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A NEW CHARACTERIZATION ON OPTIMALITY AND

DUALITY FOR NONDIFFERENTIABLE MINIMAX

FRACTIONAL PROGRAMMING PROBLEMS

HANG-CHIN LAI AND JEN-CHWAN LIU

Abstract. In this paper, we employ the elementary method and technique to
prove the necessary and sufficient optimality conditions for nondifferentiable min-
imax fractional programming problem involving convexity. By the process, we
deduce the formulation of a one parametric dual problem in which we prove
three duality theorems: weak duality, strong duality, and strict converse duality
theorem.

1. Introduction

In an optimization problem, one may consider the objective function which is a
finite system of ratio positive functions with convex/concave functions as the form:

min
x∈X

max
1≤i≤r

fi(x)

gi(x)

where X is a feasible solution set in ℜn. Sometimes we would like to transform such
problem into a nonfractional problem with a parameter as the following form:

min
x∈X

max
1≤i≤r

[fi(x)− λgi(x)]

by suitable constraints. Because the new objective function is produced by the
sum of two convex functions, it still preserves the convex properties. However,
when we can treat the finite system of minimum programming problem such as

minx∈X max1≤i≤r
fi(x)
gi(x)

by changing {1, 2, · · · , r} to be a compact space Y in ℜm, we

wonder whether there have the same optimal solution between minx∈X maxy∈Y
f(x,y)
g(x,y)

and minx∈X maxy∈Y [f(x, y)− λg(x, y)].
Furthermore, due to the different viewpoints for the various types of objective

functions in differentiable or nondifferentiable fractional programming problems,
many authors intend to establish the Kuhn Tucker type conditions and employ the
conditions to search optimal solutions. For these tasks, one can consult [1, 10-
18]. For instance, Lai et al. [8] have obtained the Kuhn Tucker type necessary
optimality conditions for nondifferentiable fractional programming problems, yet
they needed some complicated assumptions (constraint qualifications) to derive the
necessary optimality conditions. Furthermore, from the necessary conditions, we
also establish the sufficient optimality conditions with extra assumptions.
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In this paper, we will improve the complexity method of [8], which has been
studied by Lai et. al as the following form:

(P0) min
x∈X

sup
y∈Y

ϕ(x, y) + (xTAx)1/2

ψ(x, y)− (xTBx)1/2

subject to hj(x) ≤ 0, j = 1, 2, . . . , p, x ∈ ℜn.

It is obvious that if xTAx or xTBx is equal zero at some point x0 ∈ ℜn, the problem
(P0) is a nondifferentiable minimax fractional programming problem. For this pur-
pose, we consider a more general nondifferentiable minimax fractional programming
problem as follows

(P ) min
x∈X

max
y∈Y

f(x, y)

g(x, y)
(= min

x∈X
F (x))

subject to X = {x ∈ K | hj(x) ≤ 0, j = 1, 2, . . . , p }

where K is a compact convex subset of ℜn and Y is a compact subset of ℜm. For
each y ∈ Y , f(·, y) : ℜn ×ℜm → ℜ and −g(·, y) : ℜn ×ℜm → ℜ and hj(·) : ℜn → ℜ
for j = 1, 2, . . . , p are real-valued convex subdifferentiable functions. In particular, if
f(x, y) = ϕ(x, y) + (xTAx)1/2, g(x, y) = ψ(x, y)− (xTBx)1/2 and K = ℜn, where A
and B are positive semidefinite n×n matrices, both functions ϕ(·, ·) : ℜn×ℜm → ℜ
and ψ(·, ·) : ℜn × ℜm → ℜ are C1 functions on ℜn × ℜm, and hj(·) : ℜn → ℜ
for j = 1, 2, . . . , p are C1 map on ℜn, then the problem (P ) becomes a special
nondifferentiable minimax fractional programming problem (P0).

In this paper, without loss of generality, we may assume that

f(x, y) ≥ 0 and g(x, y) > 0 for all (x, y) ∈ X × Y.

We will treat problem (P) by parametric process to establish necessary and suffi-
cient optimality conditions for the nondifferentiable minimax fractional program-
ming problems (P). In Section 2, we will introduce some known notations and main
lemmas. Then we establish the necessary and sufficient optimality conditions for (P)
by parametric method in Section 3. Finally, we not only formulate a one-parametric
dual problem but also prove the duality theorems in Section 4.

2. Notations and preliminary results

Throughout the paper, ℜn is the n-dimensional Euclidean space and ℜn
+ is its

nonnegative orthant. For a continuous function Φ : ℜn → ℜ, the subdifferential of
Φ at x is defined and denoted by the set

∂Φ(x) =
{
ξ ∈ ℜn | Φ(u)− Φ(x) ≥ ξT (u− x) for any u ∈ ℜn

}
.

If ∂Φ(x) ̸= ∅, we say that the Φ is subdifferentiable at x and any element ξ in ∂Φ(x)
is called the subgradient of Φ at x. We note that a convex function is subdifferen-
tiable. In this paper, we will prove that the necessary optimality condition is also
the sufficient optimality condition. We would suppose that functions f,−g and h
are convex throughout.
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In [7], Kanniappan and Sastry consider the following convex programming prob-
lem:

(SP ) minimize Φ(x) subject to x ∈ X ⊂ ℜn

whereX is the feasible set in problem (P ). They derived the necessary and sufficient
optimality conditions for (SP ). We state it as a result in the following lemma:

Lemma 2.1. Suppose that problem (SP ) satisfies a regularity condition, that is,
there exists x ′ ∈ X such that hj(x

′) < 0 for all j = 1, 2, . . . , p. Let Φ and hj,
j = 1, 2, . . . , p, be nonsmooth convex functions on ℜn. Then a point x0 ∈ ℜn is an
optimal solution of (SP ) if and only if there exists a multiplier µ∗ ∈ ℜp

+ such that

0 ∈ ∂ Φ(x0) +

p∑
j=1

µ∗j ∂ hj(x0) +N(x0 /K) and

p∑
j=1

µ∗j hj(x0) = 0,

where N(x0 /K), the normal cone with respect to K at x0, is defined by

N(x0 /K) = { η ∈ ℜn | ηT (x− x0) ≤ 0 for all x ∈ K }.

From the assumption in problem (P ), since Y is compact, there exists a positive
number λ depending on x (x ∈ X) such that

max
y∈Y

f(x, y)

g(x, y)
= λ

and

f(x, y)

g(x, y)
≤ λ for all y ∈ Y or f(x, y)− λg(x, y) ≤ 0 for all (x, y) ∈ X × Y.

Consequently, we can reduce the problem (P) to an equivalent nonfractional para-
metric problem:

(Pλ) v(λ) = min
x∈X

max
y∈Y

(f(x, y)− λg(x, y)) (≤ 0)

where λ ∈ ℜ+ = [0,∞) is a parameter. For convenience, we define for each x ∈ X,

Y (x) =

{
y ∈ Y | f(x, y)

g(x, y)
= max

z∈Y

f(x, z)

g(x, z)

}
and

Yλ(x) =

{
y ∈ Y | f(x, y)− λg(x, y) = max

z∈Y
(f(x, z)− λg(x, z))

}
.

We can prove that the problem (P ) is equivalent to the problem (Pλ∗) for the
optimal value λ∗ of (P ). We note that the functions in the following lemma only
need the continuity but don’t need convexity. This lemma is our main technique to
derive the necessary and sufficient optimality conditions for problem (P).

Lemma 2.2.

(a) Problem (P ) has an optimal solution x0 with optimal value λ∗ if and only if
v(λ∗) = 0 and x0 is an optimal solution of (Pλ∗).

(b) If x0 is an optimal solution of (P ) with optimal value λ∗, then Y (x0) =
Yλ∗(x0).
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Proof. (a) If x0 is an optimal solution of (P ) with optimal value λ∗ = λ∗(x0), that
is,

(2.1) λ∗ = min
x∈X

max
z∈Y

f(x, z)

g(x, z)
= max

z∈Y

f(x0, z)

g(x0, z)
≥ f(x0, z)

g(x0, z)
for all z.

It follows that

(2.2) f(x0, z)− λ∗g(x0, z) ≤ 0 for all z ∈ Y.

Thus, we have

min
x∈X

max
z∈Y

(f(x, z)− λ∗g(x, z)) ≤ max
z∈Y

(f(x0, z)− λ∗g(x0, z)) ≤ 0.

Since maxz∈Y (f(·, z)− λ∗g(·, z)) is a continuous function on the compact set X for
any z ∈ Y ⊂ ℜm, there exists x1 ∈ X such that

(2.3) min
x∈X

max
z∈Y

(f(x, z)− λ∗g(x, z)) = max
z∈Y

(f(x1, z)− λ∗g(x1, z)) ≤ 0.

The expression (2.3) is exactly equal to 0. If not, it would be

(2.4) min
x∈X

max
z∈Y

(f(x, z)− λ∗g(x, z)) < 0,

that is,
f(x1, z)− λ∗g(x1, z) < 0 for all z ∈ Y.

It follows that
f(x1, z)

g(x1, z)
< λ∗ for all z ∈ Y.

Thus

(2.5) max
z∈Y

f(x1, z)

g(x1, z)
< λ∗.

On the other hand, the expression (2.1) yields the inequality

max
z∈Y

f(x1, z)

g(x1, z)
≥ λ∗,

which contradicts the inequality (2.5). Hence, (2.4) is not true, and (2.3) becomes

(2.6) min
x∈X

max
z∈Y

( f(x, z)− λ∗g(x, z) ) = 0.

Similarly, the inequality (2.2) will be

(2.7) max
z∈Y

( f(x0, z)− λ∗g(x0, z) ) = 0.

Then (2.7) yields

min
x∈X

max
z∈Y

( f(x, z)− λ∗g(x, z) ) = max
z∈Y

( f(x0, y)− λ∗g(x0, z) ) = 0.

Therefore, x0 is an optimal solution of (Pλ∗) and v(λ∗) = 0.
Conversely, if x0 is an optimal solution of (Pλ∗) with optimal value v(λ∗) = 0, then

(2.8) min
x∈X

max
z∈Y

( f(x, z)− λ∗g(x, z) ) = max
z∈Y

( f(x0, y)− λ∗g(x0, z) ) = 0.

It follows that

max
z∈Y

(f(x, z)− λ∗g(x, z)) ≥ 0 for all x ∈ X.
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Since Y is a compact subset of ℜm, by the continuity of f(x, ·) − λ∗g(x, ·), there
exists z1 ∈ Y such that

max
z∈Y

( f(x, z)− λ∗g(x, z) ) = f(x, z1)− λ∗g(x, z1) ≥ 0.

It follows that
f(x, z1)

g(x, z1)
≥ λ∗ for all x ∈ X.

Whence,

(2.9) min
x∈X

max
z∈Y

f(x, z)

g(x, z)
≥ λ∗.

It remains to show the impossibility of

(2.10) min
x∈X

max
z∈Y

f(x, z)

g(x, z)
> λ∗.

Actually, as Y is a compact subset in ℜm, there is a point z2 in Y such that

max
z∈Y

f(x, z)

g(x, z)
=
f(x, z2)

g(x, z2)
> λ∗ for all x ∈ X

and
f(x, z2)− λ∗g(x, z2) > 0 for all x ∈ X.

It follows that

max
z∈Y

( f(x, z)− λ∗g(x, z) ) ≥ f(x, z2)− λ∗g(x, z2) > 0 for all x ∈ X,

and
min
x∈X

max
z∈Y

( f(x, z)− λ∗g(x, z) ) > 0,

which contradicts the equality (2.8). Hence the inequality (2.10) is not true, and so
(2.9) must be

(2.11) min
x∈X

max
z∈Y

f(x, z)

g(x, z)
= λ∗.

Since x0 is an optimal solution of (Pλ∗) with optimal value v(λ∗) = 0, by the similar
way, we can prove that

(2.12) min
x∈X

max
z∈Y

f(x, z)

g(x, z)
= max

z∈Y

f(x0, z)

g(x0, z)
= λ∗.

Therefore, x0 is an optimal solution of (P ) with optimal value λ∗.
(b) The element y in Y (x0) means that

(2.13)
f(x0, y)

g(x0, y)
= max

z∈Y

f(x0, z)

g(x0, z)
= λ∗ or f(x0, y)− λ∗g(x0, y) = 0.

Since x0 is an optimal solution of (P ), by part (a), we have

(2.14) max
z∈Y

(f(x0, z)− λ∗g(x0, z)) = 0.

From the equations (2.13) and (2.14), we have

max
z∈Y

( f(x0, z)− λ∗g(x0, z) ) = f(x0, y)− λ∗g(x0, y).
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That is, y ∈ Yλ∗(x0). Hence, Y (x0) ⊂ Yλ∗(x0). Conversely, if y ∈ Yλ∗(x0),

f(x0, y)− λ∗g(x0, y) = max
z∈Y

( f(x0, z)− λ∗g(x0, z) ) = 0.

and
f(x0, y)

g(x0, y)
= λ∗ = max

z∈Y

f(x0, z)

g(x0, z)
.

This shows that y ∈ Y (x0), so Y (x0) ⊃ Yλ∗(x0). Consequently, Y (x0) = Yλ∗(x0).
�

The following lemma will play an important role in the proof of the main result.

Lemma 2.3 ([6, page 204, Theorem 4]). For each ξ ∈ ∂(maxz∈Y f(·, z) )(x0), there
exist a positive integer k, k ≤ n+ 1, and µi > 0 with

∑k
i=1 µi = 1 such that

ξ = µ1 ξ1 + µ2 ξ2 + · · · + µk ξk

where ξi ∈ ∂f(·, y∗i )(x0), y∗i ∈ { y ∈ Y | f(x0, y) = maxz∈Y f(x0, z) } for i =
1, 2, . . . , k.

3. Necessary and sufficient conditions

We will use the following notation. For each x ∈ X, we define

Kλ(x) = { (k, µ, y) ∈ ℵ × ℜk
+ ×ℜmk | 1 ≤ k ≤ n+ 1; µ = (µ1, . . . , µk ) ∈ ℜk

+,

k∑
i=1

µi = 1 and µi > 0; y = ( y1, . . . , yk )

with yi ∈ Yλ(x) for all i = 1, . . . , k }(3.0)

and denote
Fλ(x) = max

y∈Y
( f(x, y)− λg(x, y) ) .

In this section, using a parametric approach, we establish the following necessary
and sufficient optimality conditions for the nondifferentiable minimax fractional
programming problem (P ).

Theorem 3.1 (Necessary and Sufficient Conditions). Suppose that problem (P )
satisfies a regularity condition, that is, there exists x ′ ∈ X such that hj(x

′) < 0 for
all j = 1, 2, . . . , p and f(·, y),−g(·, y) and hj are real-valued convex subdifferentiable
functions. Then x0 is an optimal solution of (P ) if and only if there exist λ∗ ∈ ℜ+,
( k∗, µ∗, y∗ ) ∈ Kλ∗(x0) and β

∗ ∈ ℜp
+ satisfying the Kuhn Tucker type conditions as

follows:

0 ∈
k∗∑
i=1

µ∗i ( ∂f(x0, y
∗
i ) + λ∗∂ (−g(x0, y∗i ) ) ) +

p∑
j=1

β∗j ∂hj(x0) +N(x0 /K);(3.1)

f(x0, y
∗
i )− λ∗g(x0, y

∗
i ) = 0 for all i = 1, 2, . . . , k∗,(3.2)

p∑
j=1

β∗jhj(x0) = 0,(3.3)

and the value λ∗ = maxy∈Y f(x0, y)/g(x0, y) is an optimal value of (P ).
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Proof. If x0 is an optimal solution of (P ) with optimal value λ∗ =
maxy∈Y f(x0, y)/g(x0, y), by Lemma 2.2, x0 is also an optimal solution of (Pλ∗).
Since Fλ∗(x) is a convex continuous subdifferentiable function, by Lemma 2.1, there
exists a Lagrange multiplier vector β∗ ∈ ℜp

+ such that

0 ∈ ∂Fλ∗(x0) +

p∑
j=1

β∗j ∂hj(x0) +N(x0 /K)

and
p∑

j=1

β∗j hj(x0) = 0.

It follows from Lemma 2.3 that there exists ( k∗, µ∗, y∗ ) ∈ Kλ∗(x0) defined by (3.0)
such that

0 ∈
k∗∑
i=1

µ∗i ( ∂f(x0, y
∗
i ) + λ∗ ∂ (−g(x0, y∗i ) ) ) +

p∑
j=1

β∗j ∂hj(x0) +N(x0 /K)

and

f(x0, y
∗
i )− λ∗g(x0, y

∗
i ) = 0 for all i = 1, 2, . . . , k∗.

Conversely, if there exist ( k∗, µ∗, y∗ ) ∈ Kλ∗(x0) and β∗ ∈ ℜp
+ that satisfy re-

lations (3.1) and (3.2), then there exist ξi ∈ ∂f(x0, y
∗
i ), ηi ∈ ∂ (−g(x0, y∗i ) ) for

i = 1, 2, . . . , k∗, ζj ∈ ∂hj(x0) for j = 1, 2, . . . , p, and d ∈ N(x0 /K) such that the
n−vector

k∗∑
i=1

µ∗i ( ξi + λ∗ηi ) +

p∑
j=1

β∗j ζj + d = 0.

Using the characterization of the subgradients, we obtain

f(x, y∗i ) ≥ f(x0, y
∗
i ) + ξTi (x− x0) 1 ≤ i ≤ k∗,(3.4)

−g(x, y∗i ) ≥ −g(x0, y∗i ) + ηTi (x− x0) 1 ≤ i ≤ k∗,(3.5)

hj(x) ≥ hj(x0) + ζTj (x− x0) j = 1, 2, . . . , p,(3.6)

dT (x− x0) ≤ 0, for all x ∈ K.

Now, multiplying (3.4) by µ∗i , (3.5) by λ
∗µ∗i , (3.6) by β

∗
j , and then by summing up

these inequalities, we obtain

k∗∑
i=1

µ∗i ( f(x, y
∗
i ) + λ∗ (−g(x, y∗i ) ) ) +

p∑
j=1

β∗jhj(x)

−
k∗∑
i=1

µ∗i ( f(x0, y
∗
i ) + λ∗ (−g(x0, y∗i ) ) )−

p∑
j=1

β∗jhj(x0)

≥ (x− x0)
T

 k∗∑
i=1

µ∗i ( ξi + λ∗ηi ) +

p∑
j=1

β∗j ζj


= −(x− x0)

Td ≥ 0.
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Using the feasibility of x for (P ), β∗ ∈ ℜp
+, and the equality (3.3), we have

(3.7)

k∗∑
i=1

µ∗i ( f(x, y
∗
i ) + λ∗ (−g(x, y∗i ) ) ) ≥

k∗∑
i=1

µ∗i ( f(x0, y
∗
i ) + λ∗ (−g(x0, y∗i ) ) ) .

Suppose on the contrary that x0 is not an optimal solution of (P ). Then by Lemma
2.2, it is not an optimal solution of (Pλ∗). Hence there exists a (P )-feasible point
x1 in X such that

f(x1, y
∗
i ) + λ∗ (−g(x1, y∗i )) = max

y∈Y
(f(x1, y) + λ∗ (−g(x1, y)))

< max
y∈Y

(f(x0, y) + λ∗ (−g(x0, y)))

= f(x0, y
∗
i ) + λ∗ (−g(x0, y∗i ))

for all i = 1, 2, . . . , k∗ and y∗i ∈ Yλ∗(x0) ⊂ Y . From
∑k∗

i=1 µ
∗
i = 1, µi > 0 for

i = 1, 2, . . . , k∗, we have

k∗∑
i=1

µ∗i ( f(x1, y
∗
i ) + λ∗ (−g(x1, y∗i ) ) ) <

k∗∑
i=1

µ∗i ( f(x0, y
∗
i ) + λ∗ (−g(x0, y∗i ) ) ) ,

which contradicts the inequality (3.7). Hence the proof is complete. �

4. Parametric dual model

From the optimality conditions for problem (P ) in the proceeding section, we can
formulate the following parametric dual problem which is a dual problem (Theorem
3.1) with respect to the minimax problem (P ):

(DP ) max
( k, µ, y )∈Kλ(u)

max
(u, β, λ )∈H( k, µ, y )

λ

where H(k, µ, y) denotes the set of all triples (u, β, λ ) ∈ ℜn×ℜp
+×R+ which satis-

fies the Kuhn-Tucker type conditions (3.1) ∼ (3.3) of Theorem 3.1 in the alternative
form:

0 ∈
k∑

i=1

µi ( ∂f(u, yi) + λ∂ (−g(u, yi) ) ) +
p∑

j=1

βj ∂hj(u) +N(u /K),(4.1)

k∑
j=1

µi ( f(u, yi) + λ (−g(u, yi) ) ) +
p∑

j=1

βjhj(u) ≥ 0(4.2)

where (4.1) and (4.2) are deduced from the optimality conditions (3.1), (3.2) and
(3.3). If for a triple ( k, µ, y ) ∈ Kλ(u), the set H(k, µ, y) is empty, then we define
the supremum over it to be −∞.

Theorem 4.1 (Weak Duality). Let x and (u, β, λ, k, µ, y ) be (P )-feasible and
(DP )-feasible,respectively. Then

F (x) = max
y∈Y

f(x, y)/g(x, y) ≥ λ.



OPTIMALITY AND DUALITY ON MINIMAX RATIO PROGRAMMINGS 77

Proof. Suppose on the contrary that

(4.3) max
y∈Y

f(x, y)

g(x, y)
< λ.

Then
f(x, y)− λg(x, y) < 0 for all y ∈ Y.

Since µi > 0 with
∑k

i=1 µi = 1 and yi ∈ Yλ(u) ⊂ Y , the above inequality follows

µi ( f(x, yi)− λg(x, yi) ) < 0 for all i = 1, 2, . . . , k,

and the sum over the index i = 1, 2, . . . , k is

(4.4)
k∑

i=1

µi ( f(x, yi) + λ (−g(x, yi) ) ) < 0.

By (4.1), there exist ξi ∈ ∂f(u, yi), ηi ∈ ∂ (−g(u, yi)) for i = 1, 2, . . . , k, zetaj ∈
∂hj(u) for j = 1, 2, . . . , p, and d ∈ N(u /K) such that

k∑
i=1

µi(ξi + ληj) +

p∑
j=1

βjζj + d = 0.

By the subdifferentiability of f , −g, and hj for j = 1, 2, . . . , p, we have

f(x, yi) ≥ f(u, yi) + ξTi (x− u) 1 ≤ i ≤ k,(4.5)

−g(x, yi) ≥ −g(u, yi) + ηTi (x− u) 1 ≤ i ≤ k,(4.6)

hj(x) ≥ h(u) + ζTj (x− u) j = 1, 2, . . . , p,(4.7)

dT (x− u) ≤ 0 for all x ∈ K.

Now, multiplying (4.5) by µi, (4.6) by λµi, (4.7) by βj , and then by summing up
these inequalities, we obtain

k∑
i=1

µi ( f(x, yi) + λ (−g(x, yi) ) ) +
p∑

j=1

βjhj(x)

−
k∑

i=1

µi ( f(u, yi) + λ (−g(u, yi) ) )−
p∑

j=1

βjhj(u)

≥ (x− u)T

 k∑
i=1

µi(ξi + ληi) +

p∑
j=1

βjζj


= −(x− u)Td ≥ 0.

It follows that
k∑

i=1

µi ( f(x, yi) + λ (−g(x, yi) ) ) +
p∑

j=1

βjhj(x)

≥
k∑

i=1

µi ( f(u, yi) + λ (−g(u, yi) ) ) +
p∑

j=1

βjhj(u).(4.8)
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From relations (4.2), (4.8), and
∑p

j=1 βjhj(x) ≤ 0, we have

k∑
i=1

µi (f(x, yi) + λ (−g(x, yi))) ≥ 0.

This contradicts the inequality (4.4). Thus, the inequality (4.3) is not true. This
completes the proof. �

Theorem 4.2 (Strong Duality). Suppose that problem (P ) satisfies a regular-
ity condition. If x0 is an optimal solution of (P ), then there exist λ∗ ∈ ℜ+,
( k∗, µ∗, y∗ ) ∈ Kλ∗(x0) and β∗ ∈ ℜp

+ such that (x0, β
∗, λ∗, k∗, µ∗, y∗ ) is an opti-

mal solution of (DP ). Moreover the optimal values of (P ) and (DP ) are equal, that
is, min(P ) = max(DP ).

Proof. By Theorem 3.1, there exist λ∗ ∈ ℜ+, ( k
∗, µ∗, y∗ ) ∈ Kλ∗(x0) and β

∗ ∈ ℜp
+

such that (x0, β
∗, λ∗, k∗, µ∗, y∗ ) is a feasible solution of (DP ). Since

λ∗ = max
y∈Y

f(x0, y)

g(x0, y)
,

the optimality of the feasible solution (x0, β
∗, λ∗, k∗, µ∗, y∗ ) for (DP ) reduces to

be the maximum value of (DP ). This fact follows from Theorem 4.1. �

Theorem 4.3 (Strict Converse Duality). Suppose that problem (P ) satisfies a
regularity condition. Let x ′ and (x0, β

∗, λ∗, k∗, µ∗, y∗ ) be optimal solutions of
(P ) and (DP ), respectively. If one of the functions f(·, y), −g(·, y), and hj(·) for
j = 1, 2, . . . , p is strictly convex at x0, then x ′ = x0, that is, x0 is an optimal
solution of (P ) and maxy∈Y f(x ′, y)/g(x ′, y) = λ∗.

Proof. Suppose on the contrary that x ′ ̸= x0. From Theorem 4.2, we know that
there exist λ′ ∈ ℜ+, ( k

′, µ ′, y ′ ) ∈ Kλ′(x ′) and β′ ∈ ℜm
+ such that (x ′, β ′, k ′, µ ′, y ′ )

becomes an optimal solution of (DP ) with the optimal value

max
y∈Y

f(x ′, y)

g(x ′, y)
= λ′.

Now as in the proof of Theorem 4.1 after replacing x by x ′ and (u, β, λ, k, µ, y )
by (x0, β

∗, λ∗, k∗, µ∗, y∗ ), we will arrive at the strict inequality

max
y∈Y

f(x ′, y)

g(x ′, y)
> λ∗.

This contradicts the fact that

max
y∈Y

f(x ′, y)

g(x ′, y)
= λ′ = λ∗.

Therefore, we conclude that x ′ = x0, and

max
y∈Y

f(x ′, y)

g(x ′, y)
= λ∗.

�
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5. Remarks for further development

If the functions in an optimization problem are nonconvex but Lipschitz continu-
ous, one can consult the generalized subgradient in Clarke [5]. The other hand. we
can relax convexity to some kind of generalized convexity; for example, pseudocon-
vexity, quasiconvexity or (F, ρ)-convexity [3,13, 14, 18]. In addition, one can study
problem (P ) in complex variable, e.g., [2]:

min
ζ∈X

max
η∈Y

Re f(ζ, η)

Re g(ζ, η)

subject to ζ ∈ S0 =
{
ζ ∈ C2n | −h(ζ) ∈ S

}
.
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