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A CHARACTERIZATION OF BREGMAN FIRMLY
NONEXPANSIVE OPERATORS USING A NEW

MONOTONICITY CONCEPT

JONATHAN M. BORWEIN, SIMEON REICH, AND SHOHAM SABACH

Abstract. The property of nonexpansivity (1-Lipschitz) is very important in
the analysis of many optimization problems. In this paper we study a more gen-
eral notion of nonexpansivity – Bregman nonexpansivity. We present a charac-
terization of Bregman firmly nonexpansive operators in general reflexive Banach
spaces. This characterization allows us to construct Bregman firmly nonexpansive
operators explicitly. We provide several examples of such operators with respect
to the Boltzmann-Shannon entropy and the Fermi-Dirac entropy in Euclidean
spaces. We also compute resolvents with respect to these functions.

1. Introduction

Nonexpansive operator theory and monotone mapping theory have transpired to
be crucial in both the algorithmic design and analysis of optimization problems.
Over the past few decades many results were published which make the connec-
tion between these two notions. In this paper we establish another such result
which brings out a connection between the concepts of Bregman firmly nonexpan-
sive operators and T -monotone mappings. This result both improves and generalizes
previous results.

One of the earliest results in this direction is due to Rockafellar [30]. Rockafellar
was interested in the problem of finding zeroes of a maximal monotone set-valued
mapping A in Hilbert spaces. In order to achieve this he used the operator

RA := (I + A)−1.

This operator is called the (classical) resolvent. The importance of the resolvent
stems from its good properties: it is, for instance, single-valued and firmly nonex-
pansive (hence nonexpansive), and has full domain. Since the fixed point set of RA

is exactly the zero set of A, Rockafellar used a variant of the Picard method in order
to approximate fixed points of RA which are zeroes of A. This method is called the
proximal point algorithm. It is also known that any firmly nonexpansive operator
is the resolvent of a monotone mapping (see [13, 24]).

When we try to extend the theory of resolvents of monotone mappings and firmly
nonexpansive operators to general reflexive Banach spaces we encounter several
problems. It is well-known that in general the classical resolvent does not enjoy the
good properties that we mentioned earlier. In order to overcome these difficulties
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and extend this theory one uses different types of monotonicity, nonexpansivity and
resolvents. In this paper we use Bregman firmly nonexpansive operators and the
generalized resolvent. Both of these notions are based on the concept of a Bregman
function f . These notions were investigated intensively in the last ten years by
Bauschke, Borwein and Combettes [3, 4, 5, 6, 7] who established many properties of
the generalized resolvent. Among these is the fact that the resolvent of a monotone
mapping is a Bregman firmly nonexpansive operator. The converse implication was
only proven two years ago when Bauschke, Wang and Yao showed that any Bregman
firmly nonexpansive operator is a generalized resolvent of a monotone mapping. For
a recent study of the existence and approximation of fixed points of Bregman firmly
nonexpansive operators see [28].

The problem of finding zeroes of monotone mappings is important in the theory
of optimization because any minimization problem can be written as a problem of
finding zeroes of the subdifferential mapping. In the case of Banach spaces, the
application of Bregman distances instead of the norm gives us alternative ways to
find zeroes of monotone mappings and fixed points of nonexpansive operators. In
the literature we find various papers that used the Bregman distances to generalize
the theory from Hilbert to Banach space. See, for instance, [3, 4, 5, 6, 7, 15, 14,
8, 16, 17, 19, 25, 26, 27, 28, 29] and the references therein. The application of
Bregman distances to the solution of this problem is also very useful in the case
of finite dimensional spaces. Many papers considered the problem of minimizing
functions in finite dimensional spaces using Bregman distances. See, for example,
[9, 20, 21, 31].

Motivated by all these facts, our aim in this paper is to present a characterization
of Bregman firmly nonexpansive operators using our new monotonicity concept.
This characterization leads us to many examples of Bregman firmly nonexpansive
operators in finite dimensional spaces.

Our paper is organized as follows. The next section (Section 2) is devoted to the
preliminaries that are needed in our work. In the third section we prove the main
results regarding the characterization of Bregman firmly nonexpansive operators. In
this work we deal with two main notions: Bregman firmly nonexpansive operators
and resolvents. Therefore we present examples of these notions with respect to
different choices of Bregman functions. In the fourth section we present several
examples of Bregman firmly nonexpansive operators and in the fifth section we
present several examples of resolvents.

2. Preliminaries

Let X be a real reflexive Banach space with dual space X∗. The norms in X
and X∗ are denoted by ‖·‖ and ‖·‖∗, respectively. The pairing 〈ξ, x〉 is defined by
the action of ξ ∈ X∗ at x ∈ X, that is, 〈ξ, x〉 = ξ (x). The set of all real numbers
is denoted by R while N denotes the set of nonnegative integers. The closure of
a subset C of X is denoted by C. We refer to [10, 11] for notation and facts not
proven within.

In the following three subsections (Sections 2.1-2.3) we give the definitions, no-
tation and basic results that are needed in the sequel.
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2.1. Admissible functions. Let f : X → (−∞,+∞] be a function. The domain
of f is defined to be

dom f := {x ∈ X : f (x) < +∞} .

When dom f 6= ∅ we say that f is proper. We denote by int dom f the interior of
the domain of f .

The Fenchel conjugate of f is the function f∗ : X∗ → (−∞,+∞] which is defined
by

f∗ (ξ) = sup {〈ξ, x〉 − f (x) : x ∈ X} .

The function f is called cofinite if dom f∗ = X∗.
Let x ∈ int dom f . For any y ∈ X, we define the right-hand derivative of f at x

by

(2.1) f◦(x, y) := lim
t→0+

f(x + ty)− f(x)
t

.

If the limit as t → 0 in (2.1) exists for any y, then the function f is said to be
Gâteaux differentiable at x (see, for instance, [23, Definition 1.3, p. 3]). In this
case, the gradient of f at x is the function ∇f (x) which is defined by 〈∇f (x) , y〉 =
f◦(x, y) for any y ∈ X. The function f is called Gâteaux differentiable if it is
Gâteaux differentiable for any x ∈ int dom f . Throughout this paper, the function
f : X → (0,+∞] is a proper, convex and lower semicontinuous function which is
also Gâteaux differentiable on int dom f . We will call such functions admissible.

The Bregman distance determined by a function f is the function Df : dom f ×
int dom f → [0,+∞] given by

(2.2) Df (y, x) := f (y)− f (x)− 〈∇f (x) , y − x〉.
It is clear that the Bregman distance Df (y, x) with respect to the function f = ‖·‖2

in Hilbert space is just ‖x− y‖2.
The function f is totally convex at a point x ∈ int dom f if its modulus of total

convexity at x, that is, the function υf : int dom f × [0,+∞) → [0,+∞] defined by

(2.3) υf (x, t) := inf {Df (y, x) : y ∈ dom f, ‖y − x‖ = t},
is positive whenever t > 0. The function f is said to be totally convex when it is
totally convex at any point x ∈ int dom f .

The following proposition summarizes known properties of the modulus of total
convexity (cf. [15, Proposition 1.2.2, p. 18] and [14, Proposition 2.4, p. 26]).

Proposition 2.1 (Modulus properties). Let f : X → (0,+∞] be a proper, convex
and lower semicontinuous function. If x ∈ int dom f , then:

(i) the domain of υf (x, ·) is an interval [0, τf (x)) or [0, τf (x)] with τf (x) ∈
(0,+∞];

(ii) if c ∈ [1,+∞) and t ≥ 0, then υf (x, ct) ≥ cυf (x, t);
(iii) the function υf (x, ·) is superadditive, that is, for any s, t ∈ [0,+∞), we have

υf (x, s + t) ≥ υf (x, s) + υf (x, t) ;

(iv) the function υf (x, ·) is increasing; it is strictly increasing if and only if f is
totally convex at x.
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Moreover, if X = Rn and f : C → R, where C is an open, convex and
unbounded subset of Rn, then the following statements also hold:

(v) υf (x, ·) is continuous from the right on (0,+∞);
(vi) If f̄ : C → R is a convex and continuous extension of f to C and if υf (x, ·)

is continuous, then, for each t ∈ [0,+∞),

υf (x, t) = inf
{
Df̄ (y, x) : y ∈ C, ‖y − x‖ = t

}
.

Similarly, the function f is uniformly convex if the function δf : [0,+∞) →
[0,+∞], defined by

(2.4) δf (t) := inf
{

1
2
f(x) +

1
2
f(y)− f

(
x + y

2

)
: ‖y − x‖ = t, x, y ∈ dom f

}
,

is positive whenever t > 0. The function δf (·) is called the modulus of convexity of
f . For more details see, for instance, [11, 12].

According to [15, Proposition 1.2.5, p. 25], if x ∈ int dom f and t ∈ [0,+∞), then
υf (x, t) ≥ δf (t) and, therefore, if f is uniformly convex, then it is totally convex.
The converse implication is not generally valid, that is, a function f may be totally
convex without being uniformly convex (for such an example see [15, Section 1.3,
p. 30]).

Definition 2.2 (Uniform smoothness). The function f is called uniformly smooth
if the function ρf : [0,+∞) → R, defined by

(2.5) ρf (t) := sup
{

1
2
f(x) +

1
2
f(y)− f

(
x + y

2

)
: ‖y − x‖ = t

}
,

satisfies limt→0+ ρf (t) /t = 0.

The connection between uniform convexity and uniform smoothness is brought
out by the following result (see [33, Theorem 3.5.5(i), p. 158]).

Proposition 2.3. Let f : X → (−∞,+∞] be proper, lower semicontinuous and
convex. Then f is uniformly convex if and only if f∗ is uniformly smooth.

The following result provides a characterization of uniform smoothness (see [33,
Theorem 3.5.6(i)(xi), p. 159]).

Proposition 2.4. Let f : X → (−∞,+∞] be proper, lower semicontinuous and
convex. Then f is uniformly smooth if and only if dom f = X, f is Fréchet
differentiable and ∇f is uniformly continuous.

2.2. Bregman operators. We fix a function f as above, and let K be a nonempty
subset of int dom f . The fixed point set of an operator T : K → int dom f is the
set {x ∈ K : Tx = x} and is denoted by Fix (T ).

We next list significant types of nonexpansivity with respect to the Bregman
distance.

Definition 2.5 (Bregman nonexpansivity). We say:
(i) the operator T : K → int dom f is Bregman nonexpansive (BNE) if

(2.6) Df (Tx, Ty) ≤ Df (x, y) , ∀ x, y ∈ K;
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(ii) the operator T : K → int dom f is quasi-Bregman nonexpansive (QBNE) if

(2.7) Df (p, Tx) ≤ Df (p, x) , ∀ x ∈ K, p ∈ Fix (T ) ;

(iii) the operator T : K → int dom f is Bregman firmly nonexpansive (BFNE) if

(2.8) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉
for any x, y ∈ K, or equivalently,

Df (Tx, Ty) + Df (Ty, Tx) + Df (Tx, x) + Df (Ty, y)

≤ Df (Tx, y) + Df (Ty, x) ;(2.9)

(iv) the operator T : K → int dom f is quasi-Bregman firmly nonexpansive
(QBFNE) if

(2.10) 0 ≤ 〈∇f (x)−∇f (Tx) , Tx− p〉 ∀ x ∈ K, p ∈ Fix (T ) ,

or equivalently,

(2.11) Df (p, Tx) + Df (Tx, x) ≤ Df (p, x) .

Assume now that f = (1/2) ‖·‖2 and the space X is a Hilbert space H, so that
∇f = I (the identity operator) and Df (y, x) = (1/2) ‖x− y‖2. Thence, Defini-
tion 2.5(i)-(iv) takes the following form.

(i’) The operator T : K → H is nonexpansive (NE) if

(2.12) ‖Tx− Ty‖ ≤ ‖x− y‖ , ∀ x, y ∈ K;

(ii’) the operator T : K → H is quasi-nonexpansive (QNE) if

(2.13) ‖Tx− p‖ ≤ ‖x− p‖ , ∀ x ∈ K, p ∈ Fix (T ) ;

(iii’) the operator T : K → H is firmly nonexpansive (FNE) if

(2.14) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 , ∀ x, y ∈ K;

(iv’) the operator T : K → H is quasi-firmly nonexpansive (QFNE) if

(2.15) ‖Tx− p‖2 + ‖Tx− x‖2 ≤ ‖x− p‖2 , ∀ x ∈ K, p ∈ Fix (T ) ,

or equivalently, 0 ≤ 〈x− Tx, Tx− p〉 .
2.3. Resolvent mappings. Let A : X → 2X∗

be an arbitrary mapping (multi-
function). Recall that the set dom A = {x ∈ X : Ax 6= ∅} is called the (effective)
domain of the mapping A. We say that A is a monotone mapping if for any
x, y ∈ dom A we have

(2.16) ξ ∈ Ax and η ∈ Ay =⇒ 0 ≤ 〈ξ − η, x− y〉 .
A monotone mapping A is said to be maximal if the graph of A is not a proper
subset of the graph of any other monotone mapping.

Definition 2.6 (T -monotonicity). Let A : X → 2X∗
, K ⊂ dom A and T : K → X.

We say that the mapping A is monotone with respect to the operator T , or T -
monotone, if

(2.17) 0 ≤ 〈ξ − η, Tx− Ty〉
for any x, y ∈ K, where ξ ∈ Ax and η ∈ Ay.



166 J. M. BORWEIN, S. REICH, AND S. SABACH

Clearly, when T = I the classes of monotone and I-monotone operators coincide.

Definition 2.7 (Set-valued indicator). The set-valued indicator of a subset S of X
is defined by

IS : x 7→
{
{0}, x ∈ S;
∅, otherwise.

The concept of T -monotonicity can also be defined by using this set-valued indi-
cator (as kindly suggested by Heinz H. Bauschke [2]).

Remark 2.8. A mapping A is T -monotone if and only if T ◦ (
A−1 + IA(K)

)
is

monotone.

Remark 2.9. An unrelated concept of a T -monotone operator can be found in
several papers of Calvert (see, for example, [18]).

Remark 2.10. Let F : X → X be an operator which satisfies

(2.18) 0 ≤ 〈Jx− Jy, Fx− Fy〉
for any x, y ∈ dom F , where J is the normalized duality mapping of the space X.
An operator F which satisfies inequality (2.18) is called d-accretive (see [1]). Clearly
in our terms J is F -monotone whenever F is d-accretive.

Definition 2.11 (f -Resolvents). Let A : X → 2X∗
be a monotone mapping. The

resolvent of A with respect to f is the operator Resf
A : X → 2X which is given by

(2.19) Resf
A := (∇f + A)−1 ◦ ∇f.

Remark 2.12. In the case of a Hilbert space and when f = (1/2) ‖·‖2, the resolvent
Resf

A is the classical resolvent

RA := (I + A)−1 ,

and when A is maximal, the Minty surjectivity theorem [11, p. 435] assures us that
RA will be everywhere defined.

Finally, we record various basic properties of f -resolvents as established in [5,
Proposition 3.8, p. 604].

Proposition 2.13 (Properties of f -resolvents). Let f : X → (−∞,+∞] be an
admissible function and let A : X → 2X∗

be a mapping such that int dom f ∩
dom A 6= ∅. The following statements hold:

(i) dom Resf
A ⊂ int dom f ;

(ii) ran Resf
A ⊂ int dom f ;

(iii) Fix
(
Resf

A

)
= int dom f ∩A−1 (0∗).

(iv) Suppose additionally that A is a monotone mapping. Then also the following
assertions hold:
(a) The operator Resf

A is BFNE.
(b) If, in addition, f |int dom f is strictly convex, then the operator Resf

A is
single-valued on its domain.



BREGMAN FIRMLY NONEXPANSIVE OPERATORS 167

(c) If f : X → R is such that ran∇f ⊂ ran (∇f + A), then dom Resf
A =

X.

Thus Proposition 2.13(iv)(a) recaptures Rockafellar’s result [30] that the classical
resolvent in Hilbert space is firmly nonexpansive.

The following result gives us a sufficient condition for the f -resolvent to have full
domain.

Proposition 2.14. [8, Corollary 2.3, p. 59] Assume that A : X → 2X∗
is a

monotone mapping and that f : X → R is a Gâteaux differentiable, strictly convex
and cofinite function. Then A is maximal monotone if and only if ran (A +∇f) =
X∗.

Combining Propositions 2.13(iv)(c) and 2.14, we obtain the following result.

Remark 2.15. If A : X → 2X∗
is a maximal monotone mapping and f : X → R is

a Gâteaux differentiable, strictly convex and cofinite function, then dom Resf
A = X.

3. Characterization of BFNE operators

In this section we establish a characterization of BFNE operators. This charac-
terization emphasizes the strong connection between the nonexpansivity of T and
the monotonicity of ST , where

ST := ∇f − (∇f) ◦ T.(3.1)

Results in this direction have been known for a long time. We cite two of them.

Proposition 3.1 (Rockafellar, 1976). Let X be a Hilbert space. Then T is firmly
nonexpansive if and only if I − T is T -monotone.

Proposition 3.2 (Bauschke, Wang and Yao, 2008). Let X be a reflexive Banach
space. Let K be a subset of X and let T : K → X. Fix an admissible function
f : X → R and set

AT := ∇f ◦ T−1 −∇f.

If T is BFNE, then AT is monotone (this operator is not necessarily single-valued).

Motivated by these results, we offer the following generalization.

Theorem 3.3 (Characterization of BFNE operators). Let K ⊂ int domf and sup-
pose that T : K → int domf for an admissible function f . Then T is BFNE if and
only if ST = ∇f − (∇f) ◦ T is T -monotone.

Proof. Suppose that T is BFNE. Take x, y in K and denote ξ = ST (x) and η =
ST (y).

Then by the definition of ST (see (3.1)) we obtain

(3.2) ∇f (T (x)) = ∇f(x)− ξ and ∇f (T (y)) = ∇f(y)− η.

Since T is BFNE, we have

(3.3) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉 .
Now, substituting (3.2) on the left-hand side of (3.3), we obtain

〈(∇f(x)− ξ)− (∇f(y)− η) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉 ,
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which means that
0 ≤ 〈ST (x)− ST (y) , Tx− Ty〉 .

Thus ST is T -monotone. Conversely, if ST is T -monotone, then

0 ≤ 〈ST (x)− ST (y) , Tx− Ty〉
for any x, y ∈ K and therefore

0 ≤ 〈(∇f(x)−∇f(Tx))− (∇f(y)−∇f(Ty)) , Tx− Ty〉 ,
which means that

〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉
for any x, y ∈ K. In other words, T is indeed a BFNE operator. ¤

Remark 3.4. It is clear that when X is a Hilbert space and f = (1/2) ‖·‖2, then
BFNE operators are firmly nonexpansive operators and ST = I − T . Therefore
Proposition 3.1 is an immediate consequence of Theorem 3.3.

Remark 3.5. If T is a BFNE operator, then ST is T -monotone by Theorem 3.3.
Take ξ ∈ AT (x) and η ∈ AT (y). From the definition of AT we get ξ = ∇f(z) −
∇f(x), where Tz = x, and η = ∇f(w)−∇f(y), where Tw = y. Hence

〈ξ − η, x− y〉 = 〈(∇f(z)−∇f(Tz))− (∇f(w)−∇f(Tw)), T z − Tw〉
= 〈ST (z)− ST (w) , T z − Tw〉
≥ 0

for all x, y ∈ domAT , and so AT is monotone. Hence Proposition 3.2 follows from
Theorem 3.3.

Motivated by our characterization (Theorem 3.3), we now show that the converse
implication of Proposition 3.2 is also true.

Proposition 3.6. Let K ⊂ int domf and suppose that T : K → int domf for an
admissible function f . If AT is monotone, then T is BFNE.

Proof. Suppose that AT is monotone. Then for any x, y ∈ dom AT , we have

0 ≤ 〈ξ − η, x− y〉
for any ξ ∈ AT (x) and η ∈ AT (y). Let w, z ∈ K. Set ξ = ∇f(z) − ∇f(x), where
Tz = x, and η = ∇f(w)−∇f(y), where Tw = y. We have

0 ≤ 〈(∇f(z)−∇f(x))− (∇f(w)−∇f(y)) , x− y〉 ,
which means that

〈∇f (x)−∇f (y) , x− y〉 ≤ 〈∇f (z)−∇f (w) , x− y〉 .
Thus

〈∇f (Tz)−∇f (Tw) , T z − Tw〉 ≤ 〈∇f (z)−∇f (w) , T z − Tw〉
and so T is a BFNE operator, as asserted. ¤
Remark 3.7. Combining Propositions 3.2 and 3.6, we obtain another characteri-
zation of BFNE operators.
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Remark 3.8. Our characterization of BFNE operators is based on a new type
of monotonicity which seems to be harder to check than the regular one. On the
other hand, our mapping ST is defined without any inverse operation, and hence
is easier to compute (see Subsections 4.1.1 and 4.1.2). In the case of the mapping
AT , similar computations seem to be much harder because of the presence of the
inverse operator T−1.

We underscore the importance of the new operator ST . This operator is a gen-
eralization of the Yosida approximation operator, because, when in Hilbert space
we take the function f to be (1/2) ‖·‖2 and T = RA = (I + A)−1, where A is a
monotone mapping, then ST = I − T is exactly the classical Yosida approximation
operator with λ = 1. In the following result we present two properties of ST when
the operator T is taken to be the resolvent Resf

A of a monotone mapping A. To
facilitate matters, for any λ > 0 we shall denote

(3.4) T f
λA := Resf

λA.

We may now prove the following result.

Theorem 3.9. Let A : X → 2X∗
be a monotone mapping and let f : X → (0,+∞]

be an admissible strictly convex function. Then with T f
λA given by (3.4) we have the

following implications:

(i)
(
T f

λA (x) , λ−1S
T f

λA
(x)

)
∈ graphA; and

(ii) 0 ∈ Ax if and only if 0 ∈ S
T f

λA
(x).

Proof. (i) Indeed,

T f
λA (x) = (∇f + λA)−1 ◦ ∇f (x) ⇔ ∇f (x) ∈ (∇f + λA) ◦ T f

λA (x)

⇔ λ−1
(
∇f −∇f ◦ T f

λA

)
(x) ∈ A

(
T f

λA (x)
)

⇔ λ−1S
T f

λA
(x) ∈ A

(
T f

λA (x)
)

.

(ii) Likewise, since ∇f is injective (see [4, Theorem 5.10, p. 636]) it follows that

0 ∈ Ax ⇔ 0 ∈ λAx ⇔ ∇f (x) ∈ (∇f + λA) (x) ⇔ x ∈ (∇f + λA)−1 ◦ ∇f (x)

⇔ ∇f (x) ∈ ∇f
(
T f

λA (x)
)
⇔ 0 ∈

(
∇f −∇f ◦ T f

λA

)
(x) ⇔ 0 ∈ S

T f
λA

(x) ,

as required. ¤

4. Examples of BFNE operators in Euclidean spaces

In this section we shall use Theorem 3.3 to present various examples of BFNE op-
erators in Euclidean spaces. Indeed, we have already seen that BFNE operators can
be generated from T -monotone mappings. Moreover, the notion of T -monotonicity
can be simplified in the case of the real line.

Remark 4.1. If X = R and both T and ST are increasing (decreasing), then ST is
T -monotone.

We begin this section with critical one-dimensional examples for various choices
of the function f .
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4.1. The case of the real line. Assume that X = R. In this section we study
in detail the classes of BFNE operators with respect to the Boltzmann-Shannon
entropy

(4.1) BS (x) := x log (x)− x, 0 < x < +∞
and the Fermi-Dirac entropy

(4.2) FD (x) := x log (x) + (1− x) log (1− x) , 0 < x < 1.

Each of these functions can be defined to be zero, by its limits, at the endpoints of
their domains. At the end of this section we present a table of sufficient conditions
for an operator to be BFNE with respect to various other admissible functions.

We study the entropies BS and FD in detail because of their importance in
applications. These two functions, which form a large part of the basis for classical
information theory, arguably provide the only consistent measures of the average
uncertainty in predicting outcomes of a random experiment (see [22]).

Moreover, both DBS and DFD are jointly convex [10, 11], an uncommon property
which they share with (x, y) 7→ ‖x−y‖2. The utility of both the Boltzmann-Shannon
and the Fermi-Dirac entropies is enhanced because they are totally convex. In the
following two results (Propositions 4.2 and 4.3) we calculate the modulus of total
convexity of the BS entropy and show that BS is totally convex (cf. [14, 15]). See
Propositions 4.5 and 4.6 for analogous results concerning the FD entropy.

Proposition 4.2 (Modulus of total convexity of BS). The modulus of total con-
vexity of BS on (0,+∞) is given by

(4.3) υBS (x, t) = x

[(
1 +

t

x

)
log

(
1 +

t

x

)
− t

x

]
, x ∈ (0,+∞), t ≥ 0.

Proof. Let x0 ∈ (0,+∞) and 0 < t < x0. It is clear from the definition of the
modulus of total convexity that

υBS (x0, t) = min {DBS (x0 + t, x0) , DBS (x0 − t, x0)}

= min
{

(x0 + t) log
(

x0 + t

x0

)
− t, (x0 − t) log

(
x0 − t

x0

)
+ t

}

= min
{

x0

[(
1 +

t

x0

)
log

(
1 +

t

x0

)
− t

x0

]
,

x0

[(
1− t

x0

)
log

(
1− t

x0

)
+

t

x0

]}
.

In order to find this minimum we define a function ϕ : [0, x0) → R by

ϕ (t) := x0

[(
1− t

x0

)
log

(
1− t

x0

)
+

t

x0
−

(
1 +

t

x0

)
log

(
1 +

t

x0

)
+

t

x0

]
.

It is clear that ϕ (0) = 0 and

ϕ′ (t) = − log

(
1−

(
t

x0

)2
)

,
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and so ϕ is increasing for all t < x0. Thus ϕ (t) > 0 for any t < x0, which means
that

υBS (x0, t) = x0

[(
1 +

t

x0

)
log

(
1 +

t

x0

)
− t

x0

]

for any t < x0. If t ≥ x0, then the point x0 − t does not belong to the domain of
BS and therefore

υBS (x0, t) = DBS (x0 + t, x0) = x0

[(
1 +

t

x0

)
log

(
1 +

t

x0

)
− t

x0

]
.

Hence (4.3) holds for any t ≥ 0. ¤
Now we show that BS is totally convex but not uniformly convex.

Proposition 4.3 (Total convexity of BS). The function BS is totally convex but
not uniformly convex.

Proof. We need to show that υBS (x0, t) > 0 for any t > 0. We know that
υBS (x0, 0) = 0 and from Proposition 4.2 we obtain that

∂

∂t
(υBS (x0, t)) = log

(
1 +

t

x0

)
> 0, t > 0.

This means that υBS (x0, t) is a strictly increasing function for all t > 0. Thence,
υBS (x0, t) > 0 for any t > 0 and so BS is totally convex on (0,+∞), as asserted.
Since for any t > 0, we have

0 ≤ δBS (t) ≤ lim
x→+∞ υBS (x, t) = 0.

It follows that δBS (t) = 0 and thus BS is not uniformly convex. ¤
Remark 4.4. In [14] it is mentioned that the modulus of total convexity of f(x) =
x log (x) is also given by (4.3) and that f is totally convex. Note that Df = DBS .

The following results show that FD is both totally convex and uniformly convex.

Proposition 4.5 (Modulus of total convexity of FD). The modulus of total con-
vexity of FD on (0, 1) is given by

(4.4) υFD (x, t) = x

[(
1 +

t

x

)
log

(
1 +

t

x

)
+

(
1− t

x
− 1

)
log

(
1− t

1− x

)]
,

when 0 < x ≤ 1/2 and 0 < t < 1− x, and by

(4.5) υFD (x, t) = x

[(
1− t

x

)
log

(
1− t

x

)
+

(
1 + t

x
− 1

)
log

(
1 +

t

1− x

)]

when 1/2 ≤ x < 1 and 0 < t < x.

Proof. Let x0 ∈ (0, 1). Denote M = max{x0, 1 − x0} and m = min{x0, 1 − x0}. If
0 < t < m, then it is clear from the definition of the modulus of total convexity
that

υFD (x0, t) = min {DFD (x0 + t, x0) , DFD (x0 − t, x0)}

= min
{

x0

[(
1 +

t

x0

)
log

(
1 +

t

x0

)
+

(
1− t

x0
− 1

)
log

(
1− t

1− x0

)]
,
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x0

[(
1− t

x0

)
log

(
1− t

x0

)
+

(
1 + t

x0
− 1

)
log

(
1 +

t

1− x0

)]}
.

In order to find this minimum we define a function ψ : [0,m) → R by

ψ (t) := x0

[(
1− t

x0

)
log

(
1− t

x0

)
+

(
1 + t

x0
− 1

)
log

(
1 +

t

1− x0

)]

− x0

[(
1 +

t

x0

)
log

(
1 +

t

x0

)
+

(
1− t

x0
− 1

)
log

(
1− t

1− x0

)]
.

It is clear that ψ (0) = 0 and

ψ′ (t) = log

(
1−

(
t

1− x0

)2
)
− log

(
1−

(
t

x0

)2
)

,

Therefore, for any 0 < t < m, the function ψ is increasing when 0 < x ≤ 1/2 and
decreasing when 1/2 ≤ x < 1. Hence, for any 0 < t < m, the function ψ (t) > 0
when 0 < x ≤ 1/2 and ψ (t) < 0 when 1/2 ≤ x < 1. If m ≤ t < M , then one of
the points x0 − t or x0 + t belongs to the domain of FD and the second does not.
Therefore the modulus of total convexity of FD is given by (4.4) and (4.5) in all
cases. ¤
Proposition 4.6 (Total convexity of FD). The function FD is totally convex.

Proof. We need to show that υFD (x0, t) > 0 for any t > 0. We know that
υFD (x0, 0) = 0 and from Proposition 4.5 we obtain that

∂

∂t
(υFD (x0, t)) =





log
(
1 + t

x(1−x−t)

)
, 0 < x ≤ 1/2, 0 < t < 1− x,

log
(
1 + t

(1−x)(x−t)

)
, 1/2 ≤ x < 1, 0 < t < x.

This means that υFD (x0, t) is a strictly increasing function for all t > 0. Thence,
υFD (x0, t) > 0 for any t > 0 and so FD is totally convex on (0, 1), as asserted. ¤
Lemma 4.7. Let f : (a, b) → R be twice differentiable. If f ′′(x) ≥ m > 0 on (a, b),
then f is uniformly convex there.

Proof. Let x, y ∈ (a, b) with ‖y − x‖ = t > 0. Then

f(x) = f

(
x + y

2

)
+ f ′

(
x + y

2

)(
x− y

2

)
+

f ′′(ξ)
2

(
x− y

2

)2

and

f(y) = f

(
x + y

2

)
+ f ′

(
x + y

2

)(
y − x

2

)
+

f ′′(η)
2

(
y − x

2

)2

for some ξ, η ∈ (a, b). Therefore

f(x)
2

+
f(y)

2
− f

(
x + y

2

)
=

f ′′(ξ)
4

(
x− y

2

)2

+
f ′′(η)

4

(
y − x

2

)2

≥ mt2

8
> 0,

as asserted. ¤
Proposition 4.8 (Uniform convexity of FD). The function FD is uniformly con-
vex.
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Proof. This result follows immediately from Lemma 4.7 because FD′′(x) ≥ 4 for all
x ∈ (0, 1). ¤

The following remark provides another proof of Proposition 4.8. It was kindly
suggested by Heinz H. Bauschke [2].

Remark 4.9. Define f : R→ (−∞,+∞] by

(4.6) f(x) =





0 = limx→0+ FD(x), if x = 0
FD(x), if x ∈ (0, 1)
0 = limx→1− FD(x), if x = 1
+∞, otherwise.

Then f is proper, lower semicontinuous and convex. In addition, it follows from
[10, p. 50] that f∗(x) = ln (ex + 1),

(f∗)′ (x) =
ex

ex + 1
and (f∗)′′ (x) =

ex

(ex + 1)2
.

Thus (f∗)′ is a Lipschitz function and hence is uniformly continuous. From Propo-
sition 2.4 we obtain that f∗ is uniformly smooth. Now it follows from Proposition
2.3 that f is uniformly convex and so is FD.

The following result (kindly communicated to us by Liangjin Yao [32]) provides
still another way to prove Proposition 4.8.

Proposition 4.10. Let f : R → (−∞,+∞] be a proper and convex function with
bounded domain. Assume that for every open interval (a, b) ⊆ dom f , the restriction
of f to (a, b) is not an affine function. Then f is uniformly convex.

A fairly detailed discussion of the relations between total and uniform convexity
and of various other properties is to be found in [11]. We caution that these terms
do not have uniform definitions throughout the literature. The next remark allows
us to explicitly produce BFNE operators.

Remark 4.11. Let K be a nonempty subset of (0,+∞). By Theorem 3.3 we
know that an increasing operator T is BFNE if ST is also increasing. If T is also
differentiable on intK, then S′T = f ′′ − f ′′ (T ) T ′.

We conclude that T is BFNE on K with respect to an admissible twice-differentiable
function f as soon as

(4.7) 0 ≤ T ′ (x) ≤ f ′′ (x)
f ′′ (T (x))

for all x ∈ int K.

4.1.1. The Boltzmann-Shannon entropy. We return to the Boltzmann-Shannon en-
tropy (BS entropy), which we recall from (4.1) is the function BS : (0,+∞) → R
defined by

BS (x) := x log (x)− x.

It is clear that BS is differentiable on (0,+∞) and that BS ′ (x) = log (x). We also
have

DBS (y, x) = y log
(y

x

)
− y + x
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Figure 1. The Boltzmann-Shannon entropy

for any x, y ∈ (0,+∞). The BS distance is also well defined for y = 0 (see [10, 11]),
but this does not concern us here.

The following result gives sufficient conditions for an operator T to be BFNE
with respect to BS. We shall write that T is BS-BFNE.

Proposition 4.12 (Conditions for BS-BFNE). Let K be a nonempty subset of
(0,+∞) and let T : K → K be an operator. Assume that one of the following
conditions holds:

(i) T is increasing and T (x) /x is decreasing for every x ∈ intK;
(ii) T is differentiable on intK and its derivative T ′ satisfies

(4.8) 0 ≤ T ′ (x) ≤ T (x)
x

for every x ∈ intK;
(iii) T is decreasing and T (x) /x is increasing for every x ∈ intK;
(iv) T is differentiable on intK and its derivative T ′ satisfies

T (x)
x

≤ T ′ (x) ≤ 0

for every x ∈ intK.
Then T is a BS-BFNE operator on K.

Proof. This result follows immediately from Theorem 3.3 and Remark 4.11. ¤
Remark 4.13. The only solution of the differential equation

T ′ (x) =
T (x)

x
is

T (x) = αx

for any α ∈ R, but in our case α ∈ (0,+∞) since T (x) ∈ (0,+∞) for any x ∈
(0,+∞).

Using the conditions provided in Proposition 4.12, we can give more examples of
BS-BFNE operators.

Example 4.14 (Examples of BS-BFNE operators). We provide:
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(i) T (x) = αx + β, α, β ∈ (0,+∞), is a BS-BFNE operator on any nonempty
subset of (0,+∞). Therefore, if α = 0 then T (x) = β and if β = 0 then
T (x) = αx are BS-BFNE operators on any subset of (0,+∞).

Proof. Since T ′ (x) = α and

T (x)
x

= α +
β

x
,

it is easy to see that 0 ≤ T ′ (x) ≤ T (x) /x if and only if α, β ∈ (0,+∞).
Therefore T is a BS-BFNE operator for any α, β ∈ (0,+∞). ¤

(ii) T (x) = xp, p ∈ (0, 1], is a BS-BFNE operator on any subset of (0,+∞).

Proof. Since T ′ (x) = pxp−1 and T (x) /x = xp−1, it is easy to see that
0 ≤ T ′ (x) ≤ T (x) /x if and only if p ∈ (0, 1]. Therefore T is a BS-BFNE
operator for any p ∈ (0, 1]. ¤

(iii) T (x) = αx− xp, p ∈ [1,+∞) and α ∈ R++, is a BS-BFNE operator on any
subset of

(
0, α1/(p−1)

)
.

Proof. The operator T is well-defined when T (x) > 0, which in this case
happens when α ∈ R++ and x ∈ (

0, α1/(p−1)
)
. Since T ′ (x) = α−pxp−1 and

T (x) /x = α− xp−1, it is easy to see that 0 ≤ T ′ (x) ≤ T (x) /x if and only
if p ∈ [1,+∞) and α ∈ R++. Therefore T is a BS-BFNE operator for any
p ∈ [1,+∞) and α ∈ R++. ¤

(iv) T (x) = log (x) is a BS-BFNE operator on any subset of [e,+∞).

Proof. Since T ′ (x) = 1/x and T (x) /x = log (x) /x, it is easy to see that
0 < T ′ (x) ≤ T (x) /x if and only if 1 ≤ log (x) and this happens if and only
if x ∈ [e,+∞). ¤

(v) T (x) = ex is a BS-BFNE operator on any subset of (0, 1].

Proof. Since T ′ (x) = ex and T (x) /x = ex/x, it is easy to see that 0 <
T ′ (x) ≤ T (x) /x if and only if 1 ≤ 1/x and this happens if and only if
x ∈ (0, 1]. ¤

(vi) T (x) = sin (x) is a BS-BFNE operator on any subset of (0, π/2] (there are
more such intervals).

Proof. Since T ′ (x) = cos (x) and T (x) /x = sin (x) /x, it is easy to see that
0 ≤ T ′ (x) ≤ T (x) /x if and only if x ≤ tan (x) and this indeed happens if
x ∈ (0, π/2]. ¤

Needless to say, it is possible to produce many more such examples.
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Figure 2. The Fermi-Dirac entropy

4.1.2. The Fermi-Dirac entropy. Recall from (4.2) that the Fermi-Dirac entropy is
the function FD : [0, 1] → R given by

FD (x) := x log (x) + (1− x) log (1− x).

It is clear that FD is differentiable on (0, 1) and FD′ (x) = log (x/ (1− x)). We
also have

DFD (y, x) = y log
(y

x

)
+ (1− y) log

(
1− y

1− x

)

for any x, y ∈ (0, 1). Once again, this function is also well defined for y = 0, 1 (see
[10, 11]).

In this subsection we study the BFNE operators with respect to FD. We shall
denote them by FD-BFNE.

Remark 4.15. Let K be a nonempty subset of (0, 1). From Theorem 3.3 we
know that an increasing operator T is FD-BFNE if ST is increasing. If T is also
differentiable on intK, then S′T = FD′′ −FD′′ (T ) T ′.

Therefore T is FD-BFNE on K if the following condition holds:

(4.9) 0 ≤ T ′ (x) ≤ FD′′ (x)
FD′′ (T (x))

.

for all x ∈ int K.

The following result gives sufficient conditions for the operator T to be FD-
BFNE.

Proposition 4.16 (Conditions for FD-BFNE). Let K be a nonempty subset of
(0, 1) and let T : K → K be an operator. Assume that one of the following conditions
holds:

(i) T is increasing and
T (x) (1− x)
x (1− T (x))

is decreasing for every x ∈ intK;
(ii) T is differentiable and its derivative T ′ satisfies

0 ≤ T ′ (x) ≤ T (x) (1− T (x))
x (1− x)
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for every x ∈ intK;
(iii) T is decreasing and

T (x) (1− x)
x (1− T (x))

is increasing for every x ∈ intK;
(iv) T is differentiable on intK and its derivative T ′ satisfies

T (x) (1− T (x))
x (1− x)

≤ T ′ (x) ≤ 0

for every x ∈ intK.
Then T is an FD-BFNE operator on K.

Proof. This result follows immediately from Theorem 3.3 and Remark 4.15. ¤

Remark 4.17. The only solution of the differential equation

T ′ (x) =
T (x) (1− T (x))

x (1− x)

is

(4.10) T (x) =
αx

(1− x + αx)

for any α ∈ R, but in our case α ∈ (0,+∞) since T (x) ∈ (0, 1) for any x ∈ (0, 1).

Using Proposition 4.16 we can give examples of FD-BFNE operators.

Example 4.18 (Examples of FD-BFNE operators). We provide:
(i) T (x) = α, α ∈ (0, 1), is an FD-BFNE operator on any subset of (0, 1).
(ii) T (x) = αx, α ∈ (0, 1), is an FD-BFNE operator on any subset of (0, 1).
(iii) T (x) = xp, p ∈ (0, 1), is an FD-BFNE operator on any subset of (0, 1).

Proof. Since T ′ (x) = pxp−1 and

T (x) (1− T (x))
x (1− x)

=
xp−1 (1− xp)

(1− x)
,

it is easy to see that

0 ≤ T ′ (x) ≤ T (x) (1− T (x))
x (1− x)

if and only if p ∈ (0, 1). Thus, T is FD-BFNE for any p ∈ (0, 1). ¤

(vi) T (x) = sin (x) is an FD-BFNE operator on any subset of (0, 1).

Proof. Since T ′ (x) = cos (x) and

T (x) (1− T (x))
x (1− x)

=
sin (x) (1− sin (x))

x (1− x)
,

we get

sin (x) (1− sin (x))
x (1− x) cos (x)

=
sin (x) cos (x)

x (1− x) (1 + sin (x))
=

sin (2x)
2x (1− x) (1 + sin (x))

.
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On the one hand, we have

sin (2x)
2x

>
2x− (1/6) (2x)3

2x
= 1− 4

6
x2 > 1− x2.

On the other hand,

(1− x) (1 + sin (x)) < (1− x) (1 + x) = 1− x2.

Hence
sin (x) (1− sin (x))
x (1− x) cos (x)

> 1,

which means that sin (x) is indeed an FD-BFNE operator on any subset of
(0, 1). ¤

Again, there are many more such examples.

4.1.3. Other admissible functions. In Table 1 we summarize sufficient conditions on
the operator T to be f -BFNE with respect to various choices of functions f .

f(x) Domain Condition
BS (0,+∞) 0 ≤ T ′(x) ≤ T (x)

x

FD (0, 1) 0 ≤ T ′(x) ≤ T (x)(1−T (x))
x(1−x)

cosh x R 0 ≤ T ′(x) ≤ cosh(x)
cosh(T (x))

x2/2 R 0 ≤ T ′(x) ≤ 1
x4/4 R 0 ≤ T ′(x) ≤ x2

(T (x))2

ex R 0 ≤ T ′(x) ≤ ex

eT (x)

− log(x) (0,+∞) 0 ≤ T ′(x) ≤ (T (x))2

x2

Table 1. Conditions for T to be an f -BFNE operators

4.2. Constructions in general Euclidean spaces. Assume that X = Rn. In
this case the Boltzmann-Shannon entropy is the function BSn : Rn

++ → R defined
by

BSn (x) :=
n∑

i=1

xi log(xi)− xi, x ∈ Rn
++.

The following result shows that BSn is a totally convex function (cf. [14]).

Proposition 4.19 (Total convexity of BSn in Rn). The function BSn is totally
convex and its modulus of total convexity satisfies

υBSn (x, t) ≥ min
1≤i≤n

{
xi

[(
1 +

t

xi
√

n

)
log

(
1 +

t

xi
√

n

)
− t

xi
√

n

]}
.

Proof. Let BS : [0,+∞) → R be the continuous and convex function defined by

BS (x) :=
{

x log (x)− x, x > 0
0, x = 0.
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It is clear that the restriction of BS to (0,+∞) is exactly BS. The function BSn :
Rn

+ → R defined by

BSn (x) :=
n∑

i=1

BS (xi)

is convex, continuous and its restriction to Rn
++ is exactly BSn. Let

υBSn
(x, t) = inf

{
DBSn

(y, x) : y ∈ Rn
+, ‖y − x‖ = t

}
.

Since the set
{
y ∈ Rn

+ : ‖y − x‖ = t
}

is compact in Rn and DBSn
(·, x) is continuous

on this set, there exists ȳ ∈ Rn
+ such that ‖x− ȳ‖ = t and

υBSn (x, t) ≥ υBSn
(x, t) = DBSn

(ȳ, x) =
n∑

i=1

DBS (ȳi, xi) .

The modulus of total convexity of BS is given by (4.3) and is continuous in t.
Therefore we can apply Proposition 2.1(vi) and obtain that, for each 1 ≤ i ≤ n,

DBS (ȳi, xi) ≥ υBS (xi, ‖xi − ȳi‖) .

Hence,

(4.11) υBSn (x, t) ≥
n∑

i=1

υBS (xi, ‖xi − ȳi‖) .

When t > 0, we have ‖xi − ȳi‖ > 0 for at least one index i. As noted in Proposition
4.2, the function BS is totally convex. Consequently, υBS (xi, ‖xi − ȳi‖) > 0 for at
least one index i. This and (4.11) show that, if t > 0, then υBSn (x, t) > 0, i.e., BSn

is totally convex.
Since for at least one index i0 we have ‖xi0 − ȳi0‖ ≥ t/

√
n, we deduce from (4.11)

that

υBSn (x, t) ≥
n∑

i=1

υBS (xi, ‖xi − ȳi‖) ≥ υBS (xi0 , ‖xi0 − ȳi0‖)

≥ υBS
(
xi0 , t/

√
n
) ≥ min

1≤i≤n

{
υBS

(
xi, t/

√
n
)}

.

When combined with (4.3), this inequality completes the proof. ¤

Remark 4.20 (Product constructions). For each i = 1, 2, · · · , n, let fi : R→ R be
an admissible function, and define the function F : Rn → Rn by

F (x1, · · · , xn) = (f1(x1), · · · , fn(xn)).

For each i = 1, 2, · · · , n, let Ki be a nonempty subset of int dom fi. Let T :∏n
i=1 Ki →

∏n
i=1 int dom fi be the operator which is defined by T = (T1, T2, . . . , Tn),

where Ti : Ki → int dom fi for each 1 ≤ i ≤ n. If each Ti, i = 1, · · · , n, satisfies
the hypotheses of Theorem 3.3, then the operator T is BFNE with respect to F on∏n

i=1 Ki.
In a similar way we can take the function F to be the sum of any n admissible

functions. Then the operator T is BFNE with respect to F if each operator Ti is
BFNE with respect to the chosen function fi, i = 1, · · · , n.
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5. Examples of f-resolvents

As we explained in the introduction, any BFNE operator is a resolvent of a
monotone mapping, and the resolvent plays an important role in the analysis of
optimization problems. Therefore, in the following two subsections, we provide sev-
eral explicit examples of resolvents with respect to different choices of the admissible
function f , for example, the Boltzmann-Shannon entropy and the Fermi-Dirac en-
tropy.

5.1. Resolvents with respect to BS. Let A : (0,+∞) → R be a monotone
mapping. Then the resolvent of A with respect to BS is

ResBSA := (log +A)−1 ◦ log .

Remark 5.1. We can also write the resolvent as follows:

ResBSA :=
((

(log +A)−1 ◦ log
)−1

)−1

=
(
(log)−1 ◦ (log +A)

)−1

=
(
e(log +A)

)−1
,

where
(
e(log +A)

)
(x) = xeA(x). This naturally leads us to the Lambert W function.

Recall [10, 11] that the Lambert W function, W , is defined to be the inverse of
x 7→ xex and is implemented in both Maple and Mathematica. Its principal branch
on the real axis is shown in Figure 3. Like log, it is concave increasing, and its
domain is (−1/e,+∞).

Figure 3. The Lambert W function

We now give several examples of BS-resolvents.

Example 5.2. (i) If A (x) = α, α ∈ R, then ResBSA (x) = e−αx for all x ∈ R++.
In particular, if α = 0 then ResBSA (x) = x, x ∈ R++.

(ii) If A (x) = αx + β, α, β ∈ R, then ResBSA (x) = (1/α)W
(
αe−βx

)
for all

x ∈ R++.
Hence, if α = 1 and β = 0 then ResBSA (x) = W (x), x ∈ R++.

(iii) If A (x) = α log (x), α ∈ R, then ResBSA (x) = x1/(1+α) for all x ∈ R++.
Therefore, if α = 1 then ResBSA (x) =

√
x, x ∈ R++.
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(iv) If A (x) = xp/p, p > 1, then ResBSA (x) = (W (xp))1/p for all x ∈ R++.
Thus, if p = 2 then ResBSA (x) =

√
W (x2), x ∈ R++.

(v) If A (x) = W (αxp), α ∈ R and p ≥ 1, then

ResBSA (x) =
(

x

α(p + 1)

) 1
p+1

(W (α(p + 1)xp))
1

p+1

for all x ∈ R++.
Therefore, if α = 2 and p = 1, then ResBSA (x) =

√
x
4

√
W (4x), x ∈ R++.

We now present an example of a BS-resolvent in R2.

Example 5.3. Let BS2(x, y) := x log(x) + y log(y) − x − y. Thus ∇BS2(x, y) =
(log(x), log(y)). Let θ ∈ [0, π/2] and consider the rotation mapping Aθ : R2 → R2

defined by

Aθ(x, y) :=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.

In particular, the BS-resolvent of the rotation mapping Aπ/2 is the operator:

ResBS2
Aπ/2

:= (∇BS2 + Aπ/2)
−1(∇BS2).

We claim that the inverse of ∇BS2 + Aπ/2 exists uniquely. To see this, note that
for any x, y ∈ (0,+∞), we have

(∇BS2 + Aπ/2

) (
x
y

)
=

(
log(x)− y
log(y) + x

)
.

Thus we have to show that for any (z, w) ∈ R2, there exist unique x, y ∈ (0,+∞)
such that z = log(x) − y and w = log(y) + x. These two equations can be written
as

x = ey+z and y = ew−x.

Therefore, x = eew−x+z. This equation has indeed a unique solution in (0,+∞). To
check this, define a function f : [0,+∞) → R by f(x) = x − eew−x+z. Then it is
easy to see that f(0) = −eew+z < 0 and limx→+∞ f(x) = +∞. Since the function
f is continuous, it has at least one root. On the other hand,

f ′(x) = 1− eew−x+z
(−ew−x

)
= 1 + eew−x+w−x+z > 0.

This means that f has exactly one root, which is the unique solution of the equation
x = eew−x+z. The general case is similar but less explicit.

5.2. Resolvents with respect to FD. Let A : (0, 1) → R be a monotone map-
ping. Then the resolvent of A with respect to FD is

ResFDA :=
(FD′ + A

)−1 ◦ FD′,
where in this case FD′ (x) = log (x/ (1− x)) and therefore (FD′)−1 (x) = ex/ (1 + ex).

Remark 5.4. We can also write the resolvent in the following way

ResFDA :=
(((FD′ + A

)−1 ◦ FD′
)−1

)−1

=
((FD′)−1 ◦ (FD′ + A

))−1
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=

(
e(FD′+A)

1 + e(FD′+A)

)−1

,

where (
e(FD′+A)

1 + e(FD′+A)

)
(x) =

xeA(x)

1− x + xeA(x)
.

Several examples of resolvents with respect to FD follow.

Example 5.5. (i) If A (x) = α, α ∈ (0,+∞), then

ResFDA (x) =
x

x + eα (1− x)
, x ∈ (0, 1).

If α = 0, then ResFDA (x) = x, x ∈ (0, 1).
(ii) If A (x) = log (x), then

ResFDA (x) =
x−√4x− 3x2

2 (x− 1)

for all x ∈ (0, 1).
(iii) If A (x) = log (1− x), then

ResFDA (x) =
x

1− x

for all x ∈ (0, 1).
(vi) If A (x) = 2 ∗ log (1− x), then

ResFDA (x) =
1− x−√5x2 − 6x + 1

2 (x− 1)

for all x ∈ (0, 1/5].

Finally, Table 2 lists resolvents with respect to various choices of the function f .
Here Resf

A = g−1.

f(x) Domain g(x)
BS (0,+∞) xeA(x)

FD (0, 1) xeA(x)

1−x+xeA(x)

x2/2 R x + A(x)
x4/4 R (x3 + A(x))1/3

ex R log(ex + A(x))
− log(x) (0,+∞) x

1−xA(x)

Table 2. Examples of Resolvents
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