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FIXED POINT AND MEAN ERGODIC THEOREMS
FOR NEW NONLINEAR MAPPINGS IN HILBERT SPACES

TORU MARUYAMA, WATARU TAKAHASHI, AND MASAYUKI YAO

ABSTRACT. In this paper, we first consider a broad class of nonlinear mappings
containing the class of generalized hybrid mappings defined by Kocourek, Taka-
hashi and Yao [11] in a Hilbert space. Then, we prove a fixed point theorem, a
mean ergodic theorem of Baillon’s type [2] and a weak convergence theorem of
Mann’s type [14] for these nonlinear mappings in a Hilbert space.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of
H. Then a mapping T': C' — C is said to be nonexpansive if ||[Tx — Ty|| < ||z — y||
for all x,y € C. The set of fixed points of T" is denoted by F(T"). Baillon [2] proved
the following nonlinear mean ergodic theorem in a Hilbert space.

Theorem 1.1. Let C' be a nonempty closed convex subset of H and let T : C — C
be nonexpansive. If F(T) # 0, then for any x € C,

1 n—1
Spx = — F
n - ZT T
k=0
converges weakly to an element z € F(T).

An important example of nonexpansive mappings in a Hilbert space is a firmly
nonexpansive mapping. A mapping [ is said to be firmly nonexpansive if

|Fz — Fy||*> < (z —y, Fx — Fy)

for all z,y € C; see, for instance, Browder [4] and Goebel and Kirk [6]. It is
known that a firmly nonexpansive mapping F' can be deduced from an equilibrium
problem in a Hilbert space; see, for instance, [3] and [5]. Recently, Kohsaka and
Takahashi [13], and Takahashi [19] introduced the following nonlinear mappings
which are deduced from a firmly nonexpansive mapping in a Hilbert space. A
mapping T : C — C is called nonspreading [13] if

2|Ta — Tyl|* < ||Tx —y|* + | Ty — |
for all z,y € C. A mapping T : C — C'is called hybrid [19] if
3| T2 — Ty|l* < ||z — y|* + | Tz — y|* + ITy — =||?
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for all z,y € C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [12] and Iemoto and Takahashi [9]. Very recently, Takahashi
and Yao [22] proved the following nonlinear ergodic theorem.

Theorem 1.2. Let H be a Hilbert space, let C' be a nonempty closed conver subset
of H and let T be a mapping of C into itself such that F(T) is nonempty. Suppose
that T satisfies one of the following:
(i) T is nonspreading;
(ii) T is hybrid;
(i) 2/ Tw — Tyl < lo -yl + [Tz — ylI2, Va,ye C.
Then, for any x € C,

1 n—1
Spx = — F
'nT - ZT T
k=0
converges weakly to an element z € F(T).

Motivated by Theorems 1.1 and 1.2, Aoyama, lemoto, Kohsaka and Takahashi [1]
introduced a class of nonlinear mappings called A\-hybrid containing the classes of
nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert
space. Kocourek, Takahashi and Yao [11] also introduced a more broad class of
nonlinear mappings than the class of A\-hybrid mappings in a Hilbert space. A
mapping 7' : C' — C is called generalized hybrid [11] if there are «, f € R such that

a|Tz = Ty|* + (1 = a)llz = Ty|* < BlITe — y|* + (1 = B)||lz — y[I?
for all z,y € C. Such a mapping is called an («, )-generalized hybrid mapping.
In this paper, motivated by Kocourek, Takahashi and Yao [11], we introduce a
broad class of nonlinear mappings containing the class of generalized hybrid map-
pings in a Hilbert space. Then, we prove a fixed point theorem, a mean ergodic

theorem of Baillon’s type [2] and a weak convergence theorem of Mann’s type [14]
for these nonlinear mappings in a Hilbert space.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product (-,- ) and
norm || - ||. We denote the strong convergence and the weak convergence of {x,} to
x € H by x,, = = and x,, — x, respectively. From [18], we know the following basic
equality. For x,y € H and X € R, we have

(2.1) Iha + (1= Nyl* = Allz][* + (1 = Myl = A1 = Nl — ]|
We also know that for z,y,u,v € H,
(2.2) 2(z —y,u—v) = [l —ol> + ly —ul® = |z = ul® = [ly — o[>

From Opial [15], a Hilbert space H satisfies Opial’s condition, i.e., for a sequence
{zn} of H such that z,, — = and z # y,

(2.3) liminf ||z, — z| < liminf ||z, — y]|.
n—oo n—oo

Let C be a nonempty closed convex subset of H and let 7" be a mapping from
C' into itself. Then, we denote by F(T') the set of fixed points of 7. A mapping
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T :C — C with F(T) # 0 is called quasi-nonexpansive if |z — Ty| < ||z — y|| for
all z € F(T) and y € C. It is well-known that the set F(T') of fixed points of a
quasi-nonexpansive mapping 7' is closed and convex; see Ito and Takahashi [10]. In
fact, for proving that F'(T) is closed, take a sequence {z,} C F(T) with z, — z.
Since C' is weakly closed, we have z € C. Furthermore, from

Iz = Tz| <[z = znll + |20 = T2| < 2|2 = 2u]| = 0,

z is a fixed point of T and so F(T') is closed. Let us show that F'(T') is convex. For
z,y € F(T) and a € [0,1], put 2z = ax + (1 — @)y. Then, we have from (2.1) that

Iz = T2|* = az + (1 — a)y — Tz
= allz = T2|* + (1 = a)lly = Tz[* — a(l — a) |z — y|*
<allz —2|* + (1 - a)y - 2|* - a(l - a) |z — y?
=a(l - a)lz —yl* + (1 - a)a’[lz —y|I* — a(l - a)|lz — y|?
—a(l-a)(1—a+a— 1D —y|?
= 0.
This implies Tz = z. So, F(T) is convex.
Let [*° be the Banach space of bounded sequences with supremum norm. Let
i be an element of (I°°)* (the dual space of [*°). Then, we denote by u(f) the
value of p at f = (z1,x2,23,...) € °°. Sometimes, we denote by () the value
wu(f). A linear functional p on [* is called a mean if p(e) = ||p|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on I*° if p,(xn41) = pn(xs).
We know that there exists a Banach limit on {*°. If 4 is a Banach limit on [*°, then
for f = (w1, 22,23,...) €1,
liminf z, < upx, < limsup z,.
n—00 n—00

In particular, if f = (x1,x2,23,...) € [°° and x,, — a € R, then we have u(f) =
tn(xy) = a. For a proof of existence of a Banach limit and its other elementary
properties, see [17]. Using Banach limits, Takahashi and Yao [22] proved the fol-
lowing fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C' be a nonempty closed convex subset
of H and let T be a mapping of C' into itself. Suppose that there exists an element
x € C such that {T"x} is bounded and

pnl| T = Ty||* < po|| Tz — y|?, VyeC
for some Banach limit . Then, T has a fixed point in C.

Let C be a nonempty closed convex subset of H and x € H. Then, we know that
there exists a unique nearest point z € C' such that ||z — z|| = inf cc || — y||. We
denote such a correspondence by z = Pox. Pg is called the metric projection of H
onto C'. It is known that Pc is nonexpansive and

(x — Pox, Pox —u) >0

for all x € H and u € C see [18] for more details. From Takahashi and Toyoda [21],
we know the following result for metric projections in a Hilbert space.
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Lemma 2.2. Let D be a nonempty closed conver subset of a Hilbert space H.
Let P be the metric projection of H onto D and let {x,} be a sequence in H. If
|znt1 — ul| < ||zn —u|| for allu € D and n € N, then {Px,} converges strongly.

3. FIXED POINT THEOREMS

In this section, we start with introducing a broad class of nonlinear mappings
containing the class of generalized hybrid mappings defined by Kocourek, Takahashi
and Yao [11] in a Hilbert space. Let H be a Hilbert space and let C' be a nonempty
closed convex subset of H. Then, a mapping T : C — C is called 2-generalized
hybrid if there are a1, a9, 51, B2 € R such that

(3.1) ar|[T?e=Ty|* + az| Tz — Ty|* + (1 — a1 — az) ||z — Ty||?
< BT —y|? + Bal| T =yl + (1 = B = Ba) [l — y®

for all z,y € C. We call such a mapping an (a1, aq, 51, f2)-generalized hybrid
mapping. We observe that the mapping above covers several well-known mappings.
For example, a (0, ae, 0, 52)-generalized hybrid mapping is nonexpansive for ag = 1
and B2 = 0, nonspreading for s = 2 and B = 1, and hybrid for as = % and
Bo = % A (0, aa, 0, B2)-generalized hybrid mapping is an (aq, 82)-generalized hybrid
mapping in the sense of Kocourek, Takahashi and Yao [11]. We can also show that
if x = Tx, then for any y € C,

arlle=Ty|* + asllz — Tyl* + (1 — a1 — az) |z — Ty|?
< Bille = yl* + Bellz — yl* + (1 = B1 — B2) |« — yl®

and hence ||z — Ty|| < ||z — y||. This means that a 2-generalized hybrid mapping
with a fixed point is quasi-nonexpansive. Now, we prove a fixed point theorem for
2-generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and
let T : C — C be a 2-generalized hybrid mapping. Then T has a fixed point in C if
and only if {T"z} is bounded for some z € C.

Proof. Since T : C — (C'is a 2-generalized hybrid mapping, there are a1, ao, 51, B2 €
R such that

ar|[T?e—=Ty|* + az| Tz — Ty|* + (1 — a1 — az) ||z — Ty||?
< BT —y|* + Bal| T =yl + (1 = B1 = Ba) |l — y®

for all z,y € C. If F(T) # 0, then {T"z} = {z} for z € F(T). So, {T"z} is
bounded. We show the reverse. Take z € C' such that {T"z} is bounded. Let y be
a Banach limit. Then, for any y € C' and n € NU {0}, we have
ar|[T" 22 =Ty|* + a2 T" 2 = Ty|* + (1 - a1 — aa)||T"z — Ty|?
< BT 2 =yl + B T2 =yl + (1= B1 = B2)I T2 — y|?
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for any y € C. Since {T"z} is bounded, we can apply a Banach limit u to both
sides of the inequality. Then, we have

pn (e [Tz = Ty||* + ao|[T" 2 = Ty + (1 — a1 — o) | T2 — Ty||)
< (Bl T2z = y|” + Bal| T" 2 =yl + (1 = B = B) | T2 — ).
So, we obtain
a1 [Tz = Ty|? + aopn [Tz = Ty[* + (1 — an — az)unl| T2 — Ty||?
< Bl T 22 =yl + Bopn | T2 =y + (1 = B = Bo)pan | Tz — y?
and hence
arpn||T"z = Ty|* + azpn||T"z = Ty|* + (1 — a1 — a2)pn | T2 — Ty|?
< Bupnl| Tz = y||* + Bapnl| T2 =yl + (1 = B1 = Bo) | T2 — |-
This implies
pnl| T2 = Tyl < pn| Tz = y|?
for all y € C'. By Theorem 2.1, we have a fixed point in C. U

As a direct consequence of Theorem 3.1, we have the following result.

Theorem 3.2. Let C' be nonempty bounded closed convex subset of a Hilbert space
H and let T be a 2-generalized hybrid mapping from C to itself. Then T has a fixed
point.

Using Theorem 3.1, we can also prove the following well-known fixed point theo-
rems. We first prove a fixed point theorem for nonexpansive mappings in a Hilbert
space.

Theorem 3.3. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let T : C — C be a nonexpansive mapping, i.e.,

[Tz =Tyl <[l —yl, Va,yeC.

Suppose that there exists an element x € C' such that {T"z} is bounded. Then, T
has a fized point in C.

Proof. In Theorem 3.1, a (0, 1,0, 0)-generalized hybrid mapping of C' into itself is
nonexpansive. By Theorem 3.1, T" has a fixed point in C. O

The following is a fixed point theorem for nonspreading mappings in a Hilbert
space.

Theorem 3.4 ([13]). Let H be a Hilbert space and let C' be a nonempty closed
convez subset of H. Let T : C — C' be a nonspreading mapping, i.e.,

2| Ta — Ty|* < ||Tz —y|* + |Ty — |?, Va,y€C.

Suppose that there exists an element x € C such that {T"x} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (0,2,0, 1)-generalized hybrid mapping of C into itself is
nonspreading. By Theorem 3.1, T" has a fixed point in C. O
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The following is a fixed point theorem for hybrid mappings by Takahashi [19] in
a Hilbert space.

Theorem 3.5 ([19]). Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let T : C — C be a hybrid mapping, i.e.,

3|Tx — Ty|* < |lo — yl* + | Tx — y|* + | Ty — 2|, Va,yeC.

Suppose that there exists an element © € C such that {T"x} is bounded. Then, T

has a fixed point in C.
Proof. In Theorem 3.1, a (0, %, 0, %)—generalized hybrid mapping of C' into itself is
hybrid in the sense of Takahashi [19]. By Theorem 3.1, T has a fixed point in C. O

We can also prove the following fixed point theorem in a Hilbert space.

Theorem 3.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C — C be a mapping such that

2|Te — Ty|? < |lo —yl* + |Tz —y|*, Vo,yeC.

Suppose that there exists an element © € C' such that {T"x} is bounded. Then, T
has a fized point in C.

Proof. In Theorem 3.1, a (0,1, 0, %)—generalized hybrid mapping of C' into itself is
the mapping in our theorem. By Theorem 3.1, T has a fixed point in C. O

Finally, we prove the following fixed point theorem in a Hilbert space.

Theorem 3.7. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C — C be a mapping such that

IT%x = Tyl* + |Tz = Tyl* + o — Ty|* < 3|le —ylI*, Vz,yeC.

Suppose that there ezists an element x € C such that {T"z} is bounded. Then, T
has a fized point in C.

Proof. In Theorem 3.1, consider a (%, %,0,0)—generalized hybrid mapping T' of C

into itself. Then, we have that

ST = Tyl 4 2T = Tyl + 3z~ TylP < Jlo = P, Yo,y € O,
This is equivalent to the mapping in our theorem:

172 — Tyl + |Tw — Tyl + |l — Tyl? < 3z — yl2, Va,y € C.
By Theorem 3.1, T" has a fixed point in C. 0

Remark 3.8. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let n € N. Then, a mapping T : C' — C' is called n-generalized hybrid
if there are a1, ao,...,an, B1, B2, ..., Bn € R such that

n n
(3.2) Yol T e = Ty + (1= )|l — Tyl
k=1 k=1

n n
<D BT R —y P (=) Bl —
k=1 k=1
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forall z,y € C. We call such a mapping an (ay, o, ..., an, 51, 582, - - ., Bn)-generalized
hybrid mapping. As in the proof of Theorem 3.1, we can prove a fixed point theorem
for n-generalized hybrid mappings in a Hilbert space.

4. NONLINEAR ERGODIC THEOREM

In this section, using the technique developed by Takahashi [16], we prove a
nonlinear ergodic theorem of Baillon’s type [2] for generalized hybrid mappings in
a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C — C be a 2-generalized hybrid mapping with F(T) # 0 and
let P be the mertic projection of H onto F(T'). Then, for any x € C,

1 n—1
Spx = — F
nx - ZT T
k=0
converges weakly to an element p of F(T), where p = lim,,_,oo PT"x.

Proof. Since T : C' — C'is a 2-generalized hybrid mapping, there are a1, as, 51, B2 €
R such that

a1||T%e — Ty|*+az|| Tz — Ty + (1 — a1 — az) ||z — Ty||?
< Bl Tz — y|* + Bal| T — yl* + (1 = 1 — B2) |l — y|?

for all z,y € C. Since T is an (aq, g, f1, f2)-generalized hybrid mapping, T is
quasi-nonexpansive. So, we have that F(T') is closed and convex. Let z € C' and
let P be the metric projection of H onto F'(T"). Then, we have

|PT"z — T"z|| < |PT" 1z — T"z||
< ||PT" 'z — T ).

This implies that {||PT"x — T"x||} is nonincreasing. We also know that for any
veCandue F(T), (v— Pv, Pv—u) >0 and hence

|v — Pv||*> < (v — Pv,v —u).
So, we get
1Pv—ull? = [Pv— v+ v —ul]
= ||Pv —o|* = 2(Pv —v,u — v) + ||v — ul)?
< v —ufl? — [|Pv - |2
Let m,n € N. Putting v = T™x and v = PT"x, we have
|PT™z — PT"z|?* < |[T™x — PT"z||> — |PT™2 — T™z|?
<||T"z — PT"z|* — | PT™x — T™xz|*.

So, {PT"z} is a Cauchy sequence. Since F(T) is closed, { PT"x} converges strongly
to an element p of F(T). Take u € F(T). Then we obtain that for any n € N,

1 n—1
S, x—ull < = Try — || < ||z — ul.
1Sz —ull < — kzo [Tz — ul < [lz—u|
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So, {Spx} is bounded and hence there exists a weakly convergent subsequence
{Sp,x} of {Spx}. If Sp,z — v, then we have v € F(T'). In fact, for any y € C and
k € NU {0}, we have that

0 < BT 22—yl + Bol|TFHa — y|? + (1 = By = Bo) | TFa — y|?

— || 22 — Ty||* — ool T" o — Tyl|” — (1 — o1 — a)||T%2 — Ty|?
= B1(IT* 22 — Ty + 2(T" 2w — Ty, Ty — y) + | Ty — y*)

+ Bo(| T — Tyl + 2(T* e — Ty, Ty — y) + 1Ty — yl*)

+ (1= 1= B)(IT"z — Tyl + 2(T*x — Ty, Ty — y) + | Ty — y|*)

— ||T" %2 — Ty||* — oo T" o — Tyl — (1 — o1 — a)||T%2 — Ty|?
=Ty — y|?> + 2(B1 7" 2x + BT w + (1 — By — o) T x — Ty, Ty — y)

+ (B1 — ) (|IT*2x — Ty||* — | T*2 — Ty|?)

+ (B2 — ag)(| T — Tyl|* — | T*2 — Ty?).

Summing up these inequalities with respect to k =0,1,...,n — 1,
0 < nl|Ty -yl
n—1
+ 2( ZT’“&: + B (T" e+ T"s — 2 — Tx) + Bo(T"x — 2) — nTy, Ty — y)
k=0

+ (81— a)(IT" e = Ty|* + | Tz — Tyl* — ||« — Ty||* — | Tx — Ty[*)
+ (B2 — a2)(IT"x = Ty||* — ||z — Tyl*).
Deviding this inequality by n, we have
0< Ty —yl?

1 1
+ 2(Spz + g,ﬁ’l(T”Hx + Tz —z —Tx) + EBQ(TTZI' —z)-Ty, Ty —vy)
1
+ (B = a)(IT" e = Ty|* + |T"2 = Ty|* — ||z = Ty|* = | Tz - Ty|*)

1
+ (B2 — e2)(|IT"z — Ty|* — |lo = Tyl*),

where Spx = %ZZ;& T*z. Replacing n by n; and letting n; — oo, we obtain from
Sp;x — v that

0< Ty —yll* +2(v Ty, Ty —y).
Putting y = v, we have 0 < —||Tv — v||? and hence Tv = v. To complete the proof,
it is sufficient to show that if S,,,x — v, then v = p. We have that

(T*x — PT*z, PT 2 —u) > 0
for all uw € F(T). Since {||T*z — PT*z||} is nonincreasing, we have
(u—p, Tz — PT*z) < (PT*z — p, "z — PT*z)
< ||PT*z — p|| - | T2 — PT*]|
<||PT"z = p| - |l = Pz].
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Adding these inequalities from k = 0 to k = n — 1 and dividing n, we have

1 n—1 Hl' . Pl‘” n—1
(u—p, Spx — - Z PT"*z) < — Z | PT*z — pl|.
k=0 k=0

Since Sy, x — v and PTFz — p, we have
<U—p,7)—p> <0.

We know v € F(T). So, putting u = v, we have (v — p,v — p) < 0 and hence
|v — p||?> < 0. So, we obtain v = p. This completes the proof. O

Remark 4.2. As in the proof of Theorem 4.1, we can prove a nonlinear ergodic
theorem of Baillon’s type for n-generalized hybrid mappings in a Hilbert space.

5. WEAK CONVERGENCE THEOREM OF MANN’S TYPE

In this section, we prove a weak convergence theorem of Mann’s type [14] for 2-
generalized hybrid mappings in a Hilbert space. Before proving the theorem, we
need the following two lemmas.

Lemma 5.1. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let T : C — C be a 2-generalized hybrid mapping. Then, x, — z,
rp — Tz, — 0 and z, — T?x,, — 0 imply z € F(T).

Proof. Since T is 2-generalized hybrid, there are ay, as, 81, 82 € R such that
ar| T2 — Ty|[*+as|Tx — Ty|> + (1 - a1 — a)l| — Ty
< BTz — y|* + Bal| Tz — yl|* + (1 = B1 — Ba)llz — ||
for all z,y € C. Suppose z,, — 2, , — Txp — 0 and z, — T?x,, — 0. Since z, — z,

we know from [17] that {z,} is bounded. Since z,, — Tz, — 0 and z,, — T%x,, — 0,
we have also that {Tz,} and {T?z,} are bounded. Next, let us consider

o ||T%x, — Tz||?+as|| Tz, — Tz||> + (1 — a1 — ao)|lzn — Tz
< BillT?2n — 2|1 + Bol| Twn — 21> + (1 = B1 — B2) |wn — 2II*.
From this inequality, we have
a1 (| T% 2z — 2 |® + 2(T%2,, — 2, 2 — T2) + |20 — T2|%)

+ ao(||Tzn — 20 ||* + 2(T 20, — Tpy 20 — T2) + ||z — T2|?)
+(1—a; — )|z, —Tz|?

< BTz, — znl|? + 2(T %0 — TnyTn — 2) + |20 — 2%
+ B2 Tzn — @nll® + 2Ty — 2, 20 — 2) + [|l2n — 2[|)
+ (1= b1 = Ba)llzn — 2|1
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We apply a Banach limit p to both sides of the inequality. Then, we have
o (| T2, — 2 ||? + 2p0 (T %20 — @, 0y — T2) + pin |20 — T2|))
+ o (pn || Tzn — fL’nH2 + 2pun(Txn, — Tn, T — T2) + pinl|lzn — TZHQ)
+ (1 = a1 — ag)pnl|an — T2
< Bi(kn| T?n — nll® + 20 (T220 — T, 2 — 2) + pinlzn — 2[|)
- BainlI T — a2 + 2410 (T — T, 20 — 2) + pinlln — 21%)
+ (1= B1 — Bo)pnllwn — 2|
and hence
aipin|[en = T2|* + azpin||lzn — T2|* + (1 — a1 — ag)pg ||z — Tz|?
< Bupnllz = @all* + Bapnl|zn — 21> + (1 = Br = B2)panllzn — 2[1*.
So, we have
pnlln = T2|* < pn iy — 2|

Since pn ||y — T2||? = pnlln — 2| + 2pn{zn — 2,2 — T2) + pyl|z — T2||?, we have
from z,, — z that

pallen = zl” + pnllz = Tz|* < pnllzn — 2%
Then we have ||z — Tz||> < 0 and hence Tz = z. This completes the proof. O

Lemma 5.2. Let H be a Hilbert space. Let x,y,z € H and let o, § and ~y be real
numbers such that « + B+~ = 1. Then,

laz+By + 2|
= allz[* + Bllyll* +ll=1* — aBllz — ylI* = Brlly — 217 — arlla — 2.
Proof. We have that
laz+By +vz||* = (ax + By + vz, az + By + 7z)
= a?[le|* + B2|lyll* +22||21* + 2a8(z, y) + 287(y, 2) + 2a7(z, 2).
Since 2(u, v) = ||ul|® + [|v||* — ||u — v]||? for all u,v € H and a + 8+~ = 1, we have
laz+8y +vz)|* = &?[lz|® + B(lylI* + +2[|=1” + as(ll]® + lly|* — |l — yl*)
+ Byl + 1211 = lly = 21%) + el + [ — lla = 2[1)
= afa+ B+ )|zl + Bla+ B +lyll® +v(a+ 5+ )]l
—afllz —yl* = Bylly — 2I* — avflz — 2|
= allz|” + Bllyll* + 121 — aBllz — ylI* = Brlly — 21> — arllx — 2|

This completes the proof. O

Using Lemmas 5.1 and 5.2, we can prove the following weak convergence theorem
for 2- generalized hybrid mappings in a Hilbert space.
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Theorem 5.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let ay,a9,01,02 € R and let T : C — C be an (a1, a9, b1, 52)-
generalized hybrid mapping with F(T) # (. Let P be the mertic projection of H
onto F(T) and let {an}, {bn} and {c,} be sequences of real numbers such that
0<a<apbpc, <b<1landay,+b,+c, =1 foralln € N. Suppose {z,} is the
sequence generated by x1 = x € C and

Tptl = anTn + b Txy + enT?z,, neN.

Then, the sequence {x,} converges weakly to an element v of F(T), where v =
lim,, o0 Pxp,.

Proof. Since T is an (aq, a9, 51, B2)-generalized hybrid mapping with F(T) # 0, T
is quasi-nonexpansive. So, for z € F(T'), we have that

|xn+1 — z||2 = ||lanzp + bpTx) + enT? 2, — 2:||2
< apl|zn — ZH2 + b || Ty, — Z||2 + CnHT2xn - 2”2
< apllzn — ZH2 + b llrn — ZH2 + cnllrn — ZH2

= [lzn — 2|

for all n € N. Hence, lim,, ;o ||z, — z||? exists. Then, we have that {x,} is bounded.
We also have from Lemma 5.2 that

|xnt1 — z||2 = ||lanzp + 0n Ty + enT? 2, — z||2
= ap||zn — Z||2 + bn || Tz — Z||2 + anTszn - Z”2
— by — Tnl|? — ancpllzn — T2z ||* = buca||Txn — T2, ||
< apllzn — Z||2 + bnllzn — Z||2 + cnllzn — Z||2
— by — Tznl|? — ancpllzn — T2 ||? — bucn||Txn — T2, ||?
< lan — 2|I?

— anbp||zn — T:vn||2 — AnCpl|Tn — TQ.I‘nHQ — bpen|| Ty — T2xn||2.
So, we have
ananxn—TxnH2-|-ancnHxn—TanHQ—f—bncnHTxn—T2xn\|2 < Hzn—zHQ—Han—zHQ.

Since limy, o0 ||, — 2||? exists and 0 < a < ap, by, e < b < 1, we have ||Txz, —
z? = 0, |[T%z, — 24> — 0 and ||Tz,, — T?2,||> — 0. Since {z,} is bounded,
there exists a subsequence {z,,} of {x,} such that z,, — v. From Lemma 5.1
we obtain v € F(T). Let {z,} and {x,;} be two subsequences of {x,} such that
ZTpn; — v1 and Tp; — V2. Then, we show v = vy. We know v1,ve € F(T') and hence
limy, o0 || 2 —v1||? and lim,, o0 ||, — v2||? exist. Suppose v1 # ve. Since H satisfies
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Opial’s condition, we have from (2.3) that

lim [z, — v = lim [Ja, — vi]
n—r00 1—00

< lim |2, — v
1—00

= lim |l@, — vo|
n—oo

— Tim [z, — v
— 00

< lm |lzg, — v
j—oo

= lim ||z, — vy
n—oo

This is a contradiction. So, we have v; = vo. This implies that {x,} converges
weakly to some point of F(T'). Since ||xn4+1 — 2| < ||z, — 2|| for all z € F(T) and
n € N, we obtain from Lemma 2.2 that {Pz,} converges strongly to an element p
of F(T'). On the other hand, we have from the property of P that

(xn — Pxy, Pxyy —u) >0
for all w € F(T) and n € N. Since x,, = v and Pz, — p, we obtain
<U —D,p— u> 2 0

for all u € F(T). Putting u = v, we obtain —|lv — p||*> > 0 and hence p = v. This
means v = lim,_,~, Px,. This completes the proof. O
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