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REMOTAL POINTS AND A KREIN-MILMAN TYPE THEOREM

M. SABABHEH AND R. KHALI

Abstract. In this article we study the connection of remotal points, extreme
points and exposed points. Namely, we prove that a uniquely remotal point is
necessarily an exposed point but not vice versa. We give examples where some
implications are not valid and we propose some questions regarding the problem.
Then, we introduce a new class of points that play the role of extreme points and
prove a Krein-Milman type Theorem.

1. Introduction

Let X be a Banach space and let E be a closed bounded subset of X. For x ∈ X
we denote sup{‖x− e‖ : e ∈ E} by D(x,E). The set E is said to be remotal in X
(or remotal) if D(x,E) is attained for all x ∈ X. That is, if for each x ∈ X there
exists e ∈ E such that D(x,E) = ‖x − e‖. The set at which D(x,E) is attained
will be denoted by F (x,E). Thus, F (x,E) denotes the set of points in E which
are farthest from x. The set E will be said to be uniquely remotal if F (x,E) is a
singleton for each x ∈ X. On the other hand, a point e ∈ E will be called remotal
if e ∈ F (x,E) for some x ∈ X. If e is remotal and if F (x,E) = {e} for some x ∈ X
then e will be called a uniquely remotal point. Finally, if E is a convex set, then a
point e ∈ E will be called an extreme point of E if e is not a middle point of two
points in E. That is, if e cannot be written as a convex combination te1 + (1− t)e2

with 0 < t < 1 and e1, e2 ∈ E.
It can be easily seen that, see [2], if e ∈ E is a uniquely remotal point then e is

an extreme point of E. Our first objective of this article is to study the converse of
this result. That is, if e ∈ E, a convex set, is extreme, must e be uniquely remotal?
or remotal? We shall see that the answer is negative, see Proposition 2.2. Then,
we shall study this question from different points of view to find out that extreme,
and in fact boundary, points are remotal points under some equivalent norm, see
Theorem 2.5.

Our second objective is to introduce a class of points that does the job of extreme
points for compact convex sets. This gives some Krein-Milman Type Theorems.

2. Remotality of extreme and exposed points

Since every remotal point of E is necessarily a boundary point of E, one may
ask about the nature of boundary points which are necessarily remotal points. In
fact, at first glance, extreme points and exposed pints are the very first candidates
for being remotal points. But, unfortunately, this hunch is not true as the following
results show. First, a lemma.
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Lemma 2.1. Let e be a boundary point of the closed bounded set E, a subset of the
Banach space X. Then e is a remotal point if and only if there exists a ball B(x, r)
for some x ∈ X and r > 0 such that E ⊂ B(x, r) and e ∈ E ∩ S(x, r).

The proof of this lemma is easily obtained and hence, is left to the reader.

Proposition 2.2. There exist convex sets with extreme points that are not remotal
points.

Proof. Let X = R2. Let S1 be the unit circle in X when endowed with the Euclidian
norm and let S2 be the unit circle in X when endowed with the sup norm. Let E
be the convex hull of the union of {(x, y) ∈ S1 : x ≥ 0} and {(x, y) ∈ S2 : x ≤ 0}. It
is clear that the point A(0, 1) is an extreme point of E. We assert that A is not a
remotal point. That is, we show that A 6∈ F (x,E) for any x ∈ X, X being endowed
with the Euclidian norm.
To do so, we use Lemma 2.1. Thus, suppose on the way of contrary that a circle
x2 + y2 + ax + by + c = 0 exists such that A belongs to the circle and such that E
is inside the circle. For A to be on the circle, we need to have c = −b − 1. Hence,
the equation of the circle becomes x2 + y2 + ax + by = b + 1. Since E lies inside the
circle, B(−1, 1), C(−1,−1) and D(1, 0) must be inside the circle. Now, for B to be
inside the circle we must have a ≥ 1 and for D to be inside the circle we need to
have a ≤ b.
Now let (x, y) be any point on the right half of the unit circle. That is x2 + y2 = 1
and x ≥ 0. The question is “Does (x, y) lie inside the circle x2+y2+ax+by = b+1?′′
That is “Does (x, y) satisfy x2 + y2 + ax + by ≤ b + 1?′′. Since x2 + y2 = 1, we need
to check whether ax + by ≤ b or not. Thus the question reduces to: What is the
maximum value of ax+by subject to the conditions x2+y2 = 1 and x ≥ 0? If we use
the method of Lagrange multipliers we find that the point

(
a√

a2+b2
, b√

a2+b2

)
is on

the right half of the unit circle which lies outside the circle x2 +y2 +ax+by = b+1.
This shows that no circle passing through A can satisfy the conditions of Lemma
2.1. Hence, A is not a remotal point of E. ¤

It is worth to remark that the point A above is a remotal point of E, as above,
if R2 is endowed with the sup norm. Thus, the above example is an example of
a point A ∈ E which is not remotal when E ⊂ (R2, ‖ ‖2) but is remotal when
E ⊂ (R2, ‖ ‖∞) although ‖ ‖2 and ‖ ‖∞ are equivalent.

Thus, equivalence of norms does not preserve the remotality of points.
In fact, Proposition 2.2 opens a wide door of questions about the nature of ex-

treme points which must be remotal. Recall that an exposed point e of a convex set
E is a boundary point of E such that a functional f ∈ X∗ exists with the properties

f(e) = α and f(x) < α ∀x ∈ E\{e}.
In words, it means that a hyperplane H exists such that e is the only element of E
that belongs to H and E lies entirely in one side of H.
It is clear that an exposed point is necessarily an extreme point but not vice versa.
The example of Proposition 2.2 is an example of an extreme point which is not
exposed and not remotal.
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In fact, even exposed points in very nice spaces are not necessarily remotal points.
The following proposition gives an example.

Proposition 2.3. There are closed bounded convex sets in Hilbert spaces whose
exposed points are not necessarily remotal points.

Proof. Let X be R2 endowed with the standard norm and let

E0 =
{(

± 1
n

,
1
n3

)
: n ∈ N

}
.

If E is the closed convex hull of E0, then clearly E lies above the x−axis which
touches E uniquely at (0, 0). That is, (0, 0) is an exposed point of E.
We assert that (0, 0) is not a remotal point for E. Observe that if (x, y) ∈ X then

‖(x, y)− (±1/n, 1/n3)‖2 = (x2 + y2) +
(

1
n2

+
1
n6

)
+

(
∓ 2

n
x− 2

n3
y

)

= (x2 + y2) +
(

1
n6
∓ 2

n
x

)
+

(
1
n2
− 2

n3
y

)
.

Observe that n ∈ N can be chosen so that
(

1
n2 − 2

n3 y
)

> 0 for a given y. As for(
1
n6 ∓ 2

nx
)
, one can manage to have the plus or the minus n, according to whether x

is negative or positive, in order to make
(

1
n6 ∓ 2

nx
)

> 0. These observations together
tell us that

‖(x, y)− (±1/n, 1/n3)‖2 > x2 + y2 = ‖(x, y)− (0, 0)‖.
That is, (0, 0) cannot be a farthest point in E from (x, y). In other words, (0, 0) is
not a remotal point of E. ¤

These observations about extreme and exposed points foster the question:
Question: Describe Banach spaces in which every extreme point (or exposed point)
is a remotal point.
A strongly related question is:
Question: Given a Banach space X and a closed bounded subset E ⊂ X. What
conditions must E satisfy in order to make every extreme point (or exposed point)
a remotal point?

In fact, easy computations show that the point (0, 0) is a remotal point of the
set E, in proposition 2.3 if R2 is endowed with the infinity norm! This together
with the observation following proposition 2.2 do not mean that exposed or extreme
points are always remotal points in the infinity norm. One can look at the point
P

(
1√
2
, 1√

2

)
as an exposed point of the unit disk in R2. In this example, we can

show that the point P is a remotal point if R2 is endowed with the standard norm
but is not remotal if the infinity norm is endowed.

The next result tells us that an exposed point must be a uniquely remotal point
under some equivalent norm. First, a definition:

Definition 2.4. Let E be a closed bounded convex subset of the normed space
(X, ‖ ‖) and let e be a boundary point of E. We say that e is a nice boundary point
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of E if there exists a linear functional f : X → R, of norm 1, an element a ∈ X of
norm 1 and a number α such that

f(e) = α, f(e) ≤ α ∀e ∈ E and f(a) = −1.

Observe that every boundary point is a nice boundary point in reflexive spaces.
Also, observe that the condition that f has norm 1 is artificial because f can be
replaced by f/‖f‖. One last observation, the condition that an element a ∈ X exists
with the properties ‖a‖ = 1 and f(a) = −1 means that f attains its norm.

Theorem 2.5. Let (X, ‖ ‖) be a normed space. Let e be a nice boundary point of
the closed bounded convex set E ⊂ X. Then, there exists a norm ‖ ‖′ on X, which
is equivalent to ‖ ‖, such that e is a remotal point of E in (X, ‖ ‖′).
Proof. Without loss of generality we can assume that e = 0. If not, replace E by
E − {e} and α by 0. Thus, there exists a linear functional f : X → R such that

‖f‖ = 1, f(0) = 0, f(e) ≤ 0 ∀e ∈ E and f(a) = −1 for some ‖a‖ = 1.

On X, define the norm

‖x‖′ = max { |f(x)|, ‖x + f(x)a‖ } .

It is easy to check that ‖ ‖′ is a norm on X. We first prove that ‖ ‖ and ‖ ‖′ are
equivalent. Observe that

‖x + f(x)a‖ ≤ ‖x‖+ |f(x)| ‖a‖
≤ ‖x‖+ ‖x‖; because ‖f‖ = 1
= 2‖x‖.

Hence,

‖x‖′ ≤ max {|f(x)|, 2‖x‖}
≤ max {‖x‖, 2‖x‖}
= 2‖x‖.

On the other hand, adding ‖x‖′ ≥ |f(x)| and ‖x‖′ ≥ ‖x + f(x)a‖ ≥ ‖x‖ − |f(x)|
yields 2‖x‖′ ≥ ‖x‖. Thus, we have shown that

1
2
‖x‖ ≤ ‖x‖′ ≤ 2‖x‖

which means that ‖ ‖ and ‖ ‖′ are equivalent.
It remains to show that 0 is a remotal point of E in (X, ‖ ‖′). For this, let n ∈ N

be such that
n ≥ 3‖e‖, ∀e ∈ E,

where such an n exists because E is bounded. Observe that ‖na−0‖′ = n. Moreover,
for any e ∈ E, we have

‖e− na‖′ = max {|f(e− na)|, ‖e− na + f(e− na)a‖}
= {|f(e)− nf(a)|, ‖e− na + f(e)a− nf(a)a‖} .(2.1)

But f(a) = −1 and f(e) ≤ 0. Hence, when e ∈ E, (2.1) becomes

‖e− na‖′ = max {n− |f(e)|, ‖e + f(e)a‖}
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≤ n− |f(e)|(2.2)
≤ n,(2.3)

where inequality (2.2) is a result of the fact that |f(e)|+ ‖e+ f(e)a‖ ≤ 3‖e‖ ≤ n ⇒
n− |f(e)| ≥ ‖e + f(e)a‖.
Thus, we have shown that ‖na− 0‖′ = n and that ‖na− e‖′ ≤ n for all e ∈ E. This
means that 0 is a remotal point of E in (X, ‖ ‖′). This completes the proof of the
theorem. ¤

It is worth to remark that the norm ‖ ‖′ coincides with the infinity norm of R2

in both propositions 2.2 and 2.3.
Observe that the condition that E is convex is of no importance. But usually we

are interested in convex sets when we speak of hyperplanes and separation.
In fact, the proof of Theorem 2.5 can be imitated step by step to see that in the

case of an exposed point, inequality (2.3) is a strict inequality. Thus, we get

Theorem 2.6. Let e be a nice exposed point of the closed convex bounded set E in
the normed space (X, ‖ ‖). Then, under the norm ‖ ‖′, e is a uniquely remotal point
of E.

A stronger relation between exposed points and uniquely remotal points is avail-
able. Namely, we know that a uniquely remotal point is necessarily an extreme
point, see [2]. In fact, we have the following stronger result.

Theorem 2.7. Let e be a uniquely remotal point of the closed convex bounded set
E in a normed space X. Then, e is an exposed point of E.

Proof. Let x ∈ X be such that F (x,E) = {e} and let r = D(x,E). By virtue of
Lemma 2.1, the ball B(x, r) and the sphere S(x, r) satisfy the following

E ∩ S(x, r) = {e} and E ⊂ B(x, r).

Let H be a hyperplane that supports S(x, r) at e. Then, by the definition of a
supporting hyperplane, H does not contain any point of the interior of S(x, r), see
[4], hence E ∩H = {e}. Thus, H supports E uniquely at e. That is, e is an exposed
point of E. ¤

Thus, so far we have seen that an exposed point is not necessarily a remotal
point but it is uniquely remotal under some equivalent norm and that a uniquely
remotal point is necessarily an exposed point. Our last remark about the connection
of exposed and uniquely remotal points is to say that even if an exposed point is
remotal, it does not follow that this point is a uniquely remotal point. This can be
seen on taking X = R2 equipped with the ‖ ‖∞, E to be the unit ball in X and e
to be the corner (1, 1). Then clearly, e is exposed and remotal but is not uniquely
remotal.

Before proceeding to the next concept, namely the concept of extremely remotal
points, we would like to give some properties of the new norm ‖ ‖′ and the new
space (X, ‖ ‖′).
Proposition 2.8. Let e be a nice boundary point of the closed bounded convex set
E in a normed space X. Let f ∈ X∗ be such that

f(e) = α, f(e′) ≤ α ∀e′ ∈ E, ‖f‖ = 1 and f(a) = −1 for some ‖a‖ = 1.
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Then
{x ∈ X : f(x) ≤ α} =

⋃

n∈N
B′(e + na, n)

where B′(e + na, n) is the ball centered at e + na with radius n in (X, ‖ ‖′).
Proof. Let x be such that f(x) ≤ α and let n ∈ N be such that

n ≥ (α− f(x)) + ‖x− e + f(x)a− αa‖.
Then

‖x− (e + na)‖′ = max {|f(x− e− na)|, ‖x− e− na + f(x− e− na)a‖}
= max {|f(x)− α + n|, ‖x− e + f(x)a− αa‖}
= max {n− (α− f(x)), ‖x− e + f(x)a− αa‖}

where the last inequality is a consequence of the fact that f(x) ≤ α. But since
n ≥ (α− f(x)) + ‖x− e + f(x)a− αa‖ we see that

‖x− (e + na)‖′ = n− (α− f(x))
≤ n; because f(x) ≤ α.

This shows that
{x ∈ X : f(x) ≤ α} ⊆

⋃

n∈N
B′(e + na, n).

For the reversed inclusion, let x ∈ X be such that ‖x − (e + na)‖′ ≤ n for some
n ∈ N. Then, for this n,

|f(x− e− na)| ≤ n by the definition of ‖ ‖′
⇒ n + f(x)− α ≤ n

⇒ f(x) ≤ α.

This completes the proof of the proposition. ¤

To illustrate the importance of this proposition and the new norm, we consider
the following example: Let X = R2 be endowed with the infinity norm, let E =
{(x, y) : x2 + y2 = 1} and let e = (1/

√
2, 1/

√
2). If f ∈ X∗ is such that

f(a) = −1 for some ‖a‖ = 1, f(e) = α, f(x, y) ≤ α ∀(x, y) ∈ E and ‖f‖ = 1,

then it is easy to see that

{f ≤ α} 6=
⋃

n∈N
B(e + na, n)

where B(e+na, n) is the ball centered at e+na with radius n in the infinity norm.
Having introduced the result of proposition 2.8, we must remark that the truth

of
{f ≤ α} =

⋃

n∈N
B(e + na, n)

does not imply that e is a remotal point. This can be seen by the example of
proposition 2.3.

One more property of ‖ ‖′ is the following.
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Proposition 2.9. Let e be a nice boundary point of the closed bounded convex set
E in the normed space X and let f, α and a be as definition 2 suggests. Then

A := {x ∈ H : ‖x− e‖ ≤ t} = B :=
{
x ∈ H : ‖x− (e + ta)‖′ = t

}

for every t > 0.

Proof. Let x ∈ A, then f(x) = α and ‖x− e‖ ≤ t. Now,

‖x− (e + ta)‖′ = max {|f(x− e− ta)|, ‖x− e− ta + f(x)a− f(e)a− tf(a)a‖}
= max {t, ‖x− e‖}
= t because ‖x− e‖ ≤ t.

But this means that A ⊆ B. For the other inclusion, let x ∈ B, then following similar
computations as above yields max{t, ‖x−e‖} = t, which implies ‖x−e‖ ≤ t. Hence
B ⊆ A. This completes the proof. ¤

3. Extremely remotal points and Krein-Milman Type Theorems

It happens that some remotal points are more interesting than other ones. These
points are defined in the following definition.

Definition 3.1. Let E be a closed bounded convex subset of the Banach space X.
A point e ∈ E will be called extremely remotal if either e is an extreme point or if
e ∈ F (x,E) for some x ∈ ∂E, the boundary being taken in the space generated by
E, with the property that [e, x]∩E◦ = φ. Here, [e, x] = {te1 + (1− t)x : 0 ≤ t ≤ 1}
and E◦ is the interior of E.

Since remotal points and extreme points are boundary points, we easily see that
an extremely remotal point of E is necessarily a boundary point of E.
We know that every point of the unit sphere of Lp, 1 < p < ∞ is an extreme point of
the unit ball of Lp. This makes the study of extremely remotal points of the unit ball
of Lp, 1 < p < ∞ not interesting. For this reason, we shall study extremely remotal
points for the unit ball of spaces in which the unit ball has no extreme points such
as L1 and the space of continuous functions on [0, 1]. We give the following example
of extremely remotal points:

Example 3.2. Let X := L1[0, 1] and let B1 be the unit ball of X. If f = 2χ[0,1/2]

then f ∈ S1, the unit sphere of L1. Now, if g = 2χ[1/2,1] then ‖f−g‖ = 2 = D(g, B1).
Hence f is a remotal point of B1. Further, if 0 < t < 1 then

‖tf + (1− t)g‖ = 1 ⇒ tf + (1− t)g ∈ S1.

This implies that f is extremely remotal of B1.

The following example shows that some spaces do not have extremely remotal
points except the extreme points.

Example 3.3. Let X = L2[0, 1] and let f ∈ S1; the unit sphere of X. We know
that f is an extreme point of B1; the unit ball of X. However, we assert that f
cannot be extremely remotal in the other sense! That is, we show that no function
g ∈ S1 satisfies

‖f − g‖ = 2, and ‖tf + (1− t)g‖ = 1, ∀0 < t < 1.
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Observe that the condition ‖tf + (1− t)g‖ = 1, ∀0 < t < 1 cannot be true.

Extremely remotal points are of special interest in spaces where the unit ball has
no extreme points. The easiest example of such a space is L1[0, 1]. In the following
result, we describe all extremely remotal points of the unit ball of L1[0, 1].

Theorem 3.4. Let f be in the unit sphere of L1[0, 1]. Then, f is extremely remotal
if and only if 0 < µ (support(f)) < 1.

Proof. Denote the support of f by E and suppose that 0 < µ(E) < 1. We assert
that f is extremely remotal. So, let

g =
1

µ(Ec)
χEc ⇒ ‖g‖ = 1.

Then, ‖tf + (1− t)g‖ = 1 for any 0 < t < 1. That is, [f, g] lies on the boundary of
B1. Moreover, ‖f − g‖ = 2. This implies that f is an extremely remotal point of
B1.
Conversely, suppose that f is an extremely remotal point of B1. We want to show
that 0 < µ (support(f)) < 1. Let g ∈ L1[0, 1] be such that

‖g‖ = 1, f ∈ F (g, B1) and ‖tf + (1− t)g‖ = 1,

where such g exists because f is extremely remotal. Since D(g, B1) = 2 we see that
‖f − g‖ = 2. Now,

1 = ‖tf + (1− t)g‖ ≤ t‖f‖+ (1− t)‖g‖ = 1.

This means that
‖tf + (1− t)g‖ = t‖f‖+ (1− t)‖g‖.

But this happens only if f and g have the same sign. In this context, we consider
0 to be of any sign we desire.
Let E = {x ∈ [0, 1] : f(x) 6= 0 6= g(x)}. Now, if f and g have the same sign we
would have

‖f − g‖ =
∫ 1

0
| |f(x)| − |g(x)| | dx

=
∫

E
| |f(x)| − |g(x)| | dx +

∫

Ec

| |f(x)| − |g(x)| | dx.

Since either f(x) = 0 or g(x) = 0 when x ∈ Ec we have∫

Ec

| |f(x)| − |g(x)| | dx =
∫

Ec

|f(x)| dx +
∫

Ec

|g(x)| dx.

Now, if µ(E) > 0 then∫

E
| |f(x)| − |g(x)| | dx <

∫

E
|f(x)| dx +

∫

E
|g(x)| dx.

Consequently, if µ(E) > 0,

2 = ‖f − g‖
=

∫

E
| |f(x)| − |g(x)| | dx +

∫

Ec

| |f(x)| − |g(x)| | dx
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<

∫

E
|f(x)| dx +

∫

E
|g(x)| dx +

∫

Ec

|f(x)| dx +
∫

Ec

|g(x)| dx

=
∫ 1

0
|f(x)| dx +

∫ 1

0
|g(x)| dx

= 2;

which is a contradiction. Hence, we must have µ(E) = 0. But this means that f
and g have disjoint supports. Finally, since ‖g‖ = 1, we see that µ(support(g)) > 0
and since ‖f‖ = 1, we have µ(support(f)) > 0. These facts together imply that
0 < µ (support(f)) < 1. ¤

In fact, following similar ideas as above we can easily prove

Theorem 3.5. Let x = (xn) ∈ S1, the unit sphere of `1. Then, x is extremely
remotal for the unit ball of `1 if and only if there exists n ∈ N such that xn = 0.
That is, supp(x) 6= N.

The next result describes all extremely remotal points of the unit ball of the space
of continuous functions C[0, 1].

Theorem 3.6. Let f be an element of S1; the unit sphere of C[0, 1]. Then, f is
an extremely remotal point of B1;the unit ball of C[0, 1], if and only if f attains its
norm at more than one point.

Proof. Let f ∈ C[0, 1] be such that ‖f‖ = 1 and let x1, x2 ∈ [0, 1] be such that
|f(x1)| = |f(x2)| = 1. We assert that f is extremely remotal by finding a function
g ∈ C[0, 1] such that

‖g‖ = 1, ‖f − g‖ = 2 and ‖tf + (1− t)g‖ = 1.

Let g be a continuous function defined on [0, 1] with ‖g‖ = 1, g(x1) = −f(x1) and
g(x2) = f(x2). It is clear that ‖f − g‖ = 2. Hence, f ∈ F (g, B1). Now, for 0 < t < 1
we have

‖tf + (1− t)g‖ ≥ |tf(x2) + (1− t)g(x2)|; recall that ‖ ‖ = ‖ ‖∞
≥ |g(x2)| − t|f(x2)− g(x2)|
= 1.

On the other hand,

‖tf + (1− t)g‖ ≤ t‖f‖+ (1− t)‖g‖ = 1.

Consequently, ‖tf+(1−t)g‖ = 1. This means that [f, g] lies entirely on the boundary
of B1. Thus, f is an extremely remotal point of B1.
Conversely, suppose that f is an extremely remotal point of B1. Our goal is to show
that f attains its norm at least twice. Let g ∈ C[0, 1] be such that

‖g‖ = 1, ‖f − g‖ = 2 and ‖tf + (1− t)g‖ = 1,

where such a function g exists because f is extremely remotal of B1. Let x1 ∈ [0, 1]
be such that |f(x1)| = 1 and suppose that |f(x)| < 1 for all x 6= x1. Since ‖f−g‖ = 2
and |f(x)|, |g(x)| ≤ 1∀x ∈ [0, 1], we must have ‖f−g‖ attained when |f(x)| = 1 and
|g(x)| = 1. But |f(x)| = 1 only when x = x1. Consequently, we must have g(x1) =
−f(x1). Now, for any t ∈ (0, 1) we have |tf(x1) + (1− t)g(x1)| = |f(x1)| |2t− 1| <
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1, ∀0 < t < 1. But since both f and g attain their norms at x1, tf + (1 − t)g
must attain its norm at x1. That is, ‖tf + (1− t)g‖ < 1 which contradicts the fact
that [f, g] does not intersect the interior of B1. This contradiction is a result of the
assumption that x1 is the unique point at which f attains its norm. That is, f must
attain its norm at least twice in order to be an extremely remotal point of B1.
It is worth to remark that the only extreme points of the unit ball of C[0, 1] are
those functions f such that |f | = 1. These functions attain their norms at least
twice. ¤

Similar ideas as above yield the following result:

Theorem 3.7. Let x = (xn) be in the unit sphere of c0. Then, x is extremely
remotal for the unit ball of c0 if and only if ‖x‖∞ is attained twice. That is, if there
are at least two indices n1 and n2 such that |xn1 | = |xn2 | = 1.

The Krein-Milman theorem asserts that a compact convex subset of a locally
convex topological space is the closed convex hull of its extreme points. On the
other hand, it is shown [1] that the mazur intersection property is equivalent to the
fact that every closed bounded convex set is the closed convex hull of its remotal
points under some restrictions.

Now, we give a Krein-Milman type theorem. Observe that the unit ball of L1[0, 1]
has no extreme points neither it is compact. Therefore, the Krein-Milman theorem
cannot be applied. As for the unit ball of L1[0, 1], every point is a remotal point.
Therefore, it is trivial that the unit ball is the closed convex hull of its remotal
points.
Having introduced the new concept of extremely remotal points, we present the
following result.

Theorem 3.8. The unit ball B1 of L1[0, 1] is the closed convex hull of its extremely
remotal points.

Proof. Observe first that B1 is the convex hull of S1; the unit sphere of L1. Thus, it
suffices to show that every element of S1 is in the convex hull of extremely remotal
points of B1. So, let f ∈ S1 be such that µ(support(f)) = 1. Let

f1(x) =
1∫ 1/2

0 |f | dx
f(x)χ[0,1/2] and f2(x) =

1∫ 1
1/2 |f | dx

f(x)χ(1/2,1].

Then clearly, f1, f2 ∈ S1. Moreover, since ‖f‖ = 1 we have
∫ 1
1/2 |f | dx = 1 −

∫ 1/2
0 |f | dx. Now, let t =

∫ 1/2
0 |f | dx. Then 0 < t < 1 and clearly f = tf1 +(1− t)f2.

By virtue of Theorem 3.4, both f1 and f2 are extremely remotal points of B1. This
ends the proof. ¤

Our last result is a Krein-Milman type Theorem for the space c0:

Theorem 3.9. The unit ball of c0 is the closed convex hull of its extremely remotal
points.

Proof. Let x = (xn) ∈ c0 be such that ‖x‖ = 1 and suppose that this norm is
attained uniquely. Let k ∈ N be the index at which ‖x‖ is attained. That is,
|xk| = 1. Let k′ be any other index than k. Then, −1 < xk′ < 1 because ‖x‖ = 1
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is attained uniquely at xk. Let t0 ∈ (0, 1) be such that xk′ = t0(−1) + (1 − t0)(1).
Now define two elements y = (yn) and z = (zn) in c0 in the following way

yn =





xn, n 6= k, k′
−1, n = k′
xk, n = k

and zn =





xn, n 6= k, k′
1, n = k′
xk, n = k

.

Then, clearly y and z are extremely remotal points of the unit ball of c0 because
both norms ‖y‖ and ‖z‖ are attained twice, at least. Moreover, it is clear that
x = t0y + (1− t0)z.
Thus, we have shown that any boundary point of the unit ball of c0 is in the convex
hull of the extremely remotal points of the unit ball. This implies the result of the
Theorem.

¤
We conclude our paper by the following question: Can we prove such Krein-

Milman type Theorems for other Banach spaces?
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