Journal of Nonlinear and Convex Analysis Volume 12, Number 1, 2011, 185–197

FIXED POINT AND MEAN ERGODIC THEOREMS FOR NEW NONLINEAR MAPPINGS IN HILBERT SPACES

TORU MARUYAMA, WATARU TAKAHASHI, AND MASAYUKI YAO

ABSTRACT. In this paper, we first consider a broad class of nonlinear mappings containing the class of generalized hybrid mappings defined by Kocourek, Takahashi and Yao [11] in a Hilbert space. Then, we prove a fixed point theorem, a mean ergodic theorem of Baillon's type [2] and a weak convergence theorem of Mann's type [14] for these nonlinear mappings in a Hilbert space.

1. INTRODUCTION

Let *H* be a real Hilbert space and let *C* be a nonempty closed convex subset of *H*. Then a mapping $T: C \to C$ is said to be *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The set of fixed points of *T* is denoted by F(T). Baillon [2] proved the following nonlinear mean ergodic theorem in a Hilbert space.

Theorem 1.1. Let C be a nonempty closed convex subset of H and let $T : C \to C$ be nonexpansive. If $F(T) \neq \emptyset$, then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to an element $z \in F(T)$.

An important example of nonexpansive mappings in a Hilbert space is a firmly nonexpansive mapping. A mapping F is said to be *firmly nonexpansive* if

$$||Fx - Fy||^2 \le \langle x - y, Fx - Fy \rangle$$

for all $x, y \in C$; see, for instance, Browder [4] and Goebel and Kirk [6]. It is known that a firmly nonexpansive mapping F can be deduced from an equilibrium problem in a Hilbert space; see, for instance, [3] and [5]. Recently, Kohsaka and Takahashi [13], and Takahashi [19] introduced the following nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space. A mapping $T: C \to C$ is called *nonspreading* [13] if

$$2||Tx - Ty||^{2} \le ||Tx - y||^{2} + ||Ty - x||^{2}$$

for all $x, y \in C$. A mapping $T: C \to C$ is called *hybrid* [19] if

$$3||Tx - Ty||^{2} \le ||x - y||^{2} + ||Tx - y||^{2} + ||Ty - x||^{2}$$

Copyright © 2011 Yokohama Publishers http://www.ybook.co.jp

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10; Secondary 47H05.

Key words and phrases. Hilbert space, nonexpansive mapping, nonspreading mapping, hybrid mapping, fixed point, mean convergence.

The Second author is partially supported by Grant-in-Aid for Scientific Research No. 19540167 from Japan Society for the Promotion of Science.

for all $x, y \in C$. They proved fixed point theorems for such mappings; see also Kohsaka and Takahashi [12] and Iemoto and Takahashi [9]. Very recently, Takahashi and Yao [22] proved the following nonlinear ergodic theorem.

Theorem 1.2. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a mapping of C into itself such that F(T) is nonempty. Suppose that T satisfies one of the following:

(i) T is nonspreading;

(ii) T is hybrid;

(iii) $2||Tx - Ty||^2 \le ||x - y||^2 + ||Tx - y||^2$, $\forall x, y \in C$.

Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to an element $z \in F(T)$.

Motivated by Theorems 1.1 and 1.2, Aoyama, Iemoto, Kohsaka and Takahashi [1] introduced a class of nonlinear mappings called λ -hybrid containing the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. Kocourek, Takahashi and Yao [11] also introduced a more broad class of nonlinear mappings than the class of λ -hybrid mappings in a Hilbert space. A mapping $T: C \to C$ is called *generalized hybrid* [11] if there are $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha ||Tx - Ty||^{2} + (1 - \alpha) ||x - Ty||^{2} \le \beta ||Tx - y||^{2} + (1 - \beta) ||x - y||^{2}$$

for all $x, y \in C$. Such a mapping is called an (α, β) -generalized hybrid mapping.

In this paper, motivated by Kocourek, Takahashi and Yao [11], we introduce a broad class of nonlinear mappings containing the class of generalized hybrid mappings in a Hilbert space. Then, we prove a fixed point theorem, a mean ergodic theorem of Baillon's type [2] and a weak convergence theorem of Mann's type [14] for these nonlinear mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a (real) Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. We denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and $x_n \to x$, respectively. From [18], we know the following basic equality. For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have

(2.1)
$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2$$

We also know that for $x, y, u, v \in H$,

(2.2)
$$2\langle x-y, u-v\rangle = \|x-v\|^2 + \|y-u\|^2 - \|x-u\|^2 - \|y-v\|^2.$$

From Opial [15], a Hilbert space H satisfies Opial's condition, i.e., for a sequence $\{x_n\}$ of H such that $x_n \rightharpoonup x$ and $x \neq y$,

(2.3)
$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

Let C be a nonempty closed convex subset of H and let T be a mapping from C into itself. Then, we denote by F(T) the set of fixed points of T. A mapping

 $T: C \to C$ with $F(T) \neq \emptyset$ is called *quasi-nonexpansive* if $||x - Ty|| \leq ||x - y||$ for all $x \in F(T)$ and $y \in C$. It is well-known that the set F(T) of fixed points of a quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [10]. In fact, for proving that F(T) is closed, take a sequence $\{z_n\} \subset F(T)$ with $z_n \to z$. Since C is weakly closed, we have $z \in C$. Furthermore, from

$$||z - Tz|| \le ||z - z_n|| + ||z_n - Tz|| \le 2||z - z_n|| \to 0,$$

z is a fixed point of T and so F(T) is closed. Let us show that F(T) is convex. For $x, y \in F(T)$ and $\alpha \in [0, 1]$, put $z = \alpha x + (1 - \alpha)y$. Then, we have from (2.1) that

$$||z - Tz||^{2} = ||\alpha x + (1 - \alpha)y - Tz||^{2}$$

= $\alpha ||x - Tz||^{2} + (1 - \alpha)||y - Tz||^{2} - \alpha(1 - \alpha)||x - y||^{2}$
 $\leq \alpha ||x - z||^{2} + (1 - \alpha)||y - z||^{2} - \alpha(1 - \alpha)||x - y||^{2}$
= $\alpha(1 - \alpha)^{2} ||x - y||^{2} + (1 - \alpha)\alpha^{2} ||x - y||^{2} - \alpha(1 - \alpha)||x - y||^{2}$
= $\alpha(1 - \alpha)(1 - \alpha + \alpha - 1)||x - y||^{2}$
= 0.

This implies Tz = z. So, F(T) is convex.

Let l^{∞} be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^{\infty})^*$ (the dual space of l^{∞}). Then, we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$. Sometimes, we denote by $\mu_n(x_n)$ the value $\mu(f)$. A linear functional μ on l^{∞} is called a *mean* if $\mu(e) = \|\mu\| = 1$, where $e = (1, 1, 1, \ldots)$. A mean μ is called a *Banach limit* on l^{∞} if $\mu_n(x_{n+1}) = \mu_n(x_n)$. We know that there exists a Banach limit on l^{∞} . If μ is a Banach limit on l^{∞} , then for $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$,

$$\liminf_{n \to \infty} x_n \le \mu_n x_n \le \limsup_{n \to \infty} x_n$$

In particular, if $f = (x_1, x_2, x_3, ...) \in l^{\infty}$ and $x_n \to a \in \mathbb{R}$, then we have $\mu(f) = \mu_n(x_n) = a$. For a proof of existence of a Banach limit and its other elementary properties, see [17]. Using Banach limits, Takahashi and Yao [22] proved the following fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a mapping of C into itself. Suppose that there exists an element $x \in C$ such that $\{T^nx\}$ is bounded and

$$\|\mu_n\|T^n x - Ty\|^2 \le \|\mu_n\|T^n x - y\|^2, \quad \forall y \in C$$

for some Banach limit μ . Then, T has a fixed point in C.

Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $||x - z|| = \inf_{y \in C} ||x - y||$. We denote such a correspondence by $z = P_C x$. P_C is called the metric projection of H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_C x, P_C x - u \rangle \ge 0$$

for all $x \in H$ and $u \in C$; see [18] for more details. From Takahashi and Toyoda [21], we know the following result for metric projections in a Hilbert space.

Lemma 2.2. Let D be a nonempty closed convex subset of a Hilbert space H. Let P be the metric projection of H onto D and let $\{x_n\}$ be a sequence in H. If $||x_{n+1} - u|| \leq ||x_n - u||$ for all $u \in D$ and $n \in \mathbb{N}$, then $\{Px_n\}$ converges strongly.

3. Fixed point theorems

In this section, we start with introducing a broad class of nonlinear mappings containing the class of generalized hybrid mappings defined by Kocourek, Takahashi and Yao [11] in a Hilbert space. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Then, a mapping $T : C \to C$ is called 2-generalized hybrid if there are $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ such that

(3.1)
$$\alpha_1 \|T^2 x - Ty\|^2 + \alpha_2 \|Tx - Ty\|^2 + (1 - \alpha_1 - \alpha_2) \|x - Ty\|^2$$
$$\leq \beta_1 \|T^2 x - y\|^2 + \beta_2 \|Tx - y\|^2 + (1 - \beta_1 - \beta_2) \|x - y\|^2$$

for all $x, y \in C$. We call such a mapping an $(\alpha_1, \alpha_2, \beta_1, \beta_2)$ -generalized hybrid mapping. We observe that the mapping above covers several well-known mappings. For example, a $(0, \alpha_2, 0, \beta_2)$ -generalized hybrid mapping is nonexpansive for $\alpha_2 = 1$ and $\beta_2 = 0$, nonspreading for $\alpha_2 = 2$ and $\beta_2 = 1$, and hybrid for $\alpha_2 = \frac{3}{2}$ and $\beta_2 = \frac{1}{2}$. A $(0, \alpha_2, 0, \beta_2)$ -generalized hybrid mapping is an (α_2, β_2) -generalized hybrid mapping in the sense of Kocourek, Takahashi and Yao [11]. We can also show that if x = Tx, then for any $y \in C$,

$$\begin{aligned} \alpha_1 \|x - Ty\|^2 + \alpha_2 \|x - Ty\|^2 + (1 - \alpha_1 - \alpha_2) \|x - Ty\|^2 \\ &\leq \beta_1 \|x - y\|^2 + \beta_2 \|x - y\|^2 + (1 - \beta_1 - \beta_2) \|x - y\|^2 \end{aligned}$$

and hence $||x - Ty|| \le ||x - y||$. This means that a 2-generalized hybrid mapping with a fixed point is quasi-nonexpansive. Now, we prove a fixed point theorem for 2-generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and let $T: C \to C$ be a 2-generalized hybrid mapping. Then T has a fixed point in C if and only if $\{T^n z\}$ is bounded for some $z \in C$.

Proof. Since $T: C \to C$ is a 2-generalized hybrid mapping, there are $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ such that

$$\begin{aligned} \alpha_1 \|T^2 x - Ty\|^2 + \alpha_2 \|Tx - Ty\|^2 + (1 - \alpha_1 - \alpha_2) \|x - Ty\|^2 \\ &\leq \beta_1 \|T^2 x - y\|^2 + \beta_2 \|Tx - y\|^2 + (1 - \beta_1 - \beta_2) \|x - y\|^2 \end{aligned}$$

for all $x, y \in C$. If $F(T) \neq \emptyset$, then $\{T^n z\} = \{z\}$ for $z \in F(T)$. So, $\{T^n z\}$ is bounded. We show the reverse. Take $z \in C$ such that $\{T^n z\}$ is bounded. Let μ be a Banach limit. Then, for any $y \in C$ and $n \in \mathbb{N} \cup \{0\}$, we have

$$\begin{aligned} \alpha_1 \|T^{n+2}z - Ty\|^2 + \alpha_2 \|T^{n+1}z - Ty\|^2 + (1 - \alpha_1 - \alpha_2) \|T^n z - Ty\|^2 \\ &\leq \beta_1 \|T^{n+2}z - y\|^2 + \beta_2 \|T^{n+1}z - y\|^2 + (1 - \beta_1 - \beta_2) \|T^n z - y\|^2 \end{aligned}$$

for any $y \in C$. Since $\{T^n z\}$ is bounded, we can apply a Banach limit μ to both sides of the inequality. Then, we have

$$\mu_n(\alpha_1 \| T^{n+2}z - Ty \|^2 + \alpha_2 \| T^{n+1}z - Ty \|^2 + (1 - \alpha_1 - \alpha_2) \| T^n z - Ty \|^2)$$

$$\leq \mu_n(\beta_1 \| T^{n+2}z - y \|^2 + \beta_2 \| T^{n+1}z - y \|^2 + (1 - \beta_1 - \beta_2) \| T^n z - y \|^2).$$

So, we obtain

$$\alpha_{1}\mu_{n}\|T^{n+2}z - Ty\|^{2} + \alpha_{2}\mu_{n}\|T^{n+1}z - Ty\|^{2} + (1 - \alpha_{1} - \alpha_{2})\mu_{n}\|T^{n}z - Ty\|^{2}$$

$$\leq \beta_{1}\mu_{n}\|T^{n+2}z - y\|^{2} + \beta_{2}\mu_{n}\|T^{n+1}z - y\|^{2} + (1 - \beta_{1} - \beta_{2})\mu_{n}\|T^{n}z - y\|^{2}$$

and hence

$$\alpha_1 \mu_n \|T^n z - Ty\|^2 + \alpha_2 \mu_n \|T^n z - Ty\|^2 + (1 - \alpha_1 - \alpha_2) \mu_n \|T^n z - Ty\|^2$$

$$\leq \beta_1 \mu_n \|T^n z - y\|^2 + \beta_2 \mu_n \|T^n z - y\|^2 + (1 - \beta_1 - \beta_2) \mu_n \|T^n z - y\|^2.$$

This implies

$$\mu_n \|T^n z - Ty\|^2 \le \mu_n \|T^n z - y\|^2$$

for all $y \in C$. By Theorem 2.1, we have a fixed point in C.

As a direct consequence of Theorem 3.1, we have the following result.

Theorem 3.2. Let C be nonempty bounded closed convex subset of a Hilbert space H and let T be a 2-generalized hybrid mapping from C to itself. Then T has a fixed point.

Using Theorem 3.1, we can also prove the following well-known fixed point theorems. We first prove a fixed point theorem for nonexpansive mappings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a nonexpansive mapping, i.e.,

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a (0, 1, 0, 0)-generalized hybrid mapping of C into itself is nonexpansive. By Theorem 3.1, T has a fixed point in C.

The following is a fixed point theorem for nonspreading mappings in a Hilbert space.

Theorem 3.4 ([13]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T: C \to C$ be a nonspreading mapping, i.e.,

 $2\|Tx - Ty\|^2 \le \|Tx - y\|^2 + \|Ty - x\|^2, \quad \forall x, y \in C.$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a (0, 2, 0, 1)-generalized hybrid mapping of C into itself is nonspreading. By Theorem 3.1, T has a fixed point in C.

The following is a fixed point theorem for hybrid mappings by Takahashi [19] in a Hilbert space.

Theorem 3.5 ([19]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T: C \to C$ be a hybrid mapping, i.e.,

 $3||Tx - Ty||^{2} \le ||x - y||^{2} + ||Tx - y||^{2} + ||Ty - x||^{2}, \quad \forall x, y \in C.$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a $(0, \frac{3}{2}, 0, \frac{1}{2})$ -generalized hybrid mapping of C into itself is hybrid in the sense of Takahashi [19]. By Theorem 3.1, T has a fixed point in C. \Box

We can also prove the following fixed point theorem in a Hilbert space.

Theorem 3.6. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a mapping such that

$$2||Tx - Ty||^2 \le ||x - y||^2 + ||Tx - y||^2, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, a $(0, 1, 0, \frac{1}{2})$ -generalized hybrid mapping of C into itself is the mapping in our theorem. By Theorem 3.1, T has a fixed point in C.

Finally, we prove the following fixed point theorem in a Hilbert space.

Theorem 3.7. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a mapping such that

$$||T^{2}x - Ty||^{2} + ||Tx - Ty||^{2} + ||x - Ty||^{2} \le 3||x - y||^{2}, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.1, consider a $(\frac{1}{3}, \frac{1}{3}, 0, 0)$ -generalized hybrid mapping T of C into itself. Then, we have that

$$\frac{1}{3}||T^{2}x - Ty||^{2} + \frac{1}{3}||Tx - Ty||^{2} + \frac{1}{3}||x - Ty||^{2} \le ||x - y||^{2}, \quad \forall x, y \in C.$$

This is equivalent to the mapping in our theorem:

$$||T^{2}x - Ty||^{2} + ||Tx - Ty||^{2} + ||x - Ty||^{2} \le 3||x - y||^{2}, \quad \forall x, y \in C.$$

By Theorem 3.1, T has a fixed point in C.

Remark 3.8. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $n \in \mathbb{N}$. Then, a mapping $T : C \to C$ is called *n*-generalized hybrid if there are $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_n \in \mathbb{R}$ such that

(3.2)
$$\sum_{k=1}^{n} \alpha_{k} \|T^{n+1-k}x - Ty\|^{2} + (1 - \sum_{k=1}^{n} \alpha_{k}) \|x - Ty\|^{2}$$
$$\leq \sum_{k=1}^{n} \beta_{k} \|T^{n+1-k}x - y\|^{2} + (1 - \sum_{k=1}^{n} \beta_{k}) \|x - y\|^{2}$$

for all $x, y \in C$. We call such a mapping an $(\alpha_1, \alpha_2, \ldots, \alpha_n, \beta_1, \beta_2, \ldots, \beta_n)$ -generalized hybrid mapping. As in the proof of Theorem 3.1, we can prove a fixed point theorem for n-generalized hybrid mappings in a Hilbert space.

4. Nonlinear ergodic theorem

In this section, using the technique developed by Takahashi [16], we prove a nonlinear ergodic theorem of Baillon's type [2] for generalized hybrid mappings in a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a 2-generalized hybrid mapping with $F(T) \neq \emptyset$ and let P be the mertic projection of H onto F(T). Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to an element p of F(T), where $p = \lim_{n \to \infty} PT^n x$.

Proof. Since $T: C \to C$ is a 2-generalized hybrid mapping, there are $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ such that

$$\begin{aligned} \alpha_1 \|T^2 x - Ty\|^2 + \alpha_2 \|Tx - Ty\|^2 + (1 - \alpha_1 - \alpha_2)\|x - Ty\|^2 \\ &\leq \beta_1 \|T^2 x - y\|^2 + \beta_2 \|Tx - y\|^2 + (1 - \beta_1 - \beta_2)\|x - y\|^2 \end{aligned}$$

for all $x, y \in C$. Since T is an $(\alpha_1, \alpha_2, \beta_1, \beta_2)$ -generalized hybrid mapping, T is quasi-nonexpansive. So, we have that F(T) is closed and convex. Let $x \in C$ and let P be the metric projection of H onto F(T). Then, we have

$$||PT^{n}x - T^{n}x|| \le ||PT^{n-1}x - T^{n}x||$$

$$\le ||PT^{n-1}x - T^{n-1}x||$$

This implies that $\{\|PT^nx - T^nx\|\}$ is nonincreasing. We also know that for any $v \in C$ and $u \in F(T)$, $\langle v - Pv, Pv - u \rangle \ge 0$ and hence

$$||v - Pv||^2 \le \langle v - Pv, v - u \rangle.$$

So, we get

$$\begin{split} \|Pv - u\|^2 &= \|Pv - v + v - u\|^2 \\ &= \|Pv - v\|^2 - 2\langle Pv - v, u - v \rangle + \|v - u\|^2 \\ &\leq \|v - u\|^2 - \|Pv - v\|^2. \end{split}$$

Let $m, n \in \mathbb{N}$. Putting $v = T^m x$ and $u = PT^n x$, we have

$$||PT^{m}x - PT^{n}x||^{2} \le ||T^{m}x - PT^{n}x||^{2} - ||PT^{m}x - T^{m}x||^{2} \le ||T^{n}x - PT^{n}x||^{2} - ||PT^{m}x - T^{m}x||^{2}.$$

So, $\{PT^nx\}$ is a Cauchy sequence. Since F(T) is closed, $\{PT^nx\}$ converges strongly to an element p of F(T). Take $u \in F(T)$. Then we obtain that for any $n \in \mathbb{N}$,

$$||S_n x - u|| \le \frac{1}{n} \sum_{k=0}^{n-1} ||T^k x - u|| \le ||x - u||$$

So, $\{S_nx\}$ is bounded and hence there exists a weakly convergent subsequence $\{S_{n_i}x\}$ of $\{S_nx\}$. If $S_{n_i}x \rightarrow v$, then we have $v \in F(T)$. In fact, for any $y \in C$ and $k \in \mathbb{N} \cup \{0\}$, we have that

$$\begin{split} 0 &\leq \beta_1 \|T^{k+2}x - y\|^2 + \beta_2 \|T^{k+1}x - y\|^2 + (1 - \beta_1 - \beta_2) \|T^k x - y\|^2 \\ &- \alpha_1 \|T^{k+2}x - Ty\|^2 - \alpha_2 \|T^{k+1}x - Ty\|^2 - (1 - \alpha_1 - \alpha_2) \|T^k x - Ty\|^2 \\ &= \beta_1 (\|T^{k+2}x - Ty\|^2 + 2\langle T^{k+2}x - Ty, Ty - y \rangle + \|Ty - y\|^2) \\ &+ \beta_2 (\|T^{k+1}x - Ty\|^2 + 2\langle T^{k+1}x - Ty, Ty - y \rangle + \|Ty - y\|^2) \\ &+ (1 - \beta_1 - \beta_2) (\|T^k x - Ty\|^2 + 2\langle T^k x - Ty, Ty - y \rangle + \|Ty - y\|^2) \\ &- \alpha_1 \|T^{k+2}x - Ty\|^2 - \alpha_2 \|T^{k+1}x - Ty\|^2 - (1 - \alpha_1 - \alpha_2) \|T^k x - Ty\|^2 \\ &= \|Ty - y\|^2 + 2\langle \beta_1 T^{k+2}x + \beta_2 T^{k+1}x + (1 - \beta_1 - \beta_2) T^k x - Ty, Ty - y \rangle \\ &+ (\beta_1 - \alpha_1) (\|T^{k+2}x - Ty\|^2 - \|T^k x - Ty\|^2) \\ &+ (\beta_2 - \alpha_2) (\|T^{k+1}x - Ty\|^2 - \|T^k x - Ty\|^2). \end{split}$$

Summing up these inequalities with respect to k = 0, 1, ..., n - 1,

$$0 \le n \|Ty - y\|^{2} + 2 \left\langle \sum_{k=0}^{n-1} T^{k} x + \beta_{1} (T^{n+1}x + T^{n}x - x - Tx) + \beta_{2} (T^{n}x - x) - nTy, Ty - y \right\rangle + (\beta_{1} - \alpha_{1}) (\|T^{n+1}x - Ty\|^{2} + \|T^{n}x - Ty\|^{2} - \|x - Ty\|^{2} - \|Tx - Ty\|^{2}) + (\beta_{2} - \alpha_{2}) (\|T^{n}x - Ty\|^{2} - \|x - Ty\|^{2}).$$

Deviding this inequality by n, we have

$$0 \leq ||Ty - y||^{2} + 2\langle S_{n}x + \frac{1}{n}\beta_{1}(T^{n+1}x + T^{n}x - x - Tx) + \frac{1}{n}\beta_{2}(T^{n}x - x) - Ty, Ty - y\rangle + \frac{1}{n}(\beta_{1} - \alpha_{1})(||T^{n+1}x - Ty||^{2} + ||T^{n}x - Ty||^{2} - ||x - Ty||^{2} - ||Tx - Ty||^{2}) + \frac{1}{n}(\beta_{2} - \alpha_{2})(||T^{n}x - Ty||^{2} - ||x - Ty||^{2}),$$

where $S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$. Replacing *n* by n_i and letting $n_i \to \infty$, we obtain from $S_{n_i} x \to v$ that

$$0 \le ||Ty - y||^2 + 2 \langle v - Ty, Ty - y \rangle.$$

Putting y = v, we have $0 \le -||Tv - v||^2$ and hence Tv = v. To complete the proof, it is sufficient to show that if $S_{n_i}x \to v$, then v = p. We have that

$$\langle T^k x - PT^k x, PT^k x - u \rangle \ge 0$$

for all $u \in F(T)$. Since $\{||T^kx - PT^kx||\}$ is nonincreasing, we have

$$\langle u - p, T^k x - PT^k x \rangle \leq \langle PT^k x - p, T^k x - PT^k x \rangle$$

$$\leq \|PT^k x - p\| \cdot \|T^k x - PT^k x\|$$

$$\leq \|PT^k x - p\| \cdot \|x - Px\|.$$

Adding these inequalities from k = 0 to k = n - 1 and dividing n, we have

$$\langle u - p, S_n x - \frac{1}{n} \sum_{k=0}^{n-1} PT^k x \rangle \le \frac{\|x - Px\|}{n} \sum_{k=0}^{n-1} \|PT^k x - p\|$$

Since $S_{n_i}x \rightarrow v$ and $PT^kx \rightarrow p$, we have

$$\langle u - p, v - p \rangle \le 0.$$

We know $v \in F(T)$. So, putting u = v, we have $\langle v - p, v - p \rangle \leq 0$ and hence $||v - p||^2 \leq 0$. So, we obtain v = p. This completes the proof.

Remark 4.2. As in the proof of Theorem 4.1, we can prove a nonlinear ergodic theorem of Baillon's type for n-generalized hybrid mappings in a Hilbert space.

5. Weak convergence theorem of Mann's type

In this section, we prove a weak convergence theorem of Mann's type [14] for 2generalized hybrid mappings in a Hilbert space. Before proving the theorem, we need the following two lemmas.

Lemma 5.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a 2-generalized hybrid mapping. Then, $x_n \to z$, $x_n - Tx_n \to 0$ and $x_n - T^2x_n \to 0$ imply $z \in F(T)$.

Proof. Since T is 2-generalized hybrid, there are $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ such that

$$\begin{aligned} \alpha_1 \|T^2 x - Ty\|^2 + \alpha_2 \|Tx - Ty\|^2 + (1 - \alpha_1 - \alpha_2) \|x - Ty\|^2 \\ &\leq \beta_1 \|T^2 x - y\|^2 + \beta_2 \|Tx - y\|^2 + (1 - \beta_1 - \beta_2) \|x - y\|^2 \end{aligned}$$

for all $x, y \in C$. Suppose $x_n \rightarrow z, x_n - Tx_n \rightarrow 0$ and $x_n - T^2x_n \rightarrow 0$. Since $x_n \rightarrow z$, we know from [17] that $\{x_n\}$ is bounded. Since $x_n - Tx_n \rightarrow 0$ and $x_n - T^2x_n \rightarrow 0$, we have also that $\{Tx_n\}$ and $\{T^2x_n\}$ are bounded. Next, let us consider

$$\begin{aligned} \alpha_1 \|T^2 x_n - Tz\|^2 + \alpha_2 \|Tx_n - Tz\|^2 + (1 - \alpha_1 - \alpha_2) \|x_n - Tz\|^2 \\ &\leq \beta_1 \|T^2 x_n - z\|^2 + \beta_2 \|Tx_n - z\|^2 + (1 - \beta_1 - \beta_2) \|x_n - z\|^2. \end{aligned}$$

From this inequality, we have

$$\begin{aligned} \alpha_1(\|T^2x_n - x_n\|^2 + 2\langle T^2x_n - x_n, x_n - Tz \rangle + \|x_n - Tz\|^2) \\ &+ \alpha_2(\|Tx_n - x_n\|^2 + 2\langle Tx_n - x_n, x_n - Tz \rangle + \|x_n - Tz\|^2) \\ &+ (1 - \alpha_1 - \alpha_2)\|x_n - Tz\|^2 \\ &\leq \beta_1(\|T^2x_n - x_n\|^2 + 2\langle T^2x_n - x_n, x_n - z \rangle + \|x_n - z\|^2) \\ &+ \beta_2(\|Tx_n - x_n\|^2 + 2\langle Tx_n - x_n, x_n - z \rangle + \|x_n - z\|^2) \\ &+ (1 - \beta_1 - \beta_2)\|x_n - z\|^2. \end{aligned}$$

We apply a Banach limit μ to both sides of the inequality. Then, we have

$$\begin{aligned} \alpha_1(\mu_n \| T^2 x_n - x_n \|^2 + 2\mu_n \langle T^2 x_n - x_n, x_n - Tz \rangle + \mu_n \| x_n - Tz \|^2) \\ &+ \alpha_2(\mu_n \| Tx_n - x_n \|^2 + 2\mu_n \langle Tx_n - x_n, x_n - Tz \rangle + \mu_n \| x_n - Tz \|^2) \\ &+ (1 - \alpha_1 - \alpha_2)\mu_n \| x_n - Tz \|^2 \\ &\leq \beta_1(\mu_n \| T^2 x_n - x_n \|^2 + 2\mu_n \langle T^2 x_n - x_n, x_n - z \rangle + \mu_n \| x_n - z \|^2) \\ &+ \beta_2(\mu_n \| Tx_n - x_n \|^2 + 2\mu_n \langle Tx_n - x_n, x_n - z \rangle + \mu_n \| x_n - z \|^2) \\ &+ (1 - \beta_1 - \beta_2)\mu_n \| x_n - z \|^2 \end{aligned}$$

and hence

$$\begin{aligned} \alpha_1 \mu_n \|x_n - Tz\|^2 + \alpha_2 \mu_n \|x_n - Tz\|^2 + (1 - \alpha_1 - \alpha_2) \mu_n \|x_n - Tz\|^2 \\ &\leq \beta_1 \mu_n \|z - x_n\|^2 + \beta_2 \mu_n \|x_n - z\|^2 + (1 - \beta_1 - \beta_2) \mu_n \|x_n - z\|^2. \end{aligned}$$

So, we have

$$|u_n||x_n - Tz||^2 \le \mu_n ||x_n - z||^2$$

Since $\mu_n \|x_n - Tz\|^2 = \mu_n \|x_n - z\|^2 + 2\mu_n \langle x_n - z, z - Tz \rangle + \mu_n \|z - Tz\|^2$, we have from $x_n \rightharpoonup z$ that

$$\mu_n \|x_n - z\|^2 + \mu_n \|z - Tz\|^2 \le \mu_n \|x_n - z\|^2.$$

Then we have $||z - Tz||^2 \le 0$ and hence Tz = z. This completes the proof.

Lemma 5.2. Let H be a Hilbert space. Let $x, y, z \in H$ and let α , β and γ be real numbers such that $\alpha + \beta + \gamma = 1$. Then,

$$\|\alpha x + \beta y + \gamma z\|^{2} = \alpha \|x\|^{2} + \beta \|y\|^{2} + \gamma \|z\|^{2} - \alpha \beta \|x - y\|^{2} - \beta \gamma \|y - z\|^{2} - \alpha \gamma \|x - z\|^{2}.$$

Proof. We have that

$$\begin{aligned} \|\alpha x + \beta y + \gamma z\|^2 &= \langle \alpha x + \beta y + \gamma z, \alpha x + \beta y + \gamma z \rangle \\ &= \alpha^2 \|x\|^2 + \beta^2 \|y\|^2 + \gamma^2 \|z\|^2 + 2\alpha\beta \langle x, y \rangle + 2\beta\gamma \langle y, z \rangle + 2\alpha\gamma \langle x, z \rangle. \end{aligned}$$

Since $2\langle u, v \rangle = \|u\|^2 + \|v\|^2 - \|u - v\|^2$ for all $u, v \in H$ and $\alpha + \beta + \gamma = 1$, we have

$$\begin{aligned} \|\alpha x + \beta y + \gamma z\|^2 &= \alpha^2 \|x\|^2 + \beta^2 \|y\|^2 + \gamma^2 \|z\|^2 + \alpha\beta(\|x\|^2 + \|y\|^2 - \|x - y\|^2) \\ &+ \beta\gamma(\|y\|^2 + \|z\|^2 - \|y - z\|^2) + \alpha\gamma(\|x\|^2 + \|z\|^2 - \|x - z\|^2) \\ &= \alpha(\alpha + \beta + \gamma) \|x\|^2 + \beta(\alpha + \beta + \gamma) \|y\|^2 + \gamma(\alpha + \beta + \gamma) \|z\|^2 \\ &- \alpha\beta\|x - y\|^2 - \beta\gamma\|y - z\|^2 - \alpha\gamma\|x - z\|^2 \\ &= \alpha\|x\|^2 + \beta\|y\|^2 + \gamma\|z\|^2 - \alpha\beta\|x - y\|^2 - \beta\gamma\|y - z\|^2 - \alpha\gamma\|x - z\|^2. \end{aligned}$$

is completes the proof.

This completes the proof.

Using Lemmas 5.1 and 5.2, we can prove the following weak convergence theorem for 2- generalized hybrid mappings in a Hilbert space.

Theorem 5.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$ and let $T : C \to C$ be an $(\alpha_1, \alpha_2, \beta_1, \beta_2)$ generalized hybrid mapping with $F(T) \neq \emptyset$. Let P be the mertic projection of Honto F(T) and let $\{a_n\}, \{b_n\}$ and $\{c_n\}$ be sequences of real numbers such that $0 < a \leq a_n, b_n, c_n \leq b < 1$ and $a_n + b_n + c_n = 1$ for all $n \in \mathbb{N}$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = a_n x_n + b_n T x_n + c_n T^2 x_n, \quad n \in \mathbb{N}.$$

Then, the sequence $\{x_n\}$ converges weakly to an element v of F(T), where $v = \lim_{n \to \infty} Px_n$.

Proof. Since T is an $(\alpha_1, \alpha_2, \beta_1, \beta_2)$ -generalized hybrid mapping with $F(T) \neq \emptyset$, T is quasi-nonexpansive. So, for $z \in F(T)$, we have that

$$||x_{n+1} - z||^2 = ||a_n x_n + b_n T x_n + c_n T^2 x_n - z||^2$$

$$\leq a_n ||x_n - z||^2 + b_n ||T x_n - z||^2 + c_n ||T^2 x_n - z||^2$$

$$\leq \alpha_n ||x_n - z||^2 + b_n ||x_n - z||^2 + c_n ||x_n - z||^2$$

$$= ||x_n - z||^2$$

for all $n \in \mathbb{N}$. Hence, $\lim_{n\to\infty} ||x_n - z||^2$ exists. Then, we have that $\{x_n\}$ is bounded. We also have from Lemma 5.2 that

$$\begin{aligned} \|x_{n+1} - z\|^2 &= \|a_n x_n + b_n T x_n + c_n T^2 x_n - z\|^2 \\ &= a_n \|x_n - z\|^2 + b_n \|T x_n - z\|^2 + c_n \|T^2 x_n - z\|^2 \\ &- a_n b_n \|x_n - T x_n\|^2 - a_n c_n \|x_n - T^2 x_n\|^2 - b_n c_n \|T x_n - T^2 x_n\|^2 \\ &\leq a_n \|x_n - z\|^2 + b_n \|x_n - z\|^2 + c_n \|x_n - z\|^2 \\ &- a_n b_n \|x_n - T x_n\|^2 - a_n c_n \|x_n - T^2 x_n\|^2 - b_n c_n \|T x_n - T^2 x_n\|^2 \\ &\leq \|x_n - z\|^2 \\ &- a_n b_n \|x_n - T x_n\|^2 - a_n c_n \|x_n - T^2 x_n\|^2 - b_n c_n \|T x_n - T^2 x_n\|^2. \end{aligned}$$

So, we have

$$a_n b_n \|x_n - Tx_n\|^2 + a_n c_n \|x_n - T^2 x_n\|^2 + b_n c_n \|Tx_n - T^2 x_n\|^2 \le \|x_n - z\|^2 - \|x_{n+1} - z\|^2.$$

Since $\lim_{n\to\infty} ||x_n - z||^2$ exists and $0 < a \le a_n, b_n, c_n \le b < 1$, we have $||Tx_n - x_n||^2 \to 0$, $||T^2x_n - x_n||^2 \to 0$ and $||Tx_n - T^2x_n||^2 \to 0$. Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightharpoonup v$. From Lemma 5.1 we obtain $v \in F(T)$. Let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be two subsequences of $\{x_n\}$ such that $x_{n_i} \rightharpoonup v_1$ and $x_{n_j} \rightharpoonup v_2$. Then, we show $v_1 = v_2$. We know $v_1, v_2 \in F(T)$ and hence $\lim_{n\to\infty} ||x_n - v_1||^2$ and $\lim_{n\to\infty} ||x_n - v_2||^2$ exist. Suppose $v_1 \neq v_2$. Since H satisfies

Opial's condition, we have from (2.3) that

$$\lim_{n \to \infty} \|x_n - v_1\| = \lim_{i \to \infty} \|x_{n_i} - v_1\|$$
$$< \lim_{i \to \infty} \|x_{n_i} - v_2\|$$
$$= \lim_{n \to \infty} \|x_n - v_2\|$$
$$= \lim_{j \to \infty} \|x_{n_j} - v_2\|$$
$$< \lim_{j \to \infty} \|x_{n_j} - v_1\|$$
$$= \lim_{n \to \infty} \|x_n - v_1\|.$$

This is a contradiction. So, we have $v_1 = v_2$. This implies that $\{x_n\}$ converges weakly to some point of F(T). Since $||x_{n+1} - z|| \le ||x_n - z||$ for all $z \in F(T)$ and $n \in \mathbb{N}$, we obtain from Lemma 2.2 that $\{Px_n\}$ converges strongly to an element pof F(T). On the other hand, we have from the property of P that

$$\langle x_n - Px_n, Px_n - u \rangle \ge 0$$

for all $u \in F(T)$ and $n \in \mathbb{N}$. Since $x_n \rightarrow v$ and $Px_n \rightarrow p$, we obtain

$$\langle v - p, p - u \rangle \ge 0$$

for all $u \in F(T)$. Putting u = v, we obtain $-\|v - p\|^2 \ge 0$ and hence p = v. This means $v = \lim_{n \to \infty} Px_n$. This completes the proof.

References

- K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335–343.
- [2] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.
- [3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- [4] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225.
- [5] P. L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- [6] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [7] T. Ibaraki and W. Takahashi, Weak convergence theorem for new nonexpansive mappings in Banach spaces and its applications, Taiwanese J. Math. 11 (2007), 929–944.
- [8] T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 21–32.
- [9] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082–2089.
- [10] S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493–508.
- [11] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497–2511.
- [12] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824–835.
- [13] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166–177.

- [14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
- [15] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [16] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [17] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, 2000.
- [18] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009.
- [19] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79–88.
- [20] W. Takahashi, Nonlinear operators and fixed point theorems in Hilbert spaces, RIMS Kokyuroku 1685 (2010), 177–189.
- [21] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.
- [22] W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math. 15 (2011), to appear.

Manuscript received November 30, 2010 revised February 23, 2011

Toru Maruyama

Department of Economics, Keio University, Mita 2-15-45, Minato-ku, Tokyo 108-8345, Japan *E-mail address*: maruyama@econ.keio.ac.jp

WATARU TAKAHASHI

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan and Department of Economics, Keio University, Mita 2–15–45, Minato-ku, Tokyo 108-8345, Japan

E-mail address: wataru@is.titech.ac.jp

Masayuki Yao

Graduate School of Economics, Keio University, Mita 2–15–45, Minato-ku, Tokyo 108-8345, Japan *E-mail address:* myao@gs.econ.keio.ac.jp