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THE EXISTENCE AND STRUCTURE OF APPROXIMATE

SOLUTIONS OF DYNAMIC DISCRETE TIME ZERO-SUM

GAMES

ALEXANDER J. ZASLAVSKI

Abstract. In this paper we establish turnpike results for a class of dynamic
discrete-time two-player zero-sum games. These results describe the structure of
approximate solutions which is independent of the length of the interval, for all
sufficiently large intervals. We also show that for each initial state there exists a
pair of overtaking equilibria strategies over an infinite horizon.

1. Introduction

The study of the existence and the structure of (approximate) solutions of optimal
control problems defined on infinite intervals and on sufficiently large intervals has
recently been a rapidly growing area of research [4-7, 9-11, 13, 17-20, 27, 28, 30].
These problems arise in engineering [1, 31], in models of economic growth [8, 14, 16,
24, 25, 30], in infinite discrete models of solid-state physics related to dislocations in
one-dimensional crystals [3, 26] and in the theory of thermodynamical equilibrium
for materials [12, 15].

In this paper we study the existence and structure of solutions for a class of
dynamic discrete-time two-player zero-sum games and establish a turnpike result.
This result describes the structure of approximate solutions which is independent
of the length of the interval, for all sufficiently large intervals. We also show that
for each initial state there exists a pair of overtaking equilibria strategies over an
infinite horizon.

Denote by || · || the Euclidean norm in Rm. Let X ⊂ Rm1 and Y ⊂ Rm2 be
nonempty convex compact sets. Denote by M the set of all continuous functions
f : X ×X × Y × Y → R1 such that:

for each (y1, y2) ∈ Y ×Y the function (x1, x2) → f(x1, x2, y1, y2), (x1, x2) ∈ X×X
is convex;

for each (x1, x2) ∈ X×X the function (y1, y2) → f(x1, x2, y1, y2), (y1, y2) ∈ Y ×Y
is concave.

For the set M we define a metric ρ : M×M → R1 by

ρ(f, g) = sup{|f(x1, x2, y1, y2)− g(x1, x2, y1, y2)| :
x1, x2 ∈ X, y1, y2 ∈ Y }, f, g ∈ M.(1.1)

Clearly (M, ρ) is a complete metric space.
Given f ∈ M and an integer n ≥ 1 we consider a discrete-time two-player zero-

sum game over the interval [0, n]. For this game {{xi}ni=0 : xi ∈ X, i = 0, . . . n} is
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the set of strategies for the first player, {{yi}ni=0 : yi ∈ Y, i = 0, . . . n} is the set of
strategies for the second player, and the cost for the first player associated with the
strategies {xi}ni=0, {yi}ni=0 is given by

∑n−1
i=0 f(xi, xi+1, yi, yi+1).

Let f ∈ M, n ≥ 1 be an integer and let M ∈ [0,∞). A pair of sequences
{x̄i}ni=0 ⊂ X, {ȳi}ni=0 ⊂ Y is called (f,M)-good if the following properties hold:

(i) for each sequence {xi}ni=0 ⊂ X satisfying x0 = x̄0, xn = x̄n,

(1.2) M +

n−1∑
i=0

f(xi, xi+1, ȳi, ȳi+1) ≥
n−1∑
i=0

f(x̄i, x̄i+1, ȳi, ȳi+1);

(ii) for each sequence {yi}ni=0 ⊂ Y satisfying y0 = ȳ0, yn = ȳn,

(1.3) M +

n−1∑
i=0

f(x̄i, x̄i+1, ȳi, ȳi+1) ≥
n−1∑
i=0

f(x̄i, x̄i+1, yi, yi+1).

If a pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y is (f, 0)-good then it is called
(f)-optimal.

In this paper we study the turnpike property of good pairs of sequences. To
have this property means, roughly speaking, that the good pairs of sequences are
determined mainly by the objective function, and are essentially independent of the
choice of interval and endpoint conditions, except in regions close to the endpoints.
Turnpike properties are well known in mathematical economics and optimal control
(see [14-16, 24, 27-31] and the references mentioned there).

Consider any f ∈ M. We say that the function f has the turnpike property if
there exists a unique pair (xf , yf ) ∈ X × Y for which the following assertion holds:

For each ϵ > 0 there exist an integer n0 ≥ 2 and a number δ > 0 such that for each
integer n ≥ 2n0 and each (f, δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y
the relations ||xi − xf ||, ||yi − yf || ≤ ϵ holds for all integers i ∈ [n0, n− n0].

In [29] we showed that the turnpike property holds for a generic f ∈ M. Namely,
in [29] we proved the existence of a set F ⊂ M which is a countable intersection of
open everywhere dense sets in M such that each f ∈ F has the turnpike property.
Results of this kind for classes of single-player control systems have been established
in [27, 28, 30]. Thus, instead of considering the turnpike property for a single
objective function, we investigate it for a space of all such functions equipped with
some natural metric, and show that this property holds for most of these functions.

Note that the generic approach of [29] is not limited to the turnpike property,
but is also applicable to other problems in Mathematical Analysis [21-23].

In [29] and in the present paper we also study the existence of equilibria over
an infinite horizon and employ the following version of the overtaking optimality
criterion [8, 25, 30, 31].

Let f ∈ M. A pair of sequences {x̄i}∞i=0 ⊂ X, {ȳi}∞i=0 ⊂ Y is called (f)-
overtaking optimal if the following properties hold:

for each sequence {xi}∞i=0 ⊂ X satisfying x0 = x̄0

(1.4) lim sup
T→∞

[

T−1∑
i=0

f(x̄i, x̄i+1, ȳi, ȳi+1)−
T−1∑
i=0

f(xi, xi+1, ȳi, ȳi+1)] ≤ 0;
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for each sequence {yi}∞i=0 ⊂ Y satisfying y0 = ȳ0

(1.5) lim sup
T→∞

[ T−1∑
i=0

f(x̄i, x̄i+1, yi, yi+1)−
T−1∑
i=0

f(x̄i, x̄i+1, ȳi, ȳi+1)
]
≤ 0.

In [29] we showed that for a generic f ∈ M and each (x, y) ∈ X × Y there exists
an (f)-overtaking optimal pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y such that
x0 = x, y0 = y.

According to the results of [29] we know that for most functions f ∈ M the
turnpike property holds and that (f)-overtaking optimal pairs of sequences exist.
Nevertheless it is very important to have conditions on f ∈ M which imply the
turnpike property and guarantee the existence of (f)-overtaking optimal pairs of
sequences. These conditions will be found in the present paper.

The paper is organized as follows. In Section 2 we consider minimal pairs of se-
quences. In Section 3 we present our main (strict convexity-concavity) assumptions
of f ∈ M and state Theorems 3.1 and 3.2 which establish the turnpike property
and the existence of (f)-overtaking optimal pairs of sequences respectively. Section
4 contains preliminary results. Auxiliary results for Theorem 3.1 are proved in Sec-
tion 5. Theorem 3.1 is proved in Section 6. Auxiliary results for Theorem 3.2 are
proved in Section 7. Section 8 contains the proof of Theorem 3.2.

2. Minimal pairs of sequences

Let f ∈ M. Define a function f̄ : X × Y → R1 by

(2.1) f̄(x, y) = f(x, x, y, y), x ∈ X, y ∈ Y.

Then there exists a saddle point (xf , yf ) ∈ X × Y for f̄ [2, 26] such that

(2.2) sup
y∈Y

f̄(xf , y) = f̄(xf , yf ) = inf
x∈X

f̄(x, yf ).

Set

(2.3) µ(f) = f̄(xf , yf ).

A pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y is called (f)-minimal if for each
integer n ≥ 2 the pair of sequences {xi}ni=0, {yi}ni=0 is (f)-optimal.

The following results were established in [29].

Proposition 2.1 (29, Proposition 5.1.). Let n ≥ 2 be an integer and

x̄i = xf , ȳi = yf , i = 0, . . . n.

Then the pair of sequences {x̄i}ni=0, {ȳi}ni=0 is (f)-optimal.

Proposition 2.2 (29, Proposition 5.2.). Let n ≥ 2 be an integer and let

({x(k)i }ni=0, {y
(k)
i }ni=0) ⊂ X × Y, k = 1, 2, . . .

be a sequence of (f)-optimal pairs. Assume that

lim
k→∞

x
(k)
i = xi, lim

k→∞
y
(k)
i = yi, i = 0, 1, 2, . . . , n.

Then the pair of sequences ({xi}ni=0, {yi}ni=0) is (f)-optimal.
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Proposition 2.3 (29, Proposition 5.3.). Let x ∈ X, y ∈ Y . Then there exists an
(f)-minimal pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y such that x0 = x, y0 = y.

Let n ≥ 1 be an integer and let ξ = (ξ1, ξ2, ξ3, ξ4) ∈ X ×X × Y × Y . Define

(2.4) ΛX(ξ, n) = {{xi}ni=0 ⊂ X : x0 = ξ1, xn = ξ2},

(2.5) ΛY (ξ, n) = {{yi}ni=0 ⊂ Y : y0 = ξ3, yn = ξ4},

(2.6) f (ξ,n)((x0, . . . , xi, . . . , xn), (y0, . . . , yi, . . . yn)) =

n−1∑
i=0

f(xi, xi+1, yi, yi+1),

{xi}ni=0 ∈ ΛX(ξ, n), {yi}ni=0 ∈ ΛY (ξ, n).

3. Main results

Let f ∈ M. Then there exists (xf , yf ) ∈ X × Y such that [2, 29]

(3.1) sup
y∈Y

f(xf , xf , y, y) = f(xf , xf , yf , yf ) = inf
x∈X

f(x, x, yf , yf ).

In this paper we suppose that the following assumptions hold:
(A1) for each x ∈ X \ {xf} and each x′ ∈ X

f(2−1(xf + x), 2−1(xf + x′), yf , yf ) < 2−1f(xf , xf , yf , yf ) + 2−1f(x, x′, yf , yf );

(A2) for each y ∈ Y \ {yf} and each y′ ∈ Y

f(xf , xf , 2
−1(yf + y), 2−1(y′ + yf )) > 2−1f(xf , xf , yf , yf ) + 2−1f(xf , xf , y, y

′).

Choose a number

(3.2) D0 ≥ sup{|f(x1, x2, y1, y2)| : x1, x2 ∈ X, y1, y2 ∈ Y }.

In this section we present our main results.

Theorem 3.1. Let ϵ ∈ (0, 1). Then there exist a neighborhood U of f in M, an
integer n1 ≥ 4 and a number δ ∈ (0, ϵ) such that for each g ∈ U , each integer
n ≥ 2n1 and each (g, δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y the
relation

(3.3) ||xi − xf ||, ||yi − yf || ≤ ϵ

holds for all integers i ∈ [n1, n − n1]. Moreover, if ||x0 − xf ||, ||y0 − yf || ≤ δ then
(3.3) holds for all integers i ∈ [0, n − n1], and if ||xn − xf ||, ||yn − yf || ≤ δ then
(3.3) is valid for all integers i ∈ [n1, n].

Theorem 3.2. For each x ∈ X and each y ∈ Y there exists an (f)-overtaking
optimal pair of sequences {xi}∞i=0 ⊂ X, {yi}∞i=0 ⊂ Y such that x0 = x, y0 = y.
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4. Preliminary results

Let M,N be nonempty sets and let f : M ×N → R1. Set

(4.1) fa(x) = sup
y∈N

f(x, y), x ∈ M, f b(y) = inf
x∈M

f(x, y), y ∈ N,

(4.2) vaf = inf
x∈M

sup
y∈N

f(x, y), vbf = sup
y∈N

inf
x∈M

f(x, y).

Clearly

(4.3) vbf ≤ vaf .

We have the following result (see [2, Chapter 6, Section 2, Proposition 1]).

Proposition 4.1. Let f : M ×N → R1, x̄ ∈ M , ȳ ∈ N . Then

(4.4) sup
y∈N

f(x̄, y) = f(x̄, ȳ) = inf
x∈M

f(x, ȳ)

if and only if

(4.5) vaf = vbf , sup
y∈N

f(x̄, y) = vaf , inf
x∈M

f(x, ȳ) = vbf .

Let f : M ×N → R1. If (x̄, ȳ) ∈ M ×N satisfies (4.4), then it is called a saddle
point (for f). We have the following result (see [2, Chapter 6, Section 2, Theorem
8]).

Proposition 4.2. Let M ⊂ Rm, N ⊂ Rn be convex compact sets and let f :
M ×N → R1 be a continuous function. Assume that for each y ∈ N the function
x → f(x, y), x ∈ M is convex and for each x ∈ M the function y → f(x, y), y ∈ N
is concave. Then there exists a saddle point for f .

Proposition 4.3 (29, Proposition 4.3.). Let M,N be nonempty sets, f : M ×N →
R1 and let

(4.6) −∞ < vaf = vbf < +∞, x0 ∈ M, y0 ∈ N, ∆1,∆2 ∈ [0,∞),

(4.7) sup
y∈N

f(x0, y) ≤ vaf +∆1, inf
x∈M

f(x, y0) ≥ vbf −∆2.

Then

(4.8) sup
y∈N

f(x0, y)−∆1 −∆2 ≤ f(x0, y0) ≤ inf
x∈M

f(x, y0) + ∆1 +∆2.

Proposition 4.4 (29, Proposition 4.4.). Let M,N be nonempty sets and let f :
M ×N → R1. Assume that (4.6) is valid, x0 ∈ M , y0 ∈ N , ∆1, ∆2 ∈ [0,∞),

(4.9) sup
y∈N

f(x0, y)−∆2 ≤ f(x0, y0) ≤ inf
x∈M

f(x, y0) + ∆1.

Then

sup
y∈N

f(x0, y) ≤ vaf +∆1 +∆2, inf
x∈M

f(x, y0) ≥ vbf −∆1 −∆2.
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5. Auxiliary results for Theorem 3.1

We use all the definitions, notation and assumptions made in Section 3. In
particular we suppose that assumptions (A1) and (A2) hold.

Lemma 5.1. Let ϵ ∈ (0, 1). Then there exists a number δ ∈ (0, ϵ) such that for
each integer n ≥ 2 and each (f, δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y
satisfying

(5.1) xn, x0 = xf , yn, y0 = yf

the following relations hold:

(5.2) ||xi − xf ||, ||yi − yf || ≤ ϵ, i = 0, . . . n.

Proof. By (A1), (A2) and continuity of f there exists a positive number γ such that
the following properties hold:

(P1) for each x ∈ X and each x′ ∈ X satisfying ||x− xf || ≥ ϵ,

−f(2−1(xf +x), 2−1(xf +x′), yf , yf )+2−1f(xf , xf , yf , yf )+2−1f(x, x′, yf , yf ) ≥ γ;

(P2) for each y ∈ Y and each y′ ∈ Y satisfying ||y − yf || ≥ ϵ,

f(xf , xf , 2
−1(yf + y), 2−1(y′ + yf ))− 2−1f(xf , xf , yf , yf )− 2−1f(xf , xf , y, y

′) ≥ γ.

Choose a positive number δ such that

(5.3) δ < γ/4, δ < 8−1ϵ.

Assume that an integer n ≥ 2, {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y is an (f, δ)-good pair
of sequences and that (5.1) is valid. Set

(5.4) ξ1, ξ2 = xf , ξ3, ξ4 = yf , ξ = (ξ1, ξ2, ξ3, ξ4).

Consider the sets ΛX(ξ, n), ΛY (ξ, n) and the functions f (ξ,n) (see (2.4)-(2.6)). It
follows from (5.1) and Proposition 2.1 that

(5.5) sup
{ n−1∑

i=0

f(xf , xf , ui, ui+1) : {ui}ni=0 ∈ ΛY (ξ, n)
}
= nf(xf , xf , yf , yf )

= inf
{ n−1∑

i=0

f(pi, pi+1, yf , yf ) : {pi}ni=0 ∈ ΛX(ξ, n)
}
.

By (5.1) and (5.4),

(5.6) {xi}ni=0 ∈ ΛX(ξ, n)}, {yi}ni=0 ∈ ΛY (ξ, n).

Since ({xi}ni=0, {yi}ni=0) is an (f, δ)-good pair of sequences we conclude that

sup
{ n−1∑

i=0

f(xi, xi+1, ui, ui+1) : {ui}ni=0 ∈ ΛY (ξ, n)
}
− δ ≤

n−1∑
i=0

f(xi, xi+1, yi, yi+1)

(5.7) ≤ inf
{ n−1∑

i=0

f(pi, pi+1, yi, yi+1) : {pi}ni=0 ∈ ΛX(ξ, n)
}
+ δ.
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It follows from (5.4)-(5.7) that

nf(xf , xf , yf , yf ) ≤
n−1∑
i=0

f(xi, xi+1, yf , yf ) ≤
n−1∑
i=0

f(xi, xi+1, yi, yi+1) + δ

≤
n−1∑
i=0

f(xf , xf , yi, yi+1) + 2δ ≤ nf(xf , xf , yf , yf ) + 2δ.(5.8)

By (5.8),

(5.9)
∣∣∣ n−1∑
i=0

f(xi, xi+1, yi, yi+1)− nf(xf , xf , yf , yf )
∣∣∣ ≤ δ,

(5.10)

n−1∑
i=0

f(xi, xi+1, yf , yf )− nf(xf , xf , yf , yf ) ∈ [0, 2δ],

(5.11)
n−1∑
i=0

f(xf , xf , yi, yi+1)− nf(xf , xf , yf , yf ) ∈ [−2δ, 0].

Set

(5.12) x̃i = 2−1(xi + xf ), ỹi = 2−1(yi + yf ), i = 0, . . . , n.

By (5.5), (5.6) and (5.12),

(5.13)
n−1∑
i=0

f(x̃i, x̃i+1, yf , yf ) ≥ nf(xf , xf , yf , yf ) ≥
n−1∑
i=0

f(xf , xf , ỹi, ỹi+1).

In order to complete the proof of the lemma it is sufficient to show that (5.2) holds.
Assume the contrary. Then in view of (5.1) there is an integer k ∈ [1, n− 1] such

that

(5.14) max{||xk − xf ||, ||yk − yf ||} > ϵ.

By (5.12) for all i = 0, . . . , n− 1,

(5.15) f(x̃i, x̃i+1, yf , yf ) ≤ 2−1f(xi, xi+1, yf , yf ) + 2−1f(xf , xf , yf , yf ),

(5.16) f(xf , xf , ỹi, ỹi+1) ≥ 2−1f(xf , xf , yi, yi+1) + 2−1f(xf , xf , yf , yf ).

By (5.12), (5.14)-(5.16), (P1) and (P2),

2−1f(xk, xk+1, yf , yf ) + 2−1f(xf , xf , yf , yf )− f(x̃k, x̃k+1, yf , yf )

(5.17) +f(xf , xf , ỹk, ỹk+1)− 2−1f(xf , xf , yk, yk+1)− 2−1f(xf , xf , yf , yf ) ≥ γ.

By (5.10), (5.11), (5.13) and (5.15)-(5.17),

γ ≤
n−1∑
i=0

[2−1f(xi, xi+1, yi, yi+1) + 2−1f(xf , xf , yf , yf )− f(x̃i, x̃i+1, yf , yf )]

+

n−1∑
i=0

[f(xf , xf , ỹi, ỹi+1)− 2−1f(xf , xf , yi, yi+1)− 2−1f(xf , xf , yf , yf )]
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=
n−1∑
i=0

[f(xf , xf , ỹi, ỹi+1)− f(x̃i, x̃i+1, yf , yf )

+2−1f(xi, xi+1, yf , yf )− 2−1f(xf , xf , yi, yi+1)] ≤ δ.

This contradicts (5.3). The contradiction we have reached proves (5.2). This com-
pletes the proof of Lemma. 5.1. �

We can easily prove the following result.

Lemma 5.2. Let n ≥ 2 be an integer, M be a positive number and let {xi}ni=0 ⊂
X, {yi}ni=0 ⊂ Y be an (f,M)-good pair of sequences. Then the pair of sequences
{x̄i}ni=0 ⊂ X, {ȳi}ni=0 ⊂ Y defined by

x̄i = xi, ȳi = yi, i = 1, . . . n− 1, x̄0, x̄n = xf , ȳ0, ȳn = yf

is (f,M + 8D0)-good.

By using the uniform continuity of the function f : X ×X ×Y ×Y → R1 we can
easily prove the following lemma.

Lemma 5.3. Let ϵ be a positive number. Then there exists a number δ > 0 such
that for each integer n ≥ 2 and each sequences

{xi}ni=0, {x̄i}ni=0 ⊂ X, {yi}ni=0, {ȳi}ni=0 ⊂ Y

which satisfy

(5.18) ||x̄j − xj ||, ||ȳj − yj || ≤ δ, j = 0, n, xj = x̄j , yj = ȳj , j = 1, . . . n− 1

the following relation holds:∣∣∣ n−1∑
i=0

[f(xi, xi+1, yi, yi+1)− f(x̄i, x̄i+1, ȳi, ȳi+1)]
∣∣∣ ≤ ϵ.

Lemma 5.3 implies the following result.

Lemma 5.4. Assume that ϵ > 0. Then there exists a number δ > 0 such that for
each integer n ≥ 2, each (f, ϵ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y
and each pair of sequences {x̄i}ni=0 ⊂ X, {ȳi}ni=0 ⊂ Y the following assertion holds:

if (5.18) is valid then the pair of sequences ({x̄i}ni=0, {ȳi}ni=0) is (f, 2ϵ)-good.

Lemmas 5.4 and 5.1 imply the following auxiliary result.

Lemma 5.5. Let ϵ ∈ (0, 1). Then there exists a number δ ∈ (0, ϵ) such that for
each integer n ≥ 2 and each (f, δ)-good pair of sequences {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y
which satisfies ||xj − xf ||, ||yj − yf || ≤ δ, j = 0, n the following relations hold:
||xi − xf ||, ||yi − yf || ≤ ϵ, i = 0, . . . n.

Denote by Card(E) the cardinality of a set E.

Lemma 5.6. Let M be a positive number and let ϵ ∈ (0, 1). Then there exists
an integer n0 ≥ 4 such that for each (f,M)-good pair of sequences {xi}n0

i=0 ⊂
X, {yi}n0

i=0 ⊂ Y which satisfies

(5.19) x0, xn0 = xf , y0, yn0 = yf
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there is j ∈ {1, . . . n0 − 1} for which

(5.20) ||xj − xf ||, ||yj − yf || ≤ ϵ.

Proof. By (A1), (A2) and continuity of f there exists a positive number γ such that:
for each x ∈ X and each x′ ∈ X satisfying ||x− xf || ≥ ϵ,

(5.21)
−f(2−1(xf +x), 2−1(xf +x′), yf , yf )+2−1f(xf , xf , yf , yf )+2−1f(x, x′, yf , yf ) ≥ γ;

for each y ∈ Y and each y′ ∈ Y satisfying ||y − yf || ≥ ϵ,
(5.22)
f(xf , xf , 2

−1(yf + y), 2−1(y′ + yf ))− 2−1f(xf , xf , yf , yf )− 2−1f(xf , xf , y, y
′) ≥ γ.

Choose a natural number

(5.23) n0 > 8 + 2(γ)−1M.

Set

(5.24) ξ1, ξ2 = xf , ξ3, ξ4 = yf , ξ = {ξi}4i=1.

Assume that {xi}n0
i=0 ⊂ X, {yi}n0

i=0 ⊂ Y is an (f,M)-good pair of sequences and
that (5.19) holds. We show that there is an integer j ∈ {1, . . . , n0 − 1} such that
(5.20) holds. Assume the contrary. Then

(5.25) max{||xj − xf ||, ||yj − yf ||} > ϵ, j = 1, . . . , n0 − 1.

It follows from (5.19), (5.24) and Proposition 2.1 that

sup
{ n0−1∑

i=0

f(xf , xf , ui, ui+1) : {ui}n0
i=0 ∈ ΛY (ξ, n0)

}
= n0f(xf , xf , yf , yf )

(5.26) = inf
{ n0−1∑

i=0

f(pi, pi+1, yf , yf ) : {pi}n0
i=0 ∈ ΛX(ξ, n0)

}
.

By (5.19) and (5.24),

(5.27) {xi}n0
i=0 ∈ ΛX(ξ, n0), {yi}n0

i=0 ∈ ΛY (ξ, n0).

Since ({xi}n0
i=0, {yi}

n0
i=0) is an (f,M)-good pair of sequences we conclude that

sup
{ n0−1∑

i=0

f(xi, xi+1, ui, ui+1) : {ui}n0
i=0 ∈ ΛY (ξ, n0)

}
−M≤

n0−1∑
i=0

f(xi, xi+1, yi, yi+1)

(5.28) ≤ inf
{ n0−1∑

i=0

f(pi, pi+1, yi, yi+1) : {pi}n0
i=0 ∈ ΛX(ξ, n0)

}
+M.

It follows from (5.24), (5.26)-(5.28) that

n0f(xf , xf , yf , yf ) ≤
n0−1∑
i=0

f(xi, xi+1, yf , yf ) ≤
n0−1∑
i=0

f(xi, xi+1, yi, yi+1) +M

≤
n0−1∑
i=0

f(xf , xf , yi, yi+1) + 2M ≤ n0f(xf , xf , yf , yf ) + 2M.(5.29)
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By (5.29),

(5.30)
∣∣∣n0f(xf , xf , yf , yf )−

n0−1∑
i=0

f(xi, xi+1, yi, yi+1)
∣∣∣ ≤ M,

(5.31)

n0−1∑
i=0

f(xi, xi+1, yf , yf )− n0f(xf , xf , yf , yf ) ∈ [0, 2M ],

(5.32)

n0−1∑
i=0

f(xf , xf , yi, yi+1)− n0f(xf , xf , yf , yf ) ≤ [−2M, 0].

Set

(5.33) x̃i = 2−1(xi + xf ), ỹi = 2−1(yi + yf ), i = 0, 1, . . . , n0.

By (5.24), (5.26), (5.27) and (5.33),

(5.34)

n0−1∑
i=0

f(x̃i, x̃i+1, yf , yf ) ≥ n0f(xf , xf , yf , yf ) ≥
n0−1∑
i=0

f(xf , xf , ỹi, ỹi+1).

In view of (5.33) for i = 0, . . . , n0 − 1,

(5.35) f(x̃i, x̃i+1, yf , yf ) ≤ 2−1f(xi, xi+1, yf , yf ) + 2−1f(xf , xf , yf , yf ),

(5.36) f(xf , xf , ỹi, ỹi+1) ≥ 2−1f(xf , xf , yi, yi+1) + 2−1f(xf , xf , yf , yf ).

By (5.35), (5.25), the choice of γ (see (5.21) and (5.22)) and (5.33) for each i =
1, . . . , n0 − 1 at least one of the following inequalities holds:

2−1f(xi, xi+1, yf , yf ) + 2−1f(xf , xf , yf , yf )− f(x̃i, x̃i+1, yf , yf ) ≥ γ,

f(xf , xf , ỹi, ỹi+1)− 2−1f(xf , xf , yi, yi+1)− 2−1f(xf , xf , yf , yf ) ≥ γ.

Combined with (5.35) and (5.36) this implies that for each i = 1, . . . , n0 − 1

2−1f(xi, xi+1, yf , yf ) + 2−1f(xf , xf , yf , yf )− f(x̃i, x̃i+1, yf , yf )

+ f(xf , xf , ỹi, ỹi+1)− 2−1f(xf , xf , yi, yi+1)− 2−1f(xf , xf , yf , yf ) ≥ γ.

Together with (5.35), (5.36) and (5.34) this implies that

γ(n0 − 1) ≤
n0−1∑
i=0

[2−1f(xi, xi+1, yf , yf ) + 2−1f(xf , xf , yf , yf )− f(x̃i, x̃i+1, yf , yf )

+ f(xf , xf , ỹi, ỹi+1)− 2−1f(xf , xf , yi, yi+1)− 2−1f(xf , xf , yf , yf )]

=

n0−1∑
i=0

[f(xf , xf , ỹi, ỹi+1)− f(x̃i, x̃i+1, yf , yf )

+ 2−1f(xi, xi+1, yf , yf )− 2−1f(xf , xf , yi, yi+1])

≤n0f(xf , xf , yf , yf )− n0f(xf , xf , yf , yf ) + 2−1n0f(xf , xf , yf , yf ) +M

− 2−1n0f(xf , xf , yf , yf ) +M ≤ 2M,

γ(n0 − 1) ≤2M.
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This contradicts (5.23). The contradiction we have reached proves that there is an
integer j ∈ {1, . . . , n0 − 1} such that (5.20) holds. Lemma 5.6 is proved. �

Lemmas 5.6 and 5.2 imply the following auxiliary result.

Lemma 5.7. Let ϵ ∈ (0, 1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4
such that for each (f,M)-good pair of sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0 ⊂ Y there is

j ∈ {1, . . . , n0 − 1} for which ||xf − xj ||, ||yf − yj || ≤ ϵ.

Lemma 5.8. Let ϵ ∈ (0, 1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4 and
a neighborhood U of f in M such that for each g ∈ U and each (g,M)-good pair of
sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0 ⊂ Y there is j ∈ {1, . . . n0 − 1} for which

(5.37) ||xf − xj ||, ||yf − yj || ≤ ϵ.

Proof. By Lemma 5.7 there is an integer n0 ≥ 4 such that for each (f,M +8)-good
pair of sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0 ⊂ Y there is j ∈ {1, . . . n0 − 1} for which

(5.37) is valid. Set

(5.38) U = {g ∈ M : ρ(f, g) ≤ (16n0)
−1}.

Assume that g ∈ U and {xi}n0
i=0 ⊂ X, {yi}n0

i=0 ⊂ Y is a (g,M)-good pair of
sequences. By (5.38) the pair of sequences {xi}n0

i=0, {yi}
n0
i=0 is (f,M + 8)-good. It

follows from the definition of n0 that there exists j ∈ {1, . . . n0−1} for which (5.37)
is valid. The lemma is proved. �

6. Proof of Theorem 3.1

By Lemma 5.5 there exists δ0 ∈ (0, ϵ) such that the following property holds:
(P3) for each integer n ≥ 2 and each (f, δ0)-good pair of sequences {xi}ni=0 ⊂

X, {yi}ni=0 ⊂ Y satisfying

||xj − xf ||, ||yj − yf || ≤ δ0, j = 0, n

we have

(6.1) ||xj − xf ||, ||yj − yf || ≤ ϵ

for all i = 0, . . . , n.
By Lemma 5.8 there exists an integer n0 ≥ 4 and a neighborhood U0 of f in M

such that the following property holds:
(P4) for each g ∈ U0 and each (g, 8)-good pair of sequences {xi}n0

i=0 ⊂ X, {yi}n0
i=0

⊂ Y there is j ∈ {1, . . . n0 − 1} for which

||xj − xf ||, ||yj − yf || ≤ δ0.

Fix an integer

(6.2) n1 ≥ 4n0

and a number

(6.3) δ ∈ (0, 4−1δ0).

Define

(6.4) U = U0 ∩ {g ∈ M : ρ(g, f) ≤ 16−1δn−1
1 }.
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Assume that g ∈ U , an integer n ≥ 2n1 and {xi}ni=0 ⊂ X, {yi}ni=0 ⊂ Y is a
(g, δ)-good pair of sequences. It follows from (6.2)-(6.4) and (P4) that there exists
a sequence of integers {ti}ki=1 ⊂ [0, n] such that

(6.5) t1 ≤ n0, ti+1 − ti ∈ [n0, 3n0], i = 1, . . . k − 1,

(6.6) n− tk ≤ n0, ||xti − xf ||, ||yti − yf || ≤ δ0, i = 1, . . . k

and, moreover, if ||x0−xf ||, ||y0−yf || ≤ δ then t1 = 0, and if ||xn−xf ||, ||yn−yf || ≤
δ then tk = n. Clearly k ≥ 2. Fix q ∈ {1, . . . k − 1}. To complete the proof of the
theorem it is sufficient to show that for each integer i ∈ [tq, tq+1] the relation (6.1)
holds.

Define sequences {x(q)i }tq+1−tq
i=0 ⊂ X, {y(q)i }tq+1−tq

i=0 ⊂ Y by

(6.7) x
(q)
i = xi+tq , y

(q)
i = yi+tq , i ∈ [0, tq+1 − tq].

It is easy to see that {x(q)i }tq+1−tq
i=0 , {y(q)i }tq+1−tq

i=0 is a (g, δ)-good pair of sequences.

Together with (6.2)-(6.6) this implies that the pair {x(q)i }tq+1−tq
i=0 , {y(q)i }tq+1−tq

i=0 is
(f, δ0)-good. It follows from (6.5), (6.6) and (P3) that

||x(q)i − xf ||, ||y
(q)
i − yf || ≤ ϵ, i = 0, . . . tq+1 − tq.

Together with (6.7) this implies that ||xi − xf ||, ||yi − yf || ≤ ϵ, i = tq, . . . tq+1. This
completes the proof of the Theorem 3.1.

7. Preliminary lemmas for Theorem 3.2

Let f ∈ M. xf ∈ X, yf ∈ Y satisfy (3.1). We use all the definitions, notation
and assumptions made in Section 3. In particular we suppose that assumptions
(A1) and (A2) hold.

For each metric space K denote by C(K) the space of all continuous functions
on K with the topology of uniform convergence (||ϕ|| = sup{|ϕ(z)| : z ∈ K},
ϕ ∈ C(K)).

Define functions f (X) : X ×X → R1, f (Y ) : Y × Y → R1 by

(7.1) f (X)(x1, x2) = f(x1, x2, yf , yf ), x1, x2 ∈ X,

(7.2) f (Y )(y1, y2) = f(xf , xf , y1, y2), y1, y2 ∈ Y.

Lemma 7.1. Let ϵ ∈ (0, 1). Then there exists a number δ ∈ (0, ϵ) for which the
following assertion holds:

Assume that an integer n ≥ 2,

(7.3) {xi}ni=0 ⊂ X, x0, xn = xf

and for each {zi}ni=0 ⊂ X satisfying

(7.4) z0 = x0, zn = xn

the relation

(7.5)

n−1∑
i=0

f (X)(xi, xi+1) ≤
n−1∑
i=0

f (X)(zi, zi+1) + δ
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holds. Then

(7.6) ||xi − xf || ≤ ϵ, i = 0, . . . n.

Proof. By (A1) and continuity of f there exists s positive number γ such that the
following property holds:

(P5) for each x ∈ X and each x′ ∈ X satisfying ||x− xf || ≥ ϵ,

−f(2−1(xf +x), 2−1(xf +x′), yf , yf )+2−1f(xf , xf , yf , yf )+2−1f(x, x′, yf , yf ) ≥ γ.

Choose a positive number δ such that

(7.7) δ < min{8−1ϵ, γ/4}.

Assume that an integer n ≥ 2, {xi}ni=0 ⊂ X, (7.3) is valid and for each sequence
{zi}ni=0 ⊂ X satisfying (7.4), relation (7.5) holds. We show that (7.6) holds. Assume
the contrary. Then there is an integer j ∈ {1, . . . , n− 1}. such that

(7.8) ||xj − xf || > ϵ.

Since (7.5) holds with zi = xf , i = 0, . . . , n it follows from Proposition 2.1 that

(7.9)

n−1∑
i=0

f(xi, xi+1, yf , yf ) ≤ nf(xf , xf , yf , yf ) + δ ≤
n−1∑
i=0

f(xi, xi+1, yf , yf ) + δ.

Set

(7.10) x̃i = 2−1(xi + xf ), i = 0, . . . , n− 1.

By (7.1) and (7.10) for i = 0, . . . , n− 1,

(7.11) f (X)(x̃i, x̃i+1) ≤ 2−1f (X)(xi, xi+1) + 2−1f (X)(xf , xf ).

By (7.8), (7.9) and (P5),

(7.12) f(x̃j , x̃j+1, yf , yf ) ≤ 2−1f(xj , xj+1, yf , yf ) + 2−1f(xf , xf , yf , yf )− γ.

In view of (7.3), (7.9)-(7.12) and Proposition 2.1,

nf(xf , xf , yf , yf ) ≤
n−1∑
i=0

f(x̃i, x̃i+1, yf , yf )

≤ 2−1
n−1∑
i=0

f(xi, xi+1, yf , yf ) + 2−1nf(xf , xf , yf , yf )− γ

≤ nf(xf , xf , yf , yf ) + δ − γ.

This contradicts (7.7). The contradiction we have reached proves that (7.6) holds.
Lemma 7.1 is proved. �

Analogously to Lemma 7.1 we can establish the following auxiliary result.

Lemma 7.2. Let ϵ ∈ (0, 1). Then there exists a number δ ∈ (0, ϵ) for which the
following assertion holds:

Assume that an integer n ≥ 2,

{yi}ni=0 ⊂ Y, y0, yn = yf
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and for each {zi}ni=0 ⊂ Y satisfying

(7.13) z0 = y0, zn = yn

the relation

(7.14)

n−1∑
i=0

f (Y )(yi, yi+1) ≥
n−1∑
i=0

f (Y )(zi, zi+1)− δ

holds. Then

(7.15) ||yi − yf || ≤ ϵ, i = 0, . . . n.

Let g ∈ C(X × X), n ≥ 1 be an integer and let M ∈ [0,∞). A sequence
{x̄i}ni=0 ⊂ X is called (g,X,M)-good if for each sequence {xi}ni=0 ⊂ X satisfying

x0 = x̄0, xn = x̄n the relation M +
∑n−1

i=0 g(xi, xi+1) ≥
∑n−1

i=0 g(x̄i, x̄i+1) is valid.
Let g ∈ C(Y × Y ), n ≥ 1 be an integer and let M ∈ [0,∞). A sequence

{ȳi}ni=0 ⊂ Y is called (g, Y,M)-good if for each sequence {yi}ni=0 ⊂ Y satisfying

y0 = ȳ0, yn = ȳn the relation
∑n−1

i=0 g(yi, yi+1) ≤ M +
∑n−1

i=0 g(ȳi, ȳi+1) is valid.

Let n1 ≥ 0, n2 > n1 be integers, and let {gi}n2−1
i=n1

⊂ C(X × X), M ∈ [0,∞).

A sequence {x̄i}n2
i=n1

⊂ X is called ({gi}n2−1
i=n1

, X,M)-good if for each sequence

{xi}n2
i=n1

⊂ X satisfying xn1 = x̄n1 , xn2 = x̄n2

M +

n2−1∑
i=n1

gi(xi, xi+1) ≥
n2−1∑
i=n1

gi(x̄i, x̄i+1).

Let n1 ≥ 0, n2 > n1 be integers, and let {gi}n2−1
i=n1

⊂ C(Y ×Y ), M ∈ [0,∞). A se-

quence {ȳi}n2
i=n1

⊂ Y is called ({gi}n2−1
i=n1

, Y,M)-good if for each sequence {yi}n2
i=n1

⊂
Y satisfying yn1 = ȳn1 , yn2 = ȳn2

n2−1∑
i=n1

gi(yi, yi+1) ≤
n2−1∑
i=n1

gi(ȳi, ȳi+1) +M.

By using Lemmas 7.1 and 5.3 we can easily deduce the following auxiliary result.

Lemma 7.3. Let ϵ ∈ (0, 1). Then there exists a number δ > 0 such that for

each integer n ≥ 2 and each (f (X), X, δ)-good sequence {xi}ni=0 ⊂ X satisfying
||x0 − xf ||, ||xn − xf || ≤ δ the following relation holds: ||xi − xf || ≤ ϵ, i = 0, . . . n.

By using Lemmas 7.2 and 5.3 we can easily deduce the following auxiliary result.

Lemma 7.4. Let ϵ ∈ (0, 1). Then there exists a number δ > 0 such that for each

integer n ≥ 2 and each (f (Y ), Y, δ)-good sequence {yi}ni=0 ⊂ Y satisfying ||y0 −
yf ||, ||yn − yf || ≤ δ the following relation holds: ||yi − yf || ≤ ϵ, i = 0, . . . n.

Lemma 7.5. Let ϵ ∈ (0, 1) and M be a positive number. Then there exists an integer

n0 ≥ 4 such that for each (f (X), X,M)-good sequence {xi}n0
i=0 ⊂ X satisfying

(7.16) x0 = xf , xn0 = xf

there is j ∈ {1, . . . n0 − 1} for which

(7.17) ||xj − xf || ≤ ϵ.
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Proof. By (A1) there exists s positive number γ such that the following property
holds:

(P6) for each x ∈ X and each x′ ∈ X satisfying ||x− xf || ≥ ϵ,

−f(2−1(xf +x), 2−1(xf +x′), yf , yf )+2−1f(xf , xf , yf , yf )+2−1f(x, x′, yf , yf ) ≥ γ.

Choose a natural number

(7.18) n0 > 8 +Mγ−1.

Assume that an (f (X), X,M)-good sequence {xi}n0
i=0 ⊂ X satisfies (7.16). We

show that there is an integer j ∈ {1, . . . , n0 − 1} such that (7.17) holds. Assume
the contrary. Then

(7.19) ||xi − xf || > ϵ, i = 1, . . . , n0 − 1.

Set

(7.20) x̃i = 2−1xi + 2−1xf , i = 0, . . . , n0.

By (7.20) for i = 0, . . . , n0 − 1,

(7.21) f(x̃i, x̃i+1, yf , yf ) ≤ 2−1f(xi, xi+1, yf , yf ) + 2−1f(xf , xf , yf , yf ).

It follows from (7.19), (7.20) and (P6) that for i = 1, . . . , n0 − 1

(7.22) f(x̃i, x̃i+1, yf , yf ) ≤ 2−1f(xi, xi+1, yf , yf ) + 2−1f(xf , xf , yf , yf )− γ.

By (7.16), (7.20), (7.22), (7.24) and Proposition 2.1

n0f(xf , xf , yf , yf ) ≤
n0−1∑
i=0

f(x̃i, x̃i+1, yf , yf )

≤ 2−1
n0−1∑
i=0

f(xi, xi+1, yf , yf )

+2−1n0f(xf , xf , yf , yf )− (n0 − 1)γ

≤ 2−1(M + n0f(xf , xf , yf , yf ))

+2−1n0f(xf , xf , yf , yf )− (n0 − 1)γ,

(n0 − 1)γ ≤ 2−1M.

This contradicts (7.18). The contradiction we have reached proves that there is an
integer j ∈ {1, . . . , n0 − 1} such that (7.17) holds. Lemma 7.5 is proved. �

Analogously to Lemma 7.5 we can establish the following auxiliary result.

Lemma 7.6. Let ϵ ∈ (0, 1) and M be a positive number. Then there exists an

integer n0 ≥ 4 such that for each (f (Y ), Y,M)-good sequence {yi}n0
i=0 ⊂ Y satisfying

y0 = yf , yn0 = yf there is j ∈ {1, . . . n0 − 1} for which ||yj − yf || ≤ ϵ.

We can easily prove the following result.



64 ALEXANDER J. ZASLAVSKI

Lemma 7.7.

1. Assume that n ≥ 2 is an integer, M is a positive number, a sequence {xi}ni=0 ⊂
X is (f (X), X,M)-good and x̄0 = xf , x̄n = xf , x̄i = xi, i = 1, . . . n− 1. Then the

sequence {x̄i}ni=0 is (f (X), X,M + 8D0)-good.
2. Assume that n ≥ 2 is an integer, M is a positive number, a sequence {yi}ni=0 ⊂

Y is (f (Y ), Y,M)-good and ȳ0 = yf , ȳn = yf , ȳi = yi, i = 1, . . . n − 1. Then the

sequence {ȳi}ni=0 is (f (Y ), Y,M + 8D0)-good.

Lemmas 7.5, 7.6 and 7.7 imply the following two results.

Lemma 7.8. Let ϵ ∈ (0, 1) and M be a positive number. Then there exists an

integer n0 ≥ 4 such that for each (f (X), X,M)-good sequence {xi}n0
i=0 ⊂ X there is

j ∈ {1, . . . n0 − 1} for which ||xj − xf || ≤ ϵ.

Lemma 7.9. Let ϵ ∈ (0, 1) and M be a positive number. Then there exists an

integer n0 ≥ 4 such that for each (f (Y ), Y,M)-good sequence {yi}n0
i=0 ⊂ Y there is

j ∈ {1, . . . n0 − 1} for which ||yj − yf || ≤ ϵ.

By using Lemmas 7.8 and 7.9, analogously to the proof of Lemma 5.8, we can
establish the following two results.

Lemma 7.10. Let ϵ ∈ (0, 1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4 and

a neighborhood U of f (X) in C(X ×X) such that for each {gi}n0−1
i=0 ⊂ U and each

({gi}n0−1
i=0 , X,M)-good sequence {xi}n0

i=0 ⊂ X there is j ∈ {1, . . . n0 − 1} for which
||xf − xj || ≤ ϵ.

Lemma 7.11. Let ϵ ∈ (0, 1), M ∈ (0,∞). Then there exists an integer n0 ≥ 4 and

a neighborhood U of f (Y ) in C(Y × Y ) such that for each {gi}n0−1
i=0 ⊂ U and each

({gi}n0−1
i=0 , Y,M)-good sequence {yi}n0

i=0 ⊂ Y there is j ∈ {1, . . . n0 − 1} for which
||yf − yj || ≤ ϵ.

Lemma 7.12. Let ϵ ∈ (0, 1). Then there exist a neighborhood U of f (X) in C(X ×
X), a number δ ∈ (0, ϵ) and an integer n1 ≥ 4 such that for each integer n ≥ 2n1,
each {gi}n−1

i=0 ⊂ U and each ({gi}n−1
i=0 , X, δ)-good sequence {xi}ni=0 ⊂ X the relation

(7.23) ||xi − xf || ≤ ϵ

holds for all integers i ∈ [n1, n− n1]. Moreover if ||x0 − xf || ≤ δ then (7.23) holds
for all integers i ∈ [0, n − n1], and if ||xn − xf || ≤ δ then (7.23) is valid for all
integers i ∈ [n1, n].

Proof. By Lemma 7.3 there exists δ0 ∈ (0, ϵ) such that the following property holds:

(P7) for each integer n ≥ 2 and each (f (X), X, δ0)-good sequence {xi}ni=0 ⊂ X
satisfying ||x0 − xf ||, ||xn − xf || ≤ δ0 relation (7.23) is valid for i = 0, . . . n.

By Lemma 7.10 there exist an integer n0 ≥ 4 and a neighborhood U0 of f (X) in
C(X ×X) such that the following property holds:

(P8) for each {gi}n0−1
i=0 ⊂ U0 and each ({gi}n0−1

i=0 , X, 8)-good sequence {xi}ni=0 ⊂ X
there is j ∈ {1, . . . n0 − 1} for which ||xj − xf || ≤ δ0.

Choose an integer n1 ≥ 4n0 and a number δ ∈ (0, 4−1δ0). Define

U = U0 ∩ {g ∈ C(X ×X) : ||g − f (X)|| ≤ (16n1)
−1δ}.
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Assume that an integer n ≥ 2n1, {gi}n−1
i=0 ⊂ U and a sequence {xi}ni=0 ⊂ X is

({gi}n−1
i=0 , X, δ)-good. Arguing as in the proof of Theorem 3.1 we complete the proof

of Lemma 7.12. �
Analogously to Lemma 7.12 we can prove the following

Lemma 7.13. Let ϵ ∈ (0, 1). Then there exist a neighborhood U of f (Y ) in C(Y ×
Y ), a number δ ∈ (0, ϵ) and an integer n1 ≥ 4 such that for each integer n ≥ 2n1,
each {gi}n−1

i=0 ⊂ U and each ({gi}n−1
i=0 , Y, δ)-good sequence {yi}ni=0 ⊂ Y the relation

(7.24) ||yi − yf || ≤ ϵ

holds for all integers i ∈ [n1, n − n1]. Moreover if ||y0 − yf || ≤ δ then (7.24) holds
for all integers i ∈ [0, n − n1], and if ||yn − yf || ≤ δ then (7.24) is valid for all
integers i ∈ [n1, n].

8. Proof of Theorems 3.2

Let x ∈ X and y ∈ Y . By Proposition 2.3 there is an (f)-minimal pair of
sequences {x̄j}∞j=0 ⊂ X, {ȳj}∞j=0 ⊂ Y for which

(8.1) x̄0 = x, ȳ0 = y.

We will show that the pair of sequences ({x̄j}∞j=0, {ȳj}∞j=0) is (f)-overtaking optimal.
Theorem 3.1 implies that

(8.2) x̄j → xf , ȳj → yf as j → ∞.

Let {xi}∞i=0 ⊂ X and x0 = x. We will show that

(8.3) lim sup
T→∞

[ T−1∑
j=0

f(x̄j , x̄j+1, ȳj , ȳj+1)−
T−1∑
j=0

f(xj , xj+1, ȳj , ȳj+1)
]
≤ 0.

Assume the contrary. Then there exists a number Γ0 > 0 and a strictly increasing
sequence of natural numbers {Tk}∞k=1 such that for all integers k ≥ 1

(8.4)

Tk−1∑
j=0

f(x̄j , x̄j+1, ȳj , ȳj+1)−
Tk−1∑
j=0

f(xj , xj+1, ȳj , ȳj+1) ≥ Γ0.

We will show that
xj → xf as j → ∞.

For j = 0, 1, . . . define a function gj : X ×X → R1 by

(8.5) gj(u1, u2) = f(u1, u2, ȳj , ȳj+1), u1, u1 ∈ X.

By (8.2),

(8.6) lim
j→∞

||gj − f (X)|| = 0.

Since the pair of sequences ({x̄j}∞j=0, {ȳj}∞j=0) is (f)-minimal there exists a constant
c0 > 0 such that for each integer T ≥ 1

T−1∑
i=0

f(x̄j , x̄j+1, ȳj , ȳj+1) ≤ inf{
T−1∑
j=0

f(uj , uj+1, ỹj , ũj+1) :
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(8.7) {uj}Tj=0 ⊂ X, u0 = z}+ c0.

Equations (8.4), (8.5) and (8.7) imply that the following property holds:
(P9) For each ∆ > 0 there exists an integer j(∆) ≥ 1 such that for each pair of

integers n1 ≥ j(∆), n2 > n1 the sequence {xj}n2
j=n1

is ({gj}n2−1
j=n1

, X,∆)-good.

By (P9) and Theorem 3.1

(8.8) lim
j→∞

xj = xf .

There exists a number ϵ0 > 0 such that for each z1, z2, z̄1, z̄2 ∈ X and each
ξ1, ξ2, ξ̄1, ξ̄2 ∈ Y which satisfy

(8.9) ||zj − z̄j ||, ||ξj − ξ̄j || ≤ 2ϵ0, j = 1, 2

the following relation holds:

(8.10) |f(z1, z2, ξ1, ξ2)− f(z̄1, z̄2, ξ̄1, ξ̄2)| ≤ 8−1Γ0.

By (8.8) and (8.2) there exists an integer j0 ≥ 8 such that for all integers j ≥ j0

(8.11) ||xj − xf || ≤ 2−1ϵ0, ||x̄j − xf || ≤ 2−1ϵ0.

There exists an integer s ≥ 1 such that

(8.12) Ts > j0.

Define a sequence {x∗j}
Ts
j=0 ⊂ X by

(8.13) x∗j = xj , j = 0, . . . Ts − 1, x∗Ts
= x̄Ts .

Since the pair of sequences ({x̄j}∞j=0, {ȳj}∞j=0) is (f)-minimal we conclude that

(8.14)

Ts−1∑
j=0

f(x̄j , x̄j+1, ȳj , ȳj+1)−
Ts−1∑
j=0

f(x∗j , x
∗
j+1, ȳj , ȳj+1) ≤ 0.

On the other hand it follows from (8.4), (8.11)-(8.13) and the definition of ϵ0 (see
(8.9), (8.10)) that

Ts−1∑
j=0

f(x̄j , x̄j+1, ȳj , ȳj+1)−
Ts−1∑
j=0

f(x∗j , x
∗
j+1, ȳj , ȳj+1)

=

Ts−1∑
j=0

f(x̄j , x̄j+1, ȳj , ȳj+1)−
Ts−1∑
j=0

f(xj , xj+1, ȳj , ȳj+1)

+ f(xTs−1, xTs , ȳTs−1, ȳTs)− f(x∗Ts−1, x
∗
Ts
, ȳTs−1, ȳTs)

≥Γ0 + f(xTs−1, xTs , ȳTs−1, ȳTs)− f(xTs−1, x̄Ts , ȳTs−1, ȳTs)

≥Γ0 − 8−1Γ0.

This is contradictory to (8.14). The obtained contradiction proves that (8.3) holds.
Analogously we can show that for each sequence {yj}∞j=0 ⊂ Y satisfying y0 = y

lim sup
T→∞

[ T−1∑
j=0

f(x̄j , x̄j+1, yj , yj+1)−
T−1∑
j=0

f(x̄j , x̄j+1, ȳj , ȳj+1)
]
≤ 0.
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This implies that the pair of sequences ({x̄j}∞j=0, {ȳj}∞j=0) is (f)-overtaking optimal.
This completes the proof of Theorem 3.2.
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