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FIXED POINT AND MEAN ERGODIC THEOREMS

FOR NEW NONLINEAR MAPPINGS IN HILBERT SPACES

TORU MARUYAMA, WATARU TAKAHASHI, AND MASAYUKI YAO

Abstract. In this paper, we first consider a broad class of nonlinear mappings
containing the class of generalized hybrid mappings defined by Kocourek, Taka-
hashi and Yao [11] in a Hilbert space. Then, we prove a fixed point theorem, a
mean ergodic theorem of Baillon’s type [2] and a weak convergence theorem of
Mann’s type [14] for these nonlinear mappings in a Hilbert space.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. Then a mapping T : C → C is said to be nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥
for all x, y ∈ C. The set of fixed points of T is denoted by F (T ). Baillon [2] proved
the following nonlinear mean ergodic theorem in a Hilbert space.

Theorem 1.1. Let C be a nonempty closed convex subset of H and let T : C → C
be nonexpansive. If F (T ) ̸= ∅, then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).

An important example of nonexpansive mappings in a Hilbert space is a firmly
nonexpansive mapping. A mapping F is said to be firmly nonexpansive if

∥Fx− Fy∥2 ≤ ⟨x− y, Fx− Fy⟩
for all x, y ∈ C; see, for instance, Browder [4] and Goebel and Kirk [6]. It is
known that a firmly nonexpansive mapping F can be deduced from an equilibrium
problem in a Hilbert space; see, for instance, [3] and [5]. Recently, Kohsaka and
Takahashi [13], and Takahashi [19] introduced the following nonlinear mappings
which are deduced from a firmly nonexpansive mapping in a Hilbert space. A
mapping T : C → C is called nonspreading [13] if

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2

for all x, y ∈ C. A mapping T : C → C is called hybrid [19] if

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2
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for all x, y ∈ C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [12] and Iemoto and Takahashi [9]. Very recently, Takahashi
and Yao [22] proved the following nonlinear ergodic theorem.

Theorem 1.2. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a mapping of C into itself such that F (T ) is nonempty. Suppose
that T satisfies one of the following:

(i) T is nonspreading;
(ii) T is hybrid;
(iii) 2∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2, ∀x, y ∈ C.

Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).

Motivated by Theorems 1.1 and 1.2, Aoyama, Iemoto, Kohsaka and Takahashi [1]
introduced a class of nonlinear mappings called λ-hybrid containing the classes of
nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert
space. Kocourek, Takahashi and Yao [11] also introduced a more broad class of
nonlinear mappings than the class of λ-hybrid mappings in a Hilbert space. A
mapping T : C → C is called generalized hybrid [11] if there are α, β ∈ R such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Such a mapping is called an (α, β)-generalized hybrid mapping.
In this paper, motivated by Kocourek, Takahashi and Yao [11], we introduce a

broad class of nonlinear mappings containing the class of generalized hybrid map-
pings in a Hilbert space. Then, we prove a fixed point theorem, a mean ergodic
theorem of Baillon’s type [2] and a weak convergence theorem of Mann’s type [14]
for these nonlinear mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product ⟨·, · ⟩ and
norm ∥ · ∥. We denote the strong convergence and the weak convergence of {xn} to
x ∈ H by xn → x and xn ⇀ x, respectively. From [18], we know the following basic
equality. For x, y ∈ H and λ ∈ R, we have

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
We also know that for x, y, u, v ∈ H,

(2.2) 2 ⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
From Opial [15], a Hilbert space H satisfies Opial’s condition, i.e., for a sequence
{xn} of H such that xn ⇀ x and x ̸= y,

(2.3) lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥.

Let C be a nonempty closed convex subset of H and let T be a mapping from
C into itself. Then, we denote by F (T ) the set of fixed points of T . A mapping
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T : C → C with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥x − Ty∥ ≤ ∥x − y∥ for
all x ∈ F (T ) and y ∈ C. It is well-known that the set F (T ) of fixed points of a
quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [10]. In
fact, for proving that F (T ) is closed, take a sequence {zn} ⊂ F (T ) with zn → z.
Since C is weakly closed, we have z ∈ C. Furthermore, from

∥z − Tz∥ ≤ ∥z − zn∥+ ∥zn − Tz∥ ≤ 2∥z − zn∥ → 0,

z is a fixed point of T and so F (T ) is closed. Let us show that F (T ) is convex. For
x, y ∈ F (T ) and α ∈ [0, 1], put z = αx+ (1− α)y. Then, we have from (2.1) that

∥z − Tz∥2 = ∥αx+ (1− α)y − Tz∥2

= α∥x− Tz∥2 + (1− α)∥y − Tz∥2 − α(1− α)∥x− y∥2

≤ α∥x− z∥2 + (1− α)∥y − z∥2 − α(1− α)∥x− y∥2

= α(1− α)2∥x− y∥2 + (1− α)α2∥x− y∥2 − α(1− α)∥x− y∥2

= α(1− α)(1− α+ α− 1)∥x− y∥2

= 0.

This implies Tz = z. So, F (T ) is convex.
Let l∞ be the Banach space of bounded sequences with supremum norm. Let

µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µnxn ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. For a proof of existence of a Banach limit and its other elementary
properties, see [17]. Using Banach limits, Takahashi and Yao [22] proved the fol-
lowing fixed point theorem.

Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a mapping of C into itself. Suppose that there exists an element
x ∈ C such that {Tnx} is bounded and

µn∥Tnx− Ty∥2 ≤ µn∥Tnx− y∥2, ∀y ∈ C

for some Banach limit µ. Then, T has a fixed point in C.

Let C be a nonempty closed convex subset of H and x ∈ H. Then, we know that
there exists a unique nearest point z ∈ C such that ∥x − z∥ = infy∈C ∥x − y∥. We
denote such a correspondence by z = PCx. PC is called the metric projection of H
onto C. It is known that PC is nonexpansive and

⟨x− PCx, PCx− u⟩ ≥ 0

for all x ∈ H and u ∈ C; see [18] for more details. From Takahashi and Toyoda [21],
we know the following result for metric projections in a Hilbert space.
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Lemma 2.2. Let D be a nonempty closed convex subset of a Hilbert space H.
Let P be the metric projection of H onto D and let {xn} be a sequence in H. If
∥xn+1 − u∥ ≤ ∥xn − u∥ for all u ∈ D and n ∈ N, then {Pxn} converges strongly.

3. Fixed point theorems

In this section, we start with introducing a broad class of nonlinear mappings
containing the class of generalized hybrid mappings defined by Kocourek, Takahashi
and Yao [11] in a Hilbert space. Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Then, a mapping T : C → C is called 2-generalized
hybrid if there are α1, α2, β1, β2 ∈ R such that

α1∥T 2x−Ty∥2 + α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2(3.1)

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C. We call such a mapping an (α1, α2, β1, β2)-generalized hybrid
mapping. We observe that the mapping above covers several well-known mappings.
For example, a (0, α2, 0, β2)-generalized hybrid mapping is nonexpansive for α2 = 1
and β2 = 0, nonspreading for α2 = 2 and β2 = 1, and hybrid for α2 = 3

2 and

β2 =
1
2 . A (0, α2, 0, β2)-generalized hybrid mapping is an (α2, β2)-generalized hybrid

mapping in the sense of Kocourek, Takahashi and Yao [11]. We can also show that
if x = Tx, then for any y ∈ C,

α1∥x−Ty∥2 + α2∥x− Ty∥2 + (1− α1 − α2)∥x− Ty∥2

≤ β1∥x− y∥2 + β2∥x− y∥2 + (1− β1 − β2)∥x− y∥2

and hence ∥x − Ty∥ ≤ ∥x − y∥. This means that a 2-generalized hybrid mapping
with a fixed point is quasi-nonexpansive. Now, we prove a fixed point theorem for
2-generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and
let T : C → C be a 2-generalized hybrid mapping. Then T has a fixed point in C if
and only if {Tnz} is bounded for some z ∈ C.

Proof. Since T : C → C is a 2-generalized hybrid mapping, there are α1, α2, β1, β2 ∈
R such that

α1∥T 2x−Ty∥2 + α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C. If F (T ) ̸= ∅, then {Tnz} = {z} for z ∈ F (T ). So, {Tnz} is
bounded. We show the reverse. Take z ∈ C such that {Tnz} is bounded. Let µ be
a Banach limit. Then, for any y ∈ C and n ∈ N ∪ {0}, we have

α1∥Tn+2z−Ty∥2 + α2∥Tn+1z − Ty∥2 + (1− α1 − α2)∥Tnz − Ty∥2

≤ β1∥Tn+2z − y∥2 + β2∥Tn+1z − y∥2 + (1− β1 − β2)∥Tnz − y∥2
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for any y ∈ C. Since {Tnz} is bounded, we can apply a Banach limit µ to both
sides of the inequality. Then, we have

µn(α1∥Tn+2z − Ty∥2 + α2∥Tn+1z − Ty∥2 + (1− α1 − α2)∥Tnz − Ty∥2)
≤ µn(β1∥Tn+2z − y∥2 + β2∥Tn+1z − y∥2 + (1− β1 − β2)∥Tnz − y∥2).

So, we obtain

α1µn∥Tn+2z − Ty∥2 + α2µn∥Tn+1z − Ty∥2 + (1− α1 − α2)µn∥Tnz − Ty∥2

≤ β1µn∥Tn+2z − y∥2 + β2µn∥Tn+1z − y∥2 + (1− β1 − β2)µn∥Tnz − y∥2

and hence

α1µn∥Tnz − Ty∥2 + α2µn∥Tnz − Ty∥2 + (1− α1 − α2)µn∥Tnz − Ty∥2

≤ β1µn∥Tnz − y∥2 + β2µn∥Tnz − y∥2 + (1− β1 − β2)µn∥Tnz − y∥2.
This implies

µn∥Tnz − Ty∥2 ≤ µn∥Tnz − y∥2

for all y ∈ C. By Theorem 2.1, we have a fixed point in C. �

As a direct consequence of Theorem 3.1, we have the following result.

Theorem 3.2. Let C be nonempty bounded closed convex subset of a Hilbert space
H and let T be a 2-generalized hybrid mapping from C to itself. Then T has a fixed
point.

Using Theorem 3.1, we can also prove the following well-known fixed point theo-
rems. We first prove a fixed point theorem for nonexpansive mappings in a Hilbert
space.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C → C be a nonexpansive mapping, i.e.,

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (0, 1, 0, 0)-generalized hybrid mapping of C into itself is
nonexpansive. By Theorem 3.1, T has a fixed point in C. �

The following is a fixed point theorem for nonspreading mappings in a Hilbert
space.

Theorem 3.4 ([13]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T : C → C be a nonspreading mapping, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (0, 2, 0, 1)-generalized hybrid mapping of C into itself is
nonspreading. By Theorem 3.1, T has a fixed point in C. �
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The following is a fixed point theorem for hybrid mappings by Takahashi [19] in
a Hilbert space.

Theorem 3.5 ([19]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T : C → C be a hybrid mapping, i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (0, 32 , 0,
1
2)-generalized hybrid mapping of C into itself is

hybrid in the sense of Takahashi [19]. By Theorem 3.1, T has a fixed point in C. �
We can also prove the following fixed point theorem in a Hilbert space.

Theorem 3.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C → C be a mapping such that

2∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, a (0, 1, 0, 12)-generalized hybrid mapping of C into itself is
the mapping in our theorem. By Theorem 3.1, T has a fixed point in C. �

Finally, we prove the following fixed point theorem in a Hilbert space.

Theorem 3.7. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C → C be a mapping such that

∥T 2x− Ty∥2 + ∥Tx− Ty∥2 + ∥x− Ty∥2 ≤ 3∥x− y∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.1, consider a (13 ,
1
3 , 0, 0)-generalized hybrid mapping T of C

into itself. Then, we have that

1

3
∥T 2x− Ty∥2 + 1

3
∥Tx− Ty∥2 + 1

3
∥x− Ty∥2 ≤ ∥x− y∥2, ∀x, y ∈ C.

This is equivalent to the mapping in our theorem:

∥T 2x− Ty∥2 + ∥Tx− Ty∥2 + ∥x− Ty∥2 ≤ 3∥x− y∥2, ∀x, y ∈ C.

By Theorem 3.1, T has a fixed point in C. �
Remark 3.8. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let n ∈ N. Then, a mapping T : C → C is called n-generalized hybrid
if there are α1, α2, . . . , αn, β1, β2, . . . , βn ∈ R such that

n∑
k=1

αk∥Tn+1−kx− Ty∥2 + (1−
n∑

k=1

αk)∥x− Ty∥2(3.2)

≤
n∑

k=1

βk∥Tn+1−kx− y∥2 + (1−
n∑

k=1

βk)∥x− y∥2
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for all x, y ∈ C. We call such a mapping an (α1, α2, . . . , αn, β1, β2, . . . , βn)-generalized
hybrid mapping. As in the proof of Theorem 3.1, we can prove a fixed point theorem
for n-generalized hybrid mappings in a Hilbert space.

4. Nonlinear ergodic theorem

In this section, using the technique developed by Takahashi [16], we prove a
nonlinear ergodic theorem of Baillon’s type [2] for generalized hybrid mappings in
a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C → C be a 2-generalized hybrid mapping with F (T ) ̸= ∅ and
let P be the mertic projection of H onto F (T ). Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element p of F (T ), where p = limn→∞ PTnx.

Proof. Since T : C → C is a 2-generalized hybrid mapping, there are α1, α2, β1, β2 ∈
R such that

α1∥T 2x− Ty∥2+α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C. Since T is an (α1, α2, β1, β2)-generalized hybrid mapping, T is
quasi-nonexpansive. So, we have that F (T ) is closed and convex. Let x ∈ C and
let P be the metric projection of H onto F (T ). Then, we have

∥PTnx− Tnx∥ ≤ ∥PTn−1x− Tnx∥
≤ ∥PTn−1x− Tn−1x∥.

This implies that {∥PTnx − Tnx∥} is nonincreasing. We also know that for any
v ∈ C and u ∈ F (T ), ⟨v − Pv, Pv − u⟩ ≥ 0 and hence

∥v − Pv∥2 ≤ ⟨v − Pv, v − u⟩.
So, we get

∥Pv − u∥2 = ∥Pv − v + v − u∥2

= ∥Pv − v∥2 − 2⟨Pv − v, u− v⟩+ ∥v − u∥2

≤ ∥v − u∥2 − ∥Pv − v∥2.
Let m,n ∈ N. Putting v = Tmx and u = PTnx, we have

∥PTmx− PTnx∥2 ≤ ∥Tmx− PTnx∥2 − ∥PTmx− Tmx∥2

≤ ∥Tnx− PTnx∥2 − ∥PTmx− Tmx∥2.
So, {PTnx} is a Cauchy sequence. Since F (T ) is closed, {PTnx} converges strongly
to an element p of F (T ). Take u ∈ F (T ). Then we obtain that for any n ∈ N,

∥Snx− u∥ ≤ 1

n

n−1∑
k=0

∥T kx− u∥ ≤ ∥x− u∥.
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So, {Snx} is bounded and hence there exists a weakly convergent subsequence
{Snix} of {Snx}. If Snix ⇀ v, then we have v ∈ F (T ). In fact, for any y ∈ C and
k ∈ N ∪ {0}, we have that

0 ≤ β1∥T k+2x− y∥2 + β2∥T k+1x− y∥2 + (1− β1 − β2)∥T kx− y∥2

− α1∥T k+2x− Ty∥2 − α2∥T k+1x− Ty∥2 − (1− α1 − α2)∥T kx− Ty∥2

= β1(∥T k+2x− Ty∥2 + 2⟨T k+2x− Ty, Ty − y⟩+ ∥Ty − y∥2)

+ β2(∥T k+1x− Ty∥2 + 2⟨T k+1x− Ty, Ty − y⟩+ ∥Ty − y∥2)

+ (1− β1 − β2)(∥T kx− Ty∥2 + 2⟨T kx− Ty, Ty − y⟩+ ∥Ty − y∥2)

− α1∥T k+2x− Ty∥2 − α2∥T k+1x− Ty∥2 − (1− α1 − α2)∥T kx− Ty∥2

= ∥Ty − y∥2 + 2⟨β1T k+2x+ β2T
k+1x+ (1− β1 − β2)T

kx− Ty, Ty − y⟩

+ (β1 − α1)(∥T k+2x− Ty∥2 − ∥T kx− Ty∥2)

+ (β2 − α2)(∥T k+1x− Ty∥2 − ∥T kx− Ty∥2).
Summing up these inequalities with respect to k = 0, 1, . . . , n− 1,

0 ≤ n∥Ty − y∥2

+ 2
⟨ n−1∑
k=0

T kx+ β1(T
n+1x+ Tnx− x− Tx) + β2(T

nx− x)− nTy, Ty − y
⟩

+ (β1 − α1)(∥Tn+1x− Ty∥2 + ∥Tnx− Ty∥2 − ∥x− Ty∥2 − ∥Tx− Ty∥2)
+ (β2 − α2)(∥Tnx− Ty∥2 − ∥x− Ty∥2).

Deviding this inequality by n, we have

0 ≤ ∥Ty − y∥2

+ 2
⟨
Snx+

1

n
β1(T

n+1x+ Tnx− x− Tx) +
1

n
β2(T

nx− x)− Ty, Ty − y
⟩

+
1

n
(β1 − α1)(∥Tn+1x− Ty∥2 + ∥Tnx− Ty∥2 − ∥x− Ty∥2 − ∥Tx− Ty∥2)

+
1

n
(β2 − α2)(∥Tnx− Ty∥2 − ∥x− Ty∥2),

where Snx = 1
n

∑n−1
k=0 T

kx. Replacing n by ni and letting ni → ∞, we obtain from
Snix ⇀ v that

0 ≤ ∥Ty − y∥2 + 2 ⟨v − Ty, Ty − y⟩ .
Putting y = v, we have 0 ≤ −∥Tv − v∥2 and hence Tv = v. To complete the proof,
it is sufficient to show that if Snix ⇀ v, then v = p. We have that

⟨T kx− PT kx, PT kx− u⟩ ≥ 0

for all u ∈ F (T ). Since {∥T kx− PT kx∥} is nonincreasing, we have

⟨u− p, T kx− PT kx⟩ ≤ ⟨PT kx− p, T kx− PT kx⟩

≤ ∥PT kx− p∥ · ∥T kx− PT kx∥

≤ ∥PT kx− p∥ · ∥x− Px∥.
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Adding these inequalities from k = 0 to k = n− 1 and dividing n, we have

⟨u− p, Snx− 1

n

n−1∑
k=0

PT kx⟩ ≤ ∥x− Px∥
n

n−1∑
k=0

∥PT kx− p∥.

Since Snix ⇀ v and PT kx → p, we have

⟨u− p, v − p⟩ ≤ 0.

We know v ∈ F (T ). So, putting u = v, we have ⟨v − p, v − p⟩ ≤ 0 and hence
∥v − p∥2 ≤ 0. So, we obtain v = p. This completes the proof. �

Remark 4.2. As in the proof of Theorem 4.1, we can prove a nonlinear ergodic
theorem of Baillon’s type for n-generalized hybrid mappings in a Hilbert space.

5. Weak convergence theorem of Mann’s type

In this section, we prove a weak convergence theorem of Mann’s type [14] for 2-
generalized hybrid mappings in a Hilbert space. Before proving the theorem, we
need the following two lemmas.

Lemma 5.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T : C → C be a 2-generalized hybrid mapping. Then, xn ⇀ z,
xn − Txn → 0 and xn − T 2xn → 0 imply z ∈ F (T ).

Proof. Since T is 2-generalized hybrid, there are α1, α2, β1, β2 ∈ R such that

α1∥T 2x− Ty∥2+α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C. Suppose xn ⇀ z, xn−Txn → 0 and xn−T 2xn → 0. Since xn ⇀ z,
we know from [17] that {xn} is bounded. Since xn − Txn → 0 and xn − T 2xn → 0,
we have also that {Txn} and {T 2xn} are bounded. Next, let us consider

α1∥T 2xn − Tz∥2+α2∥Txn − Tz∥2 + (1− α1 − α2)∥xn − Tz∥2

≤ β1∥T 2xn − z∥2 + β2∥Txn − z∥2 + (1− β1 − β2)∥xn − z∥2.

From this inequality, we have

α1(∥T 2xn − xn∥2 + 2⟨T 2xn − xn, xn − Tz⟩+ ∥xn − Tz∥2)
+ α2(∥Txn − xn∥2 + 2⟨Txn − xn, xn − Tz⟩+ ∥xn − Tz∥2)
+ (1− α1 − α2)∥xn − Tz∥2

≤ β1(∥T 2xn − xn∥2 + 2⟨T 2xn − xn, xn − z⟩+ ∥xn − z∥2)
+ β2(∥Txn − xn∥2 + 2⟨Txn − xn, xn − z⟩+ ∥xn − z∥2)
+ (1− β1 − β2)∥xn − z∥2.
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We apply a Banach limit µ to both sides of the inequality. Then, we have

α1(µn∥T 2xn − xn∥2 + 2µn⟨T 2xn − xn, xn − Tz⟩+ µn∥xn − Tz∥2)
+ α2(µn∥Txn − xn∥2 + 2µn⟨Txn − xn, xn − Tz⟩+ µn∥xn − Tz∥2)
+ (1− α1 − α2)µn∥xn − Tz∥2

≤ β1(µn∥T 2xn − xn∥2 + 2µn⟨T 2xn − xn, xn − z⟩+ µn∥xn − z∥2)
+ β2(µn∥Txn − xn∥2 + 2µn⟨Txn − xn, xn − z⟩+ µn∥xn − z∥2)
+ (1− β1 − β2)µn∥xn − z∥2

and hence

α1µn∥xn − Tz∥2 + α2µn∥xn − Tz∥2 + (1− α1 − α2)µn∥xn − Tz∥2

≤ β1µn∥z − xn∥2 + β2µn∥xn − z∥2 + (1− β1 − β2)µn∥xn − z∥2.

So, we have

µn∥xn − Tz∥2 ≤ µn∥xn − z∥2.
Since µn∥xn − Tz∥2 = µn∥xn − z∥2 + 2µn⟨xn − z, z − Tz⟩+ µn∥z − Tz∥2, we have
from xn ⇀ z that

µn∥xn − z∥2 + µn∥z − Tz∥2 ≤ µn∥xn − z∥2.

Then we have ∥z − Tz∥2 ≤ 0 and hence Tz = z. This completes the proof. �

Lemma 5.2. Let H be a Hilbert space. Let x, y, z ∈ H and let α, β and γ be real
numbers such that α+ β + γ = 1. Then,

∥αx+βy + γz∥2

= α∥x∥2 + β∥y∥2 + γ∥z∥2 − αβ∥x− y∥2 − βγ∥y − z∥2 − αγ∥x− z∥2.

Proof. We have that

∥αx+βy + γz∥2 = ⟨αx+ βy + γz, αx+ βy + γz⟩
= α2∥x∥2 + β2∥y∥2 + γ2∥z∥2 + 2αβ⟨x, y⟩+ 2βγ⟨y, z⟩+ 2αγ⟨x, z⟩.

Since 2⟨u, v⟩ = ∥u∥2 + ∥v∥2 − ∥u− v∥2 for all u, v ∈ H and α+ β + γ = 1, we have

∥αx+βy + γz∥2 = α2∥x∥2 + β2∥y∥2 + γ2∥z∥2 + αβ(∥x∥2 + ∥y∥2 − ∥x− y∥2)
+ βγ(∥y∥2 + ∥z∥2 − ∥y − z∥2) + αγ(∥x∥2 + ∥z∥2 − ∥x− z∥2)

= α(α+ β + γ)∥x∥2 + β(α+ β + γ)∥y∥2 + γ(α+ β + γ)∥z∥2

− αβ∥x− y∥2 − βγ∥y − z∥2 − αγ∥x− z∥2

= α∥x∥2 + β∥y∥2 + γ∥z∥2 − αβ∥x− y∥2 − βγ∥y − z∥2 − αγ∥x− z∥2.

This completes the proof. �

Using Lemmas 5.1 and 5.2, we can prove the following weak convergence theorem
for 2- generalized hybrid mappings in a Hilbert space.
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Theorem 5.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let α1, α2, β1, β2 ∈ R and let T : C → C be an (α1, α2, β1, β2)-
generalized hybrid mapping with F (T ) ̸= ∅. Let P be the mertic projection of H
onto F (T ) and let {an}, {bn} and {cn} be sequences of real numbers such that
0 < a ≤ an, bn, cn ≤ b < 1 and an + bn + cn = 1 for all n ∈ N. Suppose {xn} is the
sequence generated by x1 = x ∈ C and

xn+1 = anxn + bnTxn + cnT
2xn, n ∈ N.

Then, the sequence {xn} converges weakly to an element v of F (T ), where v =
limn→∞ Pxn.

Proof. Since T is an (α1, α2, β1, β2)-generalized hybrid mapping with F (T ) ̸= ∅, T
is quasi-nonexpansive. So, for z ∈ F (T ), we have that

∥xn+1 − z∥2 = ∥anxn + bnTxn + cnT
2xn − z∥2

≤ an∥xn − z∥2 + bn∥Txn − z∥2 + cn∥T 2xn − z∥2

≤ αn∥xn − z∥2 + bn∥xn − z∥2 + cn∥xn − z∥2

= ∥xn − z∥2

for all n ∈ N. Hence, limn→∞ ∥xn−z∥2 exists. Then, we have that {xn} is bounded.
We also have from Lemma 5.2 that

∥xn+1 − z∥2 = ∥anxn + bnTxn + cnT
2xn − z∥2

= an∥xn − z∥2 + bn∥Txn − z∥2 + cn∥T 2xn − z∥2

− anbn∥xn − Txn∥2 − ancn∥xn − T 2xn∥2 − bncn∥Txn − T 2xn∥2

≤ an∥xn − z∥2 + bn∥xn − z∥2 + cn∥xn − z∥2

− anbn∥xn − Txn∥2 − ancn∥xn − T 2xn∥2 − bncn∥Txn − T 2xn∥2

≤ ∥xn − z∥2

− anbn∥xn − Txn∥2 − ancn∥xn − T 2xn∥2 − bncn∥Txn − T 2xn∥2.

So, we have

anbn∥xn−Txn∥2+ancn∥xn−T 2xn∥2+bncn∥Txn−T 2xn∥2 ≤ ∥xn−z∥2−∥xn+1−z∥2.

Since limn→∞ ∥xn − z∥2 exists and 0 < a ≤ an, bn, cn ≤ b < 1, we have ∥Txn −
xn∥2 → 0, ∥T 2xn − xn∥2 → 0 and ∥Txn − T 2xn∥2 → 0. Since {xn} is bounded,
there exists a subsequence {xni} of {xn} such that xni ⇀ v. From Lemma 5.1
we obtain v ∈ F (T ). Let {xni} and {xnj} be two subsequences of {xn} such that
xni ⇀ v1 and xnj ⇀ v2. Then, we show v1 = v2. We know v1, v2 ∈ F (T ) and hence

limn→∞ ∥xn−v1∥2 and limn→∞ ∥xn−v2∥2 exist. Suppose v1 ̸= v2. Since H satisfies
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Opial’s condition, we have from (2.3) that

lim
n→∞

∥xn − v1∥ = lim
i→∞

∥xni − v1∥

< lim
i→∞

∥xni − v2∥

= lim
n→∞

∥xn − v2∥

= lim
j→∞

∥xnj − v2∥

< lim
j→∞

∥xnj − v1∥

= lim
n→∞

∥xn − v1∥.

This is a contradiction. So, we have v1 = v2. This implies that {xn} converges
weakly to some point of F (T ). Since ∥xn+1 − z∥ ≤ ∥xn − z∥ for all z ∈ F (T ) and
n ∈ N, we obtain from Lemma 2.2 that {Pxn} converges strongly to an element p
of F (T ). On the other hand, we have from the property of P that

⟨xn − Pxn, Pxn − u⟩ ≥ 0

for all u ∈ F (T ) and n ∈ N. Since xn ⇀ v and Pxn → p, we obtain

⟨v − p, p− u⟩ ≥ 0

for all u ∈ F (T ). Putting u = v, we obtain −∥v − p∥2 ≥ 0 and hence p = v. This
means v = limn→∞ Pxn. This completes the proof. �
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