
Journal of Nonlinear and Convex Analysis

Volume 12, Number 1, 2011, 17–27

OUTER APPROXIMATION METHOD INCORPORATING THE
FERRARI’S METHOD FOR SOLVING A QUADRATIC DC

PROGRAMMING PROBLEM

SYUUJI YAMADA, TAMAKI TANAKA, AND TETSUZO TANINO

Abstract. In this paper, we propose two kinds of successive approximation
methods for solving a quadratic dc programming problem. One is the algorithm
based on an outer approximation method. The algorithm calculates an approxi-
mate solution by constructing two cutting planes at each iteration. The second
is the outer approximation algorithm incorporating the Ferrari’s method. By
utilizing the Ferrari’s method, provisional solutions are updated effectively.

1. Introduction

To obtain an approximate solution to a global optimization problem, outer ap-
proximation methods have been proposed by Cheney and Goldstein [1], Veinot [6],
Falk and Hoffman [2], Thieu, Tam and Ban [5], Horst and Tuy [3] and Horst, Thiau
and Vries [4]. However, the algorithm does not have a guarantee the finding of
an approximate feasible solution. Moreover, at many iterations, the provisional so-
lution might not improve the performance index. This means that an appropriate
suboptimal solution might not be found at many iterations of the existing algorithm.

In this paper, we consider an optimization problem with a linear function to
be minimized over a set defined by two quadratic functions (one is strictly convex
and the other is strictly concave). This problem is called the quadratic dc pro-
gramming problem and it is known that such problems can be transformed into
Problem (DC) written in Section 2. We propose an outer approximation method
for Problem (DC). The algorithm utilizes a sequence of polytopes. It is shown that
every accumulation point of the sequence of the provisional solutions is an optimal
solution of Problem (DC). Moreover, in order to update the provisional solutions
effectively, we consider a subproblem of Problem (DC) at each iteration of the algo-
rithm. The subproblem can be solved by calculating all solutions of a biquadratic
equation. Therefore, we incorporate the Ferrari’s method in the algorithm.

The organization of this paper is as follows: In Section 2, we explain Prob-
lem (DC). In Section 3, we formulate an outer approximation algorithm for Prob-
lem (DC) and establish the convergence of the algorithm. The difference of the
objective function value between an approximate solution calculated by the pro-
posed algorithm and the exact optimal solution is smaller than a tolerance selected
at the initialization step. In Section 4, we incorporate the Ferrari’s method in
the algorithm proposed in Section 3. By incorporating the Ferrari’s method, the
procedure bounding the feasible set will be expedited.

2010 Mathematics Subject Classification. Primary 90C26; Secondary 90C59.
Key words and phrases. Outer approximation method, reverse convex constraints, canonical d.c.

programming.

18 S. YAMADA, T. TANAKA, AND T. TANINO

Throughout this paper, we use the following notation: R and C denote the sets
of all real and complex numbers, respectively. For a subset X ⊂ Rn, int X, bd X,
cl X and co X denote the interior, the boundary, the closure and the convex hull
of X, respectively. For vectors a, b ∈ Rn, we use two kinds of symbols for open
and closed line segments:]a, b[:= {x ∈ Rn : x = a + δ(b − a), 0 < δ < 1} and
[a, b] := {x ∈ Rn : x = a + δ(b − a), 0 ≤ δ ≤ 1}. Given a convex polyhedral
set (or polytope) X ⊂ Rn, V (X) denotes the set of all vertices of X. For a subset
X ⊂ Rn, X◦ := {y ∈ Rn : y>x ≤ 1, ∀x ∈ X} is called the polar set of X.
Given a function f : R → R, f ′(a) denotes the derivative of f at a ∈ R. Given a
convex function f : Rn → R, ∂f(x) denotes the subdifferential of f at x, that is,
∂f(x) := {u ∈ Rn : f(y) ≥ 〈u,y − x〉 + f(x), y ∈ Rn}. Given a differentiable
function f : Rn → R, ∇f(x) denotes the gradient vector of f at x. Given a twice
differentiable function f : Rn → R, ∇2f(x) denotes the Hessian matrix of f at
x. Given a function f : Rn → R and α ∈ R, Lf (α) denotes the level set of f
corresponding to α, that is, Lf (α) := {x ∈ Rn : f(x) ≤ α}. For ε > 0 (ε ∈ R)
and x ∈ Rn, B(x, ε) := {y ∈ Rn : ‖y − x‖ < ε}. Let I be the unit matrix on
Rn×n. Given a matrix A ∈ Rm×n, A> and A−1 denote the transposed matrix and
the inverse matrix of A, respectively. Let ek := (ek

1, . . . , e
k
n)> ∈ Rn (k ≤ n) be a

vector satisfying ek
k = 1 and ek

j = 0 for each j 6= k.

2. Quadratic dc programming problem

Let us consider a quadratic dc programming problem as follows:

(DC)

minimize f(x) := (en)>x = xn

subject to g(x) :=
1
2
x>Px− (en)>x =

1
2
x>Px− xn ≤ 0,

h(x) :=
1
2
(x− q)>(x− q)− r ≥ 0,

x = (x1, x2, . . . , xn)> ∈ Rn,

where c is a vector in Rn satisfying ‖c‖ = 1, P = (pi j) ∈ Rn×n is a positive-definite

matrix, q ∈ Rn, and r ∈ R satisfies r >
1
2
q>q. Then, g, h : Rn → R are strictly

convex functions. Let Y := {x ∈ Rn : g(x) ≤ 0} and X := {x ∈ Rn : h(x) ≤ 0}.
Since g

(
1

pn n
en

)
= − 1

2pn n
< 0 and h(0) =

1
2
q>q − r < 0, int Y = {x ∈ Rn :

g(x) < 0} 6= ∅ and int X = {x ∈ Rn : h(x) < 0} 6= ∅, and hence Y \int X is the
feasible set of Problem (DC). From the strict convexities of g and h, Y and X are
compact convex sets. Through this paper, we assume the following condition for
Problem (DC).

(A) Y \int X = cl ((int Y)\X) 6= ∅.
By Assumption (A) and the definitions of g and h, Y \int X is nonempty and
compact. Hence, Problem (DC) has a globally optimal solution. We note that
arg min{f(x) : x ∈ Y } = {0}. However, 0 ∈ int X, that is, 0 is not a feasible
solution of Problem (DC). Denote by min(DC) the optimal value of Problem (DC).
We note that min(DC) > 0. Moreover, the following lemma holds.

OUTER APPROXIMATION METHOD FOR A QUADRATIC DC PROGRAMMING 19

Lemma 2.1. (Lemma 2.1, [7]) Let x̄ be a globally optimal solution of Problem (DC).
Then, x̄ ∈ Y ∩ (bd X).

In the case of n ≥ 2, it follows from the following proposition that min (DC) =
min{f(x) : x ∈ (bd Y) ∩ (bd X)}.
Proposition 2.1. (Proposition 2.1, [7]) Let n ≥ 2. Then, the globally optimal
solution x̄ of Problem (DC) satisfies the relation x̄ ∈ (bd Y) ∩ (bd X).

Remark 2.1. In the case of n = 1, let us consider the following dc programming
problem: {

mininimize x
subject to x ∈ Y \int X,

where Y = [0, 3] and X = [−1, 1]. Then, Y \int X = [1, 3]. We note that {1} =
arg min{x : x ∈ Y \int X}, but arg min{x : x ∈ Y \int X} ∩ bd Y = ∅.

3. Outer approximation method

Let φ(x) := max{g(x), h(x)}. Then, φ : Rn → R is a strictly convex function and
Y ∩X = {x ∈ Rn : φ(x) ≤ 0}. In this section, in the case of n ≥ 2, we propose an
algorithm based on the outer approximation method presented by Yamada, Tanaka
and Tanino [7] for solving Problem (DC) as follows:

Algorithm OA

Step 0: Select a tolerance α ≥ 0. Set

(3.1) x1 := re1,

(3.2) a1 := min
{

1
pn n

, qn

}
en,

(3.3) T1 := {x ∈ Rn : r− ≤ x ≤ r+},

(3.4) S1 := S̄1 := T1,

where r− := (q1−r, . . . , qn−1−r, 0)> ∈ Rn and r+ := (q1 +r, . . . , qn +r)> ∈
Rn. Compute the vertex set V (S1)(= V (S̄1)). Choose v1 ∈ arg max{φ(v) :
v ∈ V (S1)}, v̂1 = v̄1 ∈ arg max{h(v) : v ∈ V (S1)} and y1 ∈ [a1,v1] ∩
bd (Y ∩X). Set k ← 1 and go to Step 1.

Step 1: If at least one of the following criteria holds, then stop.
(SC1) yk ∈ Y \int X and yk

n ≤ α,
(SC2) xk ∈ Y \int X and v̂k ∈ X (that is, Sk ⊂ X),
(SC3) xk ∈ Y \int X and v̄k ∈ X (that is, S̄k ⊂ X).

Otherwise, go to Step 2.
Step 2: Set

(3.5) xk+1 :=
{

yk if yk ∈ Y \int X,
xk otherwise,

20 S. YAMADA, T. TANAKA, AND T. TANINO

(3.6) ak+1 :=

yk
n − α

2ak
n

ak if ak
n ≥ yk

n and yk ∈ Y \int X,

ak otherwise.

Generate Tk+1, Sk+1 and S̄k+1 as follows:

(3.7) Tk+1 := Tk ∩ {x ∈ Rn : `(x,vk) ≤ 0},

(3.8) Sk+1 := Tk+1 ∩ Lf

(
xk+1

n − α

2

)
,

(3.9) S̄k+1 := Tk+1 ∩ Lf (xk+1
n − α),

where

(3.10) `(x,vk) := (uk)>(x− vk) + φ(vk),

uk :=
{ ∇g(vk) if g(vk) > h(vk),
∇h(vk) otherwise.

Compute the vertex sets V (Sk+1) and V (S̄k+1). Choose

(3.11) vk+1 ∈ arg max{φ(v) : v ∈ V (Sk+1)},

(3.12) v̂k+1 ∈ arg max{h(v) : v ∈ V (Sk+1)},
v̄k+1 ∈ arg max{h(v) : v ∈ V (S̄k+1)},

(3.13) yk+1 ∈ [ak+1,vk+1] ∩ bd (Y ∩X).

Set k ← k + 1 and return to Step 1.
The following lemmas hold.

Lemma 3.1. At each iteration k of Algorithm OA, ak ∈ int (Y ∩X).

Proof. Firstly, we shall show that a1 ∈ int (Y ∩X). Since g

(
1

pn n
en

)
= − 1

2pn n
< 0

and g(0) = 0, 0 ∈ Y and
1

pn n
en ∈ int Y . Hence, from the convexity of Y ,

µen ∈ int Y for each µ ∈
]
0,

1
pn n

]
. Moreover, since h(0) =

1
2
q>q − r < 0 and

h (qnen) =
1
2
(q>q − q2

n) − r < 0, we have 0, qnen ∈ int X. Therefore, from the

convexity of X, µen ∈ int X for each µ ∈ [0, qn]. From the definition of a1 in (3.2),
we have a1 ∈ int (Y ∩X).

Secondly, we suppose that ak ∈ int (Y ∩ X) and that Algorithm OA does not
terminate at iteration k. We note that 0 ∈ Y ∩X. In the case where ak

n ≥ yk
n and

yk ∈ Y \int X, since Criteria (SC1) does not hold, yk
n − α > 0. Moreover, since

yk
n ≤ ak

n and α ≥ 0,
yk

n − α

2ak
n

∈]0, 1[, that is, it follows from the definition of ak+1 in

(3.6) that ak+1 ∈ int (Y ∩X). In the other case, ak+1 = ak ∈ int (Y ∩X).
Consequently, ak ∈ int (Y ∩X) at each iteration k of Algorithm OA. ¤

Lemma 3.2. At each iteration k of Algorithm OA, Y ∩X ⊂ Tk.

OUTER APPROXIMATION METHOD FOR A QUADRATIC DC PROGRAMMING 21

Proof. Firstly, we shall show that Y ∩X ⊂ T1. Let r̂− := (q1−r, . . . , qn−r)> ∈ Rn.
Then from the definition of X, Y ∩ X ⊂ X ⊂ {x ∈ Rn : r̂− ≤ x ≤ r+}. Since
g(0) = 0 and ∇g(0) = −en, Y ∩ X ⊂ Y ⊂ {x ∈ Rn : xn ≥ 0}. Hence, by the
definition of T1 in (3.3), Y ∩X ⊂ {x ∈ Rn : r̂− ≤ x ≤ r+, xn ≥ 0} = T1.

Secondly, we suppose that Y ∩X ⊂ Tk and that Algorithm OA does not terminate
at iteration k. From the definition of uk, uk ∈ ∂φ(vk). Hence, by the convexity of
φ, Y ∩X ⊂ {x ∈ Rn : `(x,vk) ≤ 0}. Therefore, by the definition of Tk+1 in (3.7)
Y ∩X ⊂ {x ∈ Rn : `(x,vk) ≤ 0} ∩ Tk = Tk+1.

Consequently, Y ∩X ⊂ Tk at each iteration k of Algorithm OA. ¤
By (3.3), (3.4), (3.7) and (3.8), Tk and Sk are polytopes for each k. From

Lemma 3.2, Tk ⊃ Y ∩ X = {x ∈ Rn : φ(x) ≤ 0} for each k. By the definition
of vk in (3.11) and the strict convexity of φ, vk ∈ bd Tk and hence φ(vk) > 0.
Therefore, the definition of ` in (3.10), we have `(vk,vk) > 0 for each k. This
implies that for each k,

vk ∈ Tk, vk 6∈ Tk+1 and hence Tk) Tk+1.

Under Assumption (A), it is shown that a provisional solution yk′ belongs to the
feasible set of Problem (DC) for some k′ > 0 (see Lemma 3.4 in [7]). Then, we note
that xk′+1 = yk′ . From the definitions of Sk and yk in (3.8) and (3.13)

yk ∈ Sk ⊂ Lf (xk
n) ⊂ Lf (xk′+1

n) for each k > k′ + 1.

Moreover, in the case where yk′′ ∈ Y \int X for some k′′ > k′, since xk′′+1 = yk′′

and ak′′ ∈ int (Y ∩X), we have

min(DC) ≤ xk′′+1
n < xk′+1

n − α

2
.

Therefore, Algorithm OA calculates an approximate solution of Problem (DC) by
the following operations:

Outer Approximation: The polytope sequence {Tk} approximates Y ∩ X
from its outside.

Bound Procedure: The cutting plane sequence {Lf (xk
n)} confines the feasi-

ble area of searching for an approximate solution of Problem (DC).
From the definitions of Sk, vk and v̂k in (3.8), (3.11) and (3.12), we notice that

S1 ⊃ S2 ⊃ · · · ⊃ Sk ⊃ · · · ,

φ(v1) ≥ φ(v2) ≥ · · · ≥ φ(vk) ≥ · · · ≥ 0,

h(v̂1) ≥ h(v̂2) ≥ · · · ≥ h(v̂k) ≥ · · · ,

φ(vk) ≥ h(v̂k) for each k.

Moreover, in order to terminate within a finite number of iterations, S̄k and v̄k are
generated at every iterations. For each k, we have

v̄k ∈ S̄k ⊂ Sk, and 0 ≤ h(v̄k) ≤ h(v̂k).

Remark 3.1. Assume that Algorithm OA does not generate S̄k at each iteration.
Let n ≥ 3. Moreover, by Proposition 2.1, let x∗ ∈ (bd Y) ∩ (bd X) such that x∗

is a globally optimal solution of Problem (DC). Suppose that xk
n −

α

2
= min (DC).

22 S. YAMADA, T. TANAKA, AND T. TANINO

Then, x∗n = xk
n −

α

2
. From the definition of yk in (3.13), yk′ 6∈ Y \int X for each

k′ > k. Hence, x∗ ∈ Sk′ for each k′ > k. Since n ≥ 3 and g, h are differentiable,
x∗ is not a vertex of Sk′ for each k′ > k. Moreover, since g and h are strictly
convex functions, for each k′ > k, there exists x̂ contained in a neighborhood of x∗
satisfying x̂ 6∈ X and x̂ ∈ Sk′ . Therefore, in this case, such an algorithm does not
terminate within a finite number of iterations.

Since xk′+1 ∈ Y \int X for some k′, from the definition of xk in (3.5), the provi-
sional solution xk is a feasible solution of Problem (DC) for each k > k′. Moreover,

yk′
n = xk′+1

n ≥ xk′+1
n ≥ xk′+2

n ≥ · · · ≥ min(DC).

Furthermore, in the case of α = 0, it is shown that every accumulation point of
{xk} is a globally optimal solution of Problem (DC) (see Theorem 3.1 in [7]).

In the case of α > 0, we can show that Algorithm OA terminates within a finite
number of iterations and that the following assertions hold (see Section 3.3 in [7]).

• If Criterion (SC1) holds, yk
n ≤ min(DC) + α.

• If Criterion (SC2) holds, xk
n ≤ min(DC) +

α

2
.

• If Criterion (SC3) holds, xk
n ≤ min(DC) + α.

4. Outer approximation method incorporating the Ferrari method

At iteration k of Algorithm OA proposed in Section 3, the provisional solution xk

is updated if yk is a feasible solution of Problem (DC). However, yk might not be
contained in the feasible set at many iterations. Moreover, yk is not often a locally
optimal solution of Problem (DC). Therefore, in order to update the provisional
solution xk effectively, we consider the following subproblem of Problem (DC):

(4.1)

minimize µ2

subject to g(µ1ŷ
k + µ2e

n + q) ≤ 0,

h(µ1ŷ
k + µ2e

n + q) ≥ 0,
µ1, u2 ∈ R,

where ŷk :=
1

‖yk − yk
nen‖(yk − yk

nen) and yk is obtained at iteration k − 1 of

Algorithm OA. By the definition of T1 in (3.3), yk 6∈ {x ∈ Rn : x = µen, µ ∈ R} for
each k. Hence, the dimension number of Problem (4.1) equals two. Let (µ̄1, µ̄2) be a
globally optimal solution of Problem (4.1). Then, µ̄1ŷ

k + µ̄2e
n is a feasible solution

of Problem (DC). In the case of yk ∈ Y \int X, f(µ̄1ŷ
k + µ̄2e

n) = µ̄2 ≤ yk
n = f(yk).

However, we notice that the local optimality of µ̄1ŷ
k +µ̄2e

n for Problem (DC) is not
guaranteed. Moreover, in the case of yk 6∈ Y \int X, the feasible set of Problem (4.1)
might be empty.

By Proposition 2.1, Problem (4.1) is equivalent to the following problem:

(4.2)

minimize µ2

subject to g(µ1ŷ
k + µ2e

n + q) = 0,

h(µ1ŷ
k + µ2e

n + q) = 0,
µ1, u2 ∈ R.

OUTER APPROXIMATION METHOD FOR A QUADRATIC DC PROGRAMMING 23

We note that the number of the feasible solutions of Problem (4.2) is less than or
equal to four, because the feasible set of Problem (4.2) can be reformulated by the
intersection of a circle and an ellipsoid on Rn. Hence, Problem (4.2) can be solved
by calculating all points satisfying the following two equations:

(4.3) A1µ
2
1 + A2µ

2
2 + A3µ1µ2 + A4µ1 + A5µ2 + A6 = 0,

(4.4)
1
2
(µ2

1 + µ2
2)− r = 0,

where
A1 :=

1
2
(ŷk)>P ŷk,

A2 :=
1
2
pn n,

A3 := (ŷk)>Pen,

A4 := q>P ŷk,

A5 := q>Pen − 1,

A6 :=
1
2
q>Pq − qn.

By (4.3) and (4.4), we have the following equation:

(4.5) A1µ
2
1 + A2(2r − µ2

1) + A4µ1 + A6 = ±(A3µ1 + A5)
√

2r − µ2
1.

Moreover, by squaring both sides of (4.5), we get the following biquadratic equation:

(4.6) B4µ
4
1 + B3µ

3
1 + B2µ

2
1 + B1µ1 + B0 = 0,

where
B4 := (A1 −A2)2 + A2

3,

B3 := 2((A1 −A2)A4 + A3A5),

B2 := 2(A1 −A2)(A6 − 2A2r) + A2
5 − 2A2

3r,

B1 := 2(A4(A6 − 2A2r)− 2A3A5r),

B0 := (A6 − 2A2r)2 − 2A2
5r.

By using the Ferrari’s method written in Appendix, we can obtain all solutions of
(4.6). Let µ(1)1, . . . , µ(4)1 be all solutions of (4.6). Then, it is not always true that
all solutions are real numbers. If all solutions are not real numbers, then the feasible
set of Problem (4.1) is empty. Hence, for each j ∈ {j : µ(j)1 ∈ R, j = 1, . . . , 4},
we calculate µ(j)2 such that (µ(j)1, µ(j)2) satisfies the equations (4.3) and (4.4).
Moreover, we chose j′ ∈ {j : µ(j)1 ∈ R, j = 1, . . . , 4} satisfying µ(j′)2 = min{µ(j)2 :
µ(j)1 ∈ R, j = 1, . . . , 4}. Then, (µ(j′)1, µ(j′)2) is a globally optimal solution
of Problem (4.1) and µ(j′)1ŷk + µ(j′)2en is a feasible solution of Problem (DC).
Moreover, in the case of yk ∈ Y \int X, we have µ(j′)2 ≤ yk

n. Therefore, at Step 2
of Algorithm OA, we update the provisional solution xk as follows:

xk+1 :=
{

µ(j′)1ŷk + µ(j′)2en if {i : µ(j)1 ∈ R, j = 1, . . . , 4} 6= ∅,
xk otherwise.

24 S. YAMADA, T. TANAKA, AND T. TANINO

5. Conclusions

In this paper, we have presented two outer approximation algorithms for Prob-
lem (DC).

A characteristic of the first proposed algorithm is to generate two cutting planes
when a provisional solution is updated. By generating two cutting planes, the
algorithm terminates within a finite number of iterations. Furthermore, by setting
a tolerance at the initialization step, we can establish the upper limit of a difference
of the objective function value between an approximate solution calculated by the
algorithm and the exact optimal solution.

The second suggestion is to introduce the Ferrari’s method into the first proposed
algorithm. By using a descent method, the provisional solution at each iteration is
updated effectively.

Appendix: the Ferrari’s method

In the case of B4 6= 0 in (4.6), all solutions of (4.6) can be obtained by using
Procedure 1. In the other case, we can calculate all solutions of (4.6) by using
Procedure 2.

Procedure 1 (the Ferrari’s method)
Objective: To calculate all solutions of the following biquadratic equation.

(5.1) x4 + C3x
3 + C2x

2 + C1x + C0 = 0,

where x is a variable on C and C0, . . . , C3 ∈ R.
Step 1: Equation (5.1) is reformulated as follows:

(5.2) y4 + D2y
2 + D1y + D0 = 0,

where
y := x +

C3

4
,

D2 := C2 − 3C2
3

8
,

D1 := C1 +
C3

3

8
− C3C2

2
,

D0 := C0 − 3C4
3

256
+

C2
3C2

16
− C3C1

4
.

Go to Step 2.
Step 2: By adding a variable λ on C, (5.2) is transformed as follows:

(5.3)

y4 + D2y
2 + D1y + D0

= y4 + 2λy2 + λ2 − 2λy2 − λ2 + D2y
2 + D1y + D0

= (y2 − λ)2 + (D2 − 2λ)y2 + D1y + D0 − λ2

= (y2 − λ)2 + (D2 − 2λ)
(

y +
D1

2(D2 − 2λ)

)2

− D2
1

4(D2 − 2λ)
+ D0 − λ2 = 0.

Go to Step 3.

OUTER APPROXIMATION METHOD FOR A QUADRATIC DC PROGRAMMING 25

Step 3: Let us consider the following equation:

(5.4) − D2
1

4(D2 − 2λ)
+ D0 − λ2 = 0.

Equation (5.4) is reformulated as follows:

(5.5) λ3 − D2

2
λ2 −D0λ +

D2D0

2
− D2

1

8
= 0.

By using Peocedure 2, (5.4) is solvable. Let λ̄ be a solution of (5.5). Go to
Step 4.

Step 4: By replacing λ by λ̄, the following equation holds.

(5.6) (y2 − λ̄)2 = E1(y + E0)2,

where
E1 := −D2 + 2λ,

E0 :=
D1

2(D2 − 2λ)
.

Hence, we have the following two quadratic equations:

(5.7) y2 −
√

E1y − λ̄− E0

√
E1 = 0,

(5.8) y2 +
√

E1y − λ̄ + E0

√
E1 = 0.

Let y1, y2 be solutions of equations in (5.7) and y3, y4 solutions of (5.8).

Then, yj − C3

4
(j = 1, . . . , 4) are all solutions of (5.1) and Procedure 1

terminates.

Procedure 2 (the Cardano’s method)
Objective: To calculate all solutions of the following cubic equation.

(5.9) x3 + C2x
2 + C1x + C0 = 0,

where x is a variable on C and C0, . . . , C2 ∈ R.
Step 1: Equation (5.9) is reformulated as follows:

(5.10) y3 + D1y + D0 = 0,

where

y := x +
C2

3
,

D1 := C1 − C2
2

3
,

D0 := C0 +
2C3

2

27
− C2C1

3
.

Go to Step 2.
Step 2: If D0 = 0, then y = 0 and ±√D1 are all solutions of (5.10) and

Procedure 2 terminates. Then −C2

3
,−C2

3
±

√
D1 solve (5.9). Otherwise,

go to Step 3.

26 S. YAMADA, T. TANAKA, AND T. TANINO

Step 3: By replacing y with (u + v) where u, v are variables on C, we have
the following equation:

y3 + D1y + D0

= (u + v)3 + D1(u + v) + D0

= u3 + 3uv(u + v) + v3 + D1(u + v) + D0

= u3 + v3 + D0 + (u + v)(3uv + D1)
= (u + v)(u2 − uv + v2) + D0 + (u + v)(3uv + D1) = 0

Since D0 6= 0, u + v 6= 0. Therefore, we have the following the system of
equations:

(5.11)
{

u3 + v3 + D0 = 0,
3uv + D1 = 0.

Moreover, (5.11) is reformulated as follows:

(5.12)
{

u3 + v3 + D0 = 0,
27u3v3 + D3

1 = 0.

Let U := u3 and V := v3. Then, (5.12) is transformed as follows:

(5.13)
{

U + V + D0 = 0,
27UV + D3

1 = 0.

Let Ū :=
−D0 +

√
D2

0 +
4D3

1

27
2

and V̄ :=
−D0 −

√
D2

0 +
4D3

1

27
2

. Then,

(Ū , V̄) solves (5.13). Moreover, (uk, vk) (k = 1, 2, 3) defined as follows solve
(5.11).

(u1, v1) := (3
√

Ū ,
3
√

V̄), (u2, v2) := (3
√

Ūω,
3
√

V̄ ω2),
(u3, v3) := (3

√
Ūω2,

3
√

V̄ ω)

where ω :=
−1 +

√
3i

2
and i denotes the imaginary number. Therefore,

yk := uk + vk (k = 1, 2, 3) solve (5.10) and hence xk := yk − C2

3
(k = 1, 2, 3)

are all solutions of (5.9). Procedure 2 terminates.

References

[1] E. W. Cheney and A. A. Goldstein, Newton’s method of convex programming and tchebycheff
approximation, Numerische Mathematik 1 (1959), 253–268.

[2] J. E. Falk and K. R. Hoffman, A successive underestimation method for concave minimization
problems, Mathematics of Operations Research 1 (1976), 251–259.

[3] R. Horst and H. Tuy, On the convergence of global methods in multiextremal optimization,
Journal of Optimization Theory and Applications 54 (1987), 253–271.

[4] R. Horst, N. V. Thiau and J. De. Vries, On finding new vertices and redundant constraints in
cutting plane algorithms for global optimization, Operations Research Letters 7 (1988), 85–90.

[5] T. V. Thieu, B. T. Tam and V. T. Ban, An outer approximation method for globally minimizing
a concave function over a compact convex set, Acta Mathematica Vietnamica 8 (1983), 21–40.

[6] A. F. Veinott, Jr., The supporting hyperplane method for unimodal programming, Operations
Research 15 (1967), 147–152.

OUTER APPROXIMATION METHOD FOR A QUADRATIC DC PROGRAMMING 27

[7] S. Yamada, T. Tanaka and T. Tanino, Outer approximation method incorporating a quadratic
aproximation for a dc programming problem, Journal of Optimization Theory and Applications
144 (2010), 156–183.

Manuscript received August 19, 2010

revised December 2, 2010

Syuuji Yamada
Department of Information Science and Engineering, Graduate School of Science Technology, Ni-
igata University, 8050 Ikarashi-2nocho, Niigata-City 950-2181, Japan

E-mail address: yamada@math.sc.niigata-u.ac.jp

Tamaki Tanaka
Department of Information Science and Engineering, Graduate School of Science Technology, Ni-
igata University, 8050 Ikarashi-2nocho, Niigata-City 950-2181, Japan

E-mail address: tamaki@math.sc.niigata-u.ac.jp

Tetsuzo Tanino
Division o Electrical, Electronic and Information Engineering, Graduate School of Engineering,
Osaka University, Yamada-Oka 2-1, Suita, Osaka, 565-0871, Japan

E-mail address: tanino@eei.eng.osaka-u.ac.jp

