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ALTERNATING PROJECTIONS AND ORTHOGONAL

DECOMPOSITIONS

EVA KOPECKÁ AND SIMEON REICH

Abstract. We present a new proof of von Neumann’s classical convergence the-
orem regarding alternating orthogonal projections in Hilbert space. Our argu-
ment is based on an orthogonal decomposition lemma and on the construction of
a Tietze-type potential.

1. Introduction

A few years ago we presented [7] an elementary geometric proof of von Neu-
mann’s classical convergence theorem regarding alternating orthogonal projections
in Hilbert space. In a subsequent note [8] we presented another geometric proof of
this seminal result. In this paper we present a new proof of von Neumann’s theorem.
This time our argument is based on an orthogonal decomposition lemma (which has
already been used in [8]) and on the construction of a Tietze-type potential.

Let S1 and S2 be two closed subspaces of a real Hilbert space (H, ⟨·, ·⟩), and let
P1 : H 7→ S1 and P2 : H 7→ S2 be the corresponding orthogonal projections of H
onto S1 and S2, respectively. Denote by N = {0, 1, 2, . . . } the set of nonnegative
integers. Let x0 be an arbitrary point in H, and define the sequence {xi : i ∈ N} of
alternating projections by

(1.1) x2i+1 = P1x2i and x2i+2 = P2x2i+1,

where i ∈ N.
Theorem 1.1. The sequence {xi : i ∈ N} defined by (1.1) converges in norm as
i → ∞ to PSx0, where PS : H 7→ S is the orthogonal projection of H onto the
intersection S = S1 ∩ S2.

This is von Neumann’s classical theorem [10, p. 475]. It was rediscovered by
several other authors; see, for example, [1], [9] and [13]. More information regarding
this theorem and its diverse applications can be found in [3] and the references
mentioned therein. Other proofs of Theorem 1.1 can be found, for instance, in [4],
[11], [2], [7] and [8].

We begin the next section of our paper with an orthogonal decomposition lemma
[6, Lemma 1.2] and then continue by recalling a special case of a Tietze-type exten-
sion theorem [6, Theorem 2.4]. In Section 3 we use these two results to construct a
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differentiable Tietze-type potential with a derivative the Lipschitz constant of which
is independent of the dimension. The existence of such a potential leads in Section
4 to a key estimate which, in its turn, yields a proof of Theorem 1.1 itself. We
denote by | · | the norm induced in H by its inner product ⟨·, ·⟩. The real line and
the d-dimensional Euclidean space are denoted by R and Rd, respectively.

2. Decompositions and extensions

We first present an orthogonal decomposition lemma [6, Lemma 1.2]. It shows
that any two finite-dimensional subspaces X, Y ⊂ H with 1 ≤ dimX = m ≤
n = dimY possess orthonormal bases {ej}mj=1 and {fj}nj=1, respectively, so that
X + Y can be written as a sum of the following pairwise orthogonal, at most two-
dimensional, subspaces defined by the basis vectors:

(2.1) span {e1, f1} ⊕ · · · ⊕ span {em, fm} ⊕ span {fm+1} ⊕ · · · ⊕ span {fn}.

Lemma 2.1. Let X and Y be two subspaces of H with 1 ≤ dimX = m ≤ n =
dimY . Then there exist orthonormal bases {ej}mj=1 and {fj}nj=1 of X and Y , re-
spectively, and a nonnegative integer 0 ≤ k ≤ m so that

(i) ej = fj if and only if j ≤ k;
(ii) the at most two-dimensional spaces span {ej}, j ≤ k, span {ej , fj}, k < j ≤

m, and span {fj}, m < j ≤ n, are all pairwise orthogonal.

Next we recall a special case of [6, Theorem 2.4]. This is a Tietze-type extension
theorem which yields a differentiable potential. More precisely, given K subspaces
and two points a and b in Rd with |b − a| = 1, there is a differentiable function
Φ such that Φ(b) − Φ(a) = 1 and on the K given subspaces, the derivative of Φ
belongs to these subspaces. Moreover, the Lipschitz constant of Φ′ only depends
on K and d. The proof of this theorem involves a rather intricate application of a
Whitney-type extension theorem [12, page 177].

Proposition 2.2. Let L1, L2, . . . , LK be K subspaces of Rd and let a, b ∈ Rd be two
points with |b− a| = 1. Then there exists a differentiable function Φ : Rd → R such
that

(i) Φ(b)− Φ(a) = 1;
(ii) Φ′(Li) ⊂ Li for i = 1, . . . ,K;
(iii) the derivative Φ′ : Rd → Rd is Lipschitz with a constant c(K, d) which only

depends on K and d.

3. Potentials

In this section we use Proposition 2.2 in the case K = d = 2 to construct a
differentiable Tietze-type potential with a derivative the Lipschitz constant of which
is independent of the dimension. We remark in passing that this particular case of
Proposition 2.2 can be proved directly by using an elementary geometric argument
(cf. [5]).

Proposition 3.1. Let X and Y be two finite-dimensional subspaces of H, Z =
X + Y , and let a, b ∈ Z be two points with |b − a| = 1. Then there exists a
differentiable function Ψ : Z → R such that
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(i) Ψ(b)−Ψ(a) = 1;
(ii) Ψ′(X) ⊂ X and Ψ′(Y ) ⊂ Y ;
(iii) the derivative Ψ′ : Z → Z is Lipschitz with a universal Lipschitz constant C

which is independent of the dimensions of X and Y .

Proof. Assume without loss of generality that m = dimX ≤ dimY = n, and let

(3.1) Z = X + Y = E1 ⊕ E2 ⊕ · · · ⊕ Em ⊕ · · · ⊕ En

be the decomposition obtained in Lemma 2.1. For each 1 ≤ j ≤ n, let Qj : H → Ej

be the orthogonal projection of H onto Ej , Xj := Qj(X) = X ∩ Ej , Yj :=
Qj(Y ) = Y ∩Ej , aj := Qj(a) and bj := Qj(b). Since |bj − aj | ≤ |b− a| = 1, we
may apply Proposition 2.2 to Xj , Yj , Ej , aj and bj to obtain, for each 1 ≤ j ≤ n,
a potential Φj : Ej → R such that

(iv) Φj(bj)− Φj(aj) = |bj − aj |2;
(v) Φ′

j(Xj) ⊂ Xj and Φ′
j(Yj) ⊂ Yj ;

(vi) the derivative Φ′
j is C-Lipschitz with C ≤ c(2, 2).

Using the potentials Φj , we now define the potential Ψ : Z → R by

(3.2) Ψ(z) :=

n∑
j=1

Φj(Qjz).

Claim 1. Ψ(b)−Ψ(a) = 1.

Proof. Indeed, using (iv), we obtain

Ψ(b)−Ψ(a) =
n∑

j=1

Φj(Qjb)−
n∑

j=1

Φj(Qja)

=
n∑

j=1

[Φj(bj)− Φj(aj)]

=

n∑
j=1

|bj − aj |2

= |b− a|2 = 1,

as claimed. �

Claim 2. Ψ′(X) ⊂ X and Ψ′(Y ) ⊂ Y .

Proof. Let the point z belong to Z. Using the chain rule, we obtain

(3.3) Ψ′(z) =
n∑

j=1

Φ′
j(Qjz) ◦Qj , z ∈ Z.

If z ∈ X, then Qjz ∈ Xj for each 1 ≤ j ≤ n and hence Φ′
j(Qjz) ∈ Xj by (v). It

follows that Ψ′(z) ∈ X, as claimed. An analogous argument shows that Ψ′(z) ∈ Y
whenever z ∈ Y . �

Claim 3. The derivative Ψ′ has Lipschitz constant C.
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Proof. Let the points z1, z2 and w belong to Z. Then we have by (3.2), (3.3) and
(vi),

|(Ψ′(z1)−Ψ′(z2))(w)|2 = |
n∑

j=1

[Φ′
j(Qjz1)− Φ′

j(Qjz2)](Qjw)|2

≤ [

n∑
j=1

|Φ′
j(Qjz1)− Φ′

j(Qjz2)||(Qjw)|]2

≤ [

n∑
j=1

|Φ′
j(Qjz1)− Φ′

j(Qjz2)|2][
n∑

j=1

|Qjw|2]

≤ C2
n∑

j=1

|Qjz1 −Qjz2|2|w|2

= C2|z1 − z2|2|w|2,
so that |Ψ′(z1)−Ψ′(z2)| ≤ C|z1 − z2|, as claimed. �

Combining these three claims, we conclude that the potential Ψ indeed satisfies
(i), (ii) and (iii), as required. This completes the proof of Proposition 3.1. �

4. Alternating projections

In this section we first use Proposition 3.1 to obtain a key estimate and then use
this estimate to prove Theorem 1.1.

Proposition 4.1. Let the sequence {xi : i ∈ N} be defined by (1.1), and let p and
r belong to N. Then

(4.1) |xr − xr+p|2 ≤ M(|xr|2 − |xr+p|2),
where M is a universal constant.

Proof. We may assume without any loss of generality that xr+1 ∈ S1. Assume first
that p = 2k for some k ≥ 1. Let

(4.2) X := span {xr+1, xr+3, . . . , xr+2k+1} ⊂ S1

and

(4.3) Y := span {xr+2, xr+4, . . . , xr+2k} ⊂ S2.

Then xr+2k = (P2P1)
kxr = (PY PX)kxr. Using the proof of [6, Theorem 3.1] and

Proposition 3.1, we obtain

|xr − xr+p|2 = |xr − xr+2k|2 ≤ M(|xr|2 − |xr+2k|2) = M(|xr|2 − |xr+p|2),
where M = C/2. Assume now that p = 2k + 1 for some k ≥ 1. Then

xr+p = xr+2k+1 = P1(P2P1)
kxr = PX(PY PX)kxr,

which again leads to (4.1). �
Note that Proposition 4.1 does not follow from [6, Corollary 3.2] because the

constant there does depend on the dimensions of X and Y . It is Proposition 3.1
which has enabled us to overcome this crucial obstacle.
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Proof of Theorem 1.1. Since the numerical sequence {|xi| : i ∈ N} decreases to its
limit as i → ∞, Proposition 4.1 shows that {xi : i ∈ N} is a Cauchy sequence which
converges in norm as i → ∞ to PSx0 by part (c) of [7, Lemma 2.1]. �

Alternatively [8], once we know that

|xr − xr+2k|2 ≤ M(|xr|2 − |xr+2k|2),
we have

(4.4) |x2j − x2(j+k)|2 ≤ M(|x2j |2 − |x2(j+k)|2),

so x2j = (P2P1)
jx0 → z, a fixed point of P2P1, as j → ∞. This limit z clearly

belongs to S2. If z were not in S1, then we would obtain |P2P1z| ≤ |P1z| < |z|, a
contradiction. Thus z ∈ S1, x2j+1 = P1x2j → P1z = z as j → ∞, and the whole
sequence {xi : i ∈ N} converges in norm as i → ∞ to z = PSx0, as asserted.

References

[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–403.
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