization problems and efficient solutions to their duals. In the literature it
was unsuccessfully claimed (see [2, Remark 6.2.6]) that vector Wolfe or Mond-Weir
strong vector duality statements could be given from which properly efficient solu-
tions to the vector duals were obtained. Since these allegations were not properly
proven, we avoided this vector duality scheme from our investigations. Another
possible vector duality scheme involves efficient solutions to both primal and dual
vector optimization problems. Hints regarding its possible development within our
framework can be found in the next section.

5. Conclusions and further challenges

Following our investigations from [1], we propose two new duality schemes for
general vector optimization problems, based on the classical Wolfe and Mond-Weir
duality approaches. Then, particularizing the primal vector optimization problem
to be first unconstrained, then constrained, and carefully choosing the vector per-
turbation functions we obtain new vector duals, among which are rediscovered also
the classical nondifferentiable vector Wolfe and Mond-Weir dual problems. Weak
and strong duality statements are given for the primal-dual pairs of vector problems.
Moreover, different inclusion relations involving the images of the feasible sets of
some vector duals through their objective functions and, respectively, the maximal
sets of some vector duals are derived. We provide also some examples showing that
in some cases no inclusion relations exist.

Investigations similar to the ones performed in this paper can be made with
respect to weakly efficient solutions, too. We did not include them here since ev-
erything works analogously, the only changes consisting in reformulating the duals
by taking the variable v∗ to belong to K∗\{0} and, for the Wolfe type vector duals,
r ∈ int(K), and in the fact that instead of efficient and properly efficient solutions
we deal then only with weakly efficient solutions.
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Another interesting direction of research can be developed starting from the ob-
servation that for a fixed v∗ ∈ K∗0 one can show that an element x̄ ∈ X is efficient
to (PV G) if and only if it is an optimal solution of the scalar optimization problem

(EP ) inf
F (x̄)−F (x)∈K,

x∈X

(v∗F )(x).

Having different scalar duals assigned to this scalar optimization problem, one can
use them to formulate vector optimization dual problems with respect to efficient
solutions to (PV G). More precisely, the strong duality statements regarding (PV G)
and these new vector duals would ask the existence of an efficient solution to (PV G),
besides convexity hypotheses and regularity conditions, in order to obtain efficient
solutions to the vector duals.

Starting with the investigations from this paper, different other interesting prob-
lems can be posed. A first one is how can be formulated a dual problem to (PV G)
which becomes (DV CL

MW ) in a particular case. Then, one can try to give weak
and strong duality statements for the primal-dual pairs of optimization problems
considered in this paper when the functions involved are differentiable on an open
set S and the subdifferentials are replaced by gradients in the duals, by using gener-
alized convexity notions like quasiconvexity, pseudoconvexity, even invexity. It were
interesting to find out how can be obtained via strong duality an efficient solution to
(DVGW ) for which the variable y needs not be equal to 0. Do there exist inclusions
involving the maximal sets of the vector duals from Section 4 or it can be proven by
counterexamples that such inclusions do not hold in general? Nevertheless, converse
duality for (PV G) and its duals or for the particular cases studied in this paper,
could be investigated, too.
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