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NORMAL FORMS AND LINEARIZATION OF HOLOMORPHIC

DILATION TYPE SEMIGROUPS IN SEVERAL VARIABLES

FILIPPO BRACCI, MARK ELIN, AND DAVID SHOIKHET

Abstract. In this paper we study commuting families of holomorphic mappings
in Cn which form abelian semigroups with respect to their real parameter. Lin-
earization models for holomorphic mappings are used in the spirit of Schröder’s
classical functional equation.

The one-dimensional linearization models for holomorphic mappings and semi-
groups, based on Schröder’s and Abel’s functional equation have been studied by
many mathematicians for more than a century.

These models are powerful tools in investigations of asymptotic behavior of semi-
groups, geometric properties of holomorphic mappings and their applications to
Markov’s stochastic branching processes.

It turns out that solvability as well as constructions of the solution of Schröder’s
or Abel’s functional equations properly, depend on the location of the so-called
Denjoy–Wolff point of the given mappings or semigroups. In particular, recently
many efforts were directed to the study of semigroups with a boundary Denjoy–Wolff
point [4, 14, 2, 12]. The existence and non-existence of common fixed points for
semigroups (and, more generally, for families of commuting holomorphic mappings)
has been studied in [11] (see also, [13]).

Multidimensional cases are more delicate even when the Denjoy–Wolff point is
inside the underlying domain. It appears that the existence of the solution (the
so-called Kœnigs’ function) of a multidimensional Schröder’s equation depends also
on the resonant properties of the linear part of a given mapping (or generator), and
its relation to homogeneous polynomials of higher degrees.

In parallel, the study of commuting mappings (or semigroups) is of interest to
many mathematicians and goes back to the classical theory of linear operators,
differential equations and evolution problems.

In this paper we consider, in particular, the rigidity property of two commuting
semigroups. Namely, the question we study is whether those semigroups coincide
whenever the linear parts of their generators at their common null point are the
same.

Let D be a domain in Cn. We denote the set of holomorphic mappings on D
which take values in a set Ω ⊂ Cm by Hol(D,Ω). For each f ∈ Hol(D,Cm), the
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Frechét derivative of f at a point z ∈ D (which is understood as a linear operator
acting from Cn to Cm or n×m-matrix) will be denoted by dfz.

For brevity, we write Hol(D) for Hol(D,D). The set Hol(D) is a semigroup with
respect to composition operation.

Definition 1. A family S = {φt}t≥0 ⊂ Hol(D) of holomorphic self-mappings of
D is called a one-parameter continuous semigroup if the following conditions are
satisfied:

(i) φt+s = φt ◦ φs for all s, t ≥ 0;
(ii) lim

t→0+
φt(z) = z for all z ∈ D.

It is more or less known that condition (ii) (the right continuity of a semigroup at
zero) actually implies its continuity (right and left) on all of R+ = [0,∞). Moreover,
in this case the semigroup is differentiable on R+ with respect to the parameter t ≥ 0
(see [4, 14, 2, 12]). Thus, for each z ∈ D there exists the limit

(1) lim
t→0+

φt(z)− z

t
= f(z),

which belongs to Hol(D,Cn). The mapping f ∈ Hol(D,Cn) defined by (1) is called
the (infinitesimal) generator of S = {φt}t≥0.

Furthermore, the semigroup S can be defined as a (unique) solution of the Cauchy
problem:

(2)


∂φt(z)

∂t
= f(φt(z)), t ≥ 0,

φ0(z) = z, z ∈ D.

The reader may refer to the book [13] for a recent description of the semigroup
theory.

Definition 2. We say that a semigroup {φt}t≥0 is linearizable if there is a biholo-

morphic mapping h ∈ Hol(D,Cn) and a linear semigroup {ψt}t≥0 such that {φt}t≥0

conjugates with {ψt}t≥0 by h, namely, h ◦ φt = ψt ◦ h for all t ≥ 0.

Linearization methods for semigroups on the open unit disk in C
(
= C1

)
have

been studied by many mathematicians (see, for example, [16, 15, 8]). At the same
time, little is known about multi-dimensional cases. For example, in [9] and [7] the
problem has been studied for some special class of the so-called one-dimensional
type semigroups.

In this paper, we will concentrate on the case when a semigroup has a (unique)
interior attractive fixed point, i.e., lim

t→∞
φt(z) = τ ∈ D ⊂ Cn for all z ∈ D. It is

well known that this condition is equivalent to that fact that the spectrum σ(A) of
the linear operator (matrix) A defined by A := dfτ lies in the open left half-plane
(see [1] and [12]) and d(φt)τ = eAt. Usually, such semigroups are named of dilation
type. Thus, for the one-dimensional case, it is possible to linearize the semigroup
by solving Schröder’s functional equation:

h (φt(z)) = ef
′(τ)th(z)

(see, for example, [16, 14]).
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Remark 3. It should be noted that the latter equation involves the eigenvalue
problem for the linear semigroup {Ct}t≥0 of composition operators on the space

Hol(D,C) defined by Ct : h 7→ h ◦ φt.

It is easy to show that the solvability of a higher dimensional analog of Schröder’s
functional equation

(3) h (φt(z)) = eAth(z), A = dfτ ,

is equivalent to a generalized differential equation:

(4) dhzf(z) = Ah(z).

It seems that in general useful criteria (necessary and sufficient conditions) for
solvability of (4) are unknown.

Without loss of generality, let us assume that τ = 0.

Proposition 4. Equation (3), or equivalently, (4) is solvable if and only if there is
a polynomial mapping Q : Cn 7→ Cn with Q(O) = O and dQO = id, such that the
limit

lim
t→∞

e−AtQ(φt(z)) =: h(z), z ∈ D,

exists.

This proposition is based on the following notation and lemma.
By λ(A) we denote the spectrum distortion index of the matrix A, i.e.,

λ(A) :=

max
α∈σ(A)

|Reα|

min
α∈σ(A)

|Reα|
.

Lemma 5 (see [6]). Let g ∈ Hol(D,Cn) admit the expansion: g(z) =
∑
ℓ≥m

Qℓ(z),

where Qℓ is a homogenous polynomial of order ℓ and m > λ(A). Then

lim
t→∞

e−Atg(φt(z)) = O, for all z ∈ D.

In many cases (and always — in the one dimensional case), a polynomial Q in
Proposition 4 can be chosen to be the identity mapping, Q(z) = z for all z. More-
over, in this case h (φt(z)) = eAth(z), i.e., the mapping h(z) = lim

t→∞
eAtφ(z) forms

a conjugation of a given semigroup {φt}t≥0 with the linear semigroup
{
eAt
}
t≥0

.

Definition 6. Let S = {φt}t≥0 be a continuous one-parameter semigroup of holo-
morphic self-mappings on a domain D ⊂ Cn. We say that S is normally linearizable
if the limit

h(z) = lim
t→∞

e−Atφt(z), z ∈ D,

exists.

A consequence of Lemma 5 is the following assertion.

Proposition 7. Let S = {φt}t≥0 be a one-parameter semigroup of holomorphic
self-mappings on a domain D ⊂ Cn generated by f ∈ Hol(D,Cn). If f admits the
expansion on the series of homogenous polynomials: f(z) = Az +

∑
ℓ≥m

Qℓ(z), where



146 F. BRACCI, M. ELIN, AND D. SHOIKHET

Qℓ is a homogenous polynomial of order ℓ and m > λ(A), then the semigroup S is
normally linearizable.

In contrast with the one-dimensional case, for n > 1 there are semigroups which
are not normally linearizable.

Example 8. Let {φt}t≥0 be a semigroup in C2 defined by

φt(z1, z2) =

 z1 exp (−(1 + i)t)[
az1

2i
(
e−it − 1

)
+ z2

]
e−(2+i)t

 .

It is easy to see that

lim
t→∞

e−Atφt(z) = lim
t→∞

(
z1

az1
2i(exp(−it)− 1) + z2

)
does not exist. Thus, this semigroup is not normally linearizable.

Just differentiating φt at t = 0+ we find the semigroup generator:

f(z1, z2) =

(
−(1 + i)z1

−(2 + i)z2 + az1
2

)
.

For this generator we have λ(A) = m = 2, i.e., f does not satisfy the conditions of
Proposition 7.

Proposition 9. Let D ⊂ Cn be a domain containing O. Let {φt} be a continuous
dilation semigroup which is normally linearizable. If for some t0 > 0 the semigroup
element φt0 is a linear map, then all the elements φt, t ≥ 0, are linear.

Proof. Denote h(z) := lim
t→∞

e−Atφt(z). Then for all s > 0 obviously

h(φs(z)) := eAs lim
t→∞

e−A(t+s)φt(φs(z)) = eAsh(z),

i.e., h is a linearizing conjugation for {φt}t≥0. Since φt0 = eAt0 , we have φt0n = eAt0n

and
h(z) := lim

n→∞
e−At0nφt0n(z) = z,

so h is the identity mapping. Therefore, φs(z) = h−1
(
eAsh(z)

)
= eAsz for all

s ≥ 0. �
Example 8 above shows that this fact is not generally true. Indeed, for each

tℓ = 2πℓ, ℓ ∈ Z, the semigroup element φtℓ is a linear mapping. Yet all other
elements φt, t ̸= 2πℓ, are not linear.

An additional problem is that that with exception of the one-dimensional case,
linearizing conjugations may not be unique.

Definition 10. Let F = {φs}s∈A be a family of holomorphic self-mappings of D.
We say that F is uniquely linearizable if there is a unique mapping h biholomorphic
in D and normalized by h(O) = O, dhO = id, such that

h ◦ φs = Bs ◦ h, s ∈ A,
where {Bs}s∈A is an appropriate family of linear operators on Cn.
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Remark 11. Actually, it follows by the chain rule that Bs = d(φs)O.

Remark 12. A family F may consist of a single mapping F ∈ Hol(D) as well as a
discrete or continuous semigroup of holomorphic self-mappings on D.

Our next example shows that even linear diagonal mappings may not be uniquely
linearizable.

Example 13. Consider a linear mapping ψ = (ψ1, ψ2) with

ψ1(z1, z2) =
z1
2
, ψ2(z1, z2) =

z2
4

and a holomorphic normalized mapping defined by

h(z1, z2) =

(
z1

z1
2 + z2

)
.

Then h ◦ ψ = ψ ◦ h, i.e., h and also the identity mapping id linearize ψ.

Actually, the question whether a linear mapping ψ(z) = Bz is uniquely lineariz-
able can be formulated as the following rigidity problem:

When do the conditions

Q ◦B = B ◦Q and Q′(O) = O

on a holomorphic mapping Q imply that Q ≡ O ?

Remark 14. In fact, it can be seen that if a matrix B is diagonalizable and σ(B) =

{β1, . . . , βn} ⊂ ∆, then ψ is uniquely linearizable if and only if β1
k1 ·β2k2 ·. . .·βnkn ̸=

βj for all j = 1, . . . , n and k ∈ Nn.

Theorem 15. Let D ⊂ Cn be a domain containing O. Let S = {φt}t≥0 be a
continuous semigroup of dilation type, and let ψ be a holomorphic self-mapping of
D commuting with S such that

(5) ψ ◦ φt = φt ◦ ψ

for all t ≥ 0. If ψ is uniquely linearizable by a biholomorphic mapping h : D 7→ Cn,
then all of the elements of the semigroup S are linearizable by the same mapping h.

Proof. Let B denote a linear operator on Cn defined by B = dψO. Also we denote
A = dfO, where f is the infinitesimal generator of the semigroup S. First, by
differentiating (5) at O we obtain (dψO) ◦ eAt = eAt ◦ dψO, i.e., B commutes with
the linear semigroup

{
eAt
}
t≥0

(in fact, B commutes with A).

By our assumption, h ◦ ψ = B ◦ h. Therefore, for all t ≥ 0 we have

h ◦ ψ ◦ φt = B ◦ h ◦ φt.

On the other hand, h ◦ ψ ◦ φt = h ◦ φt ◦ ψ by (5). Thus,

e−At ◦ h ◦ φt ◦ ψ = e−At ◦B ◦ h ◦ φt = B ◦ e−At ◦ h ◦ φt.

Denoting h1 := e−At ◦ h ◦ φt one rewrites the latter equality in the form

h1 ◦ ψ = B ◦ h1.
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Since h1(O) = O, d(h1)O = id and ψ is uniquely linearizable by h, we conclude that
h1 = e−At ◦ h ◦ φt = h, or

h ◦ φt = eAt ◦ h.
The proof is complete. �

Corollary 16. Let D ⊂ Cn be a domain containing O. Let S = {φt}t≥0 be a
continuous semigroup of dilation type. If there exists t0 > 0 such that φt0 is uniquely
linearizable by a biholomorphic mapping h : D 7→ Cn, then all the elements of S
are linearizable by the same mapping h which is a unique solution of the differential
equation (4)

dhzf(z) = Ah(z),

normalized by the conditions h(O) = O, dhO = id.

Corollary 17. Let D ⊂ Cn be a domain containing O. Let S1 = {φt}t≥0 and

S2 = {ψt}t≥0 be two continuous semigroups on D generated by mappings f1 and f2,

respectively. Suppose that d(f1)O = d(f2)O = A with Reσ(A) < 0 and that there
exists s0 > 0 such that

(i) ψs0 is uniquely linearizable and
(ii) ψs0 commutes with the semigroup S1 such that ψs0 ◦ φt = φt ◦ ψs0 for all

t ≥ 0.
Then the semigroups coincide.

Proof. By our assumption, there is a unique biholomorphic mapping h normalized
by h(O) = O, dhO = id, such that

h ◦ ψs0 = eAs0 ◦ h.

Then Theorem 15 (or Corollary 16) implies that h◦ψs = eAs ◦h for all s ≥ 0. Since
the mapping h is biholomorphic, we have:

ψs = h−1 ◦
(
eAs ◦ h

)
.

The commutativity of the mapping ψs0 and the semigroup S1 implies by the same
Theorem 15 that all of the elements of S1 are linearizable by the mapping h, that
is, h ◦ φt = eAt ◦ h for all t ≥ 0. Thus

φt = h−1 ◦
(
eAt ◦ h

)
.

�

Remark 18. If the semigroups S1 = {φt}t≥0 and S2 = {ψt}t≥0 commute in the sense:
φt ◦ψs = ψs ◦φt for all t, s ≥ 0, then the conclusion that they coincide holds under
a formally weaker than condition (i) requirement that differential equation (4) has
a unique solution normalized by h(O) = O, dhO = id.

Corollary 19. Let D ⊂ Cn be a domain containing O. Let S1 = {φt}t≥0 and

S2 = {ψt}t≥0 be two commuting semigroups on D generated by mappings f1 and f2,

respectively. Suppose that d(f1)O = d(f2)O = A with Reσ(A) < 0. If λ(A) < 2 then
the semigroups coincide.
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The use of the Poincaré–Dulac theorem (see, for example, [3]) is another approach
to solve a linearization problem.

For simplicity, we assume in the sequel that A is a diagonal matrix, A =
diag(α1 . . . , αn) with Reαn ≤ . . . ≤ Reα1 < 0.

Let k := (k1, . . . , kn) ∈ Nn be such that |k| :=
∑
kj ≥ 2.

Definition 20. We say that A is resonant (or the n-tuple (α1, . . . αn) of the eigen-
values of A is resonant) if for some ℓ = 1, . . . , n

(α, k) :=
n∑

j=1

kjαj = αℓ.

Such a relation is called a resonance. The number |k| is called the order of the
resonance.

If αℓ = (α, k), we call any map G : Cn 7→ Cn resonant monomial if it has the
form G(z) = (g1(z), . . . , gn(z)) with gj ≡ 0 for j ̸= ℓ and gℓ(z) = azk.

Lemma 21. If Reαn ≤ . . . ≤ Reα1 < 0 then there is at most a finite number of
resonances for α. Moreover, if αj = (k, α) then kj = . . . = kn = 0.

Proof. Both statements follow from the simple observation that if αj = (k, α), then
Reαj = (k,Reα), and by the ordering of αj . �

For simplicity of notation, let

Mj :=

{
0, if there is no k with αj = (k, α),

max{|k| : αj = (α, k)} otherwise.

and M(α) := max{Mj : j = 1, . . . , n}.
A vector polynomial map R : Cn 7→ Cn, R(O) = O, is triangular if by switching

coordinates R(z) = (R1(z), . . . , Rn(z)) assumes the form

Rj(z) = ajzj + rj(z1, . . . , zj−1), j = 1, . . . , n

where rj is a polynomial.

Theorem 22. Let D ⊂ Cn be a domain containing O. Let {φt}t≥0 be a continuous
dilation type semigroup generated by f ∈ Hol(D,Cn) with dfO = A. Then there
exists an injective holomorphic map h : D 7→ Cn (independent of t) such that
h(O) = O, dhO = id and

h ◦ φt = Pt ◦ h,
where Pt(z) = eAtz + Rt(z) is a triangular polynomial group of automorphisms of
Cn whose degree is less than or equal to M(α), and Rt(z) containing only resonant
monomials. In particular, if there are no resonances then {φt}t≥0 is linearizable.

Proof. Let φt(z) = eAtz+
∑

|m|≥2

Pm,t(z) be the homogeneous expansion at O (which

is defined on a small ball containing O and contained in D). It follows from the
theory of semigroups of holomorphic maps that each Pm,t(z) is real analytic in t.

By our assumption, A is diagonal and the convex hull in C of its eigenvalues does
not contain 0. Therefore by the classical Poincaré–Dulac theorem, there exist an
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open neighborhood U of O and a holomorphic map h : U 7→ Cn normalized by

h(O) = O and dhO = id such that dhz(f(z)) = f̂(h(z)), where f̂(z) = Az + T (z)
with T being a polynomial vector field containing only resonant monomials.

The semigroup {φt}t≥0 is (locally aroundO) conjugated to the semigroup {ψt}t≥0,

ψt = h◦φt◦h−1, generated by f̂ = A+T . Since T contains only resonant monomials

and Reαn ≤ . . . ≤ Reα1 < 0, Lemma 21 implies that f̂ is triangular, i.e., {ψt}t≥0

satisfies the following system:
·
x1= α1x1
·
x2= α2x2 + r2(x1)

. . .
·
xn= αnxn + rn(x1, x2, . . . , xn−1),

where the rj ’s are polynomials in x1, . . . , xj−1 containing only resonant monomials.

Such a system can be integrated directly by first solving
·
x1= α1x1, then substituting

such solution into
·
x2= α2x2 + r2(x1), and so on. In the end, ψt is of the form

ψt(z) = (etα1z1, e
tα2(z2 +R2,t(z1)), . . . , e

tαn(zn +Rn,t(z1, z2, . . . , zn−1))),

with Rj,t a polynomial in z1, . . . , zj−1 of (at most) degree Mj containing with only
resonant monomials. Moreover, Rj,t depends also polynomially on t. It can be
shown by induction. It is true for j = 1, so assume it is true for j − 1. Then
the l-th component of (ψt) for l = 1, . . . , j − 1 is of the form ψt,l(z) = etαl(zl +
Rl,t(z1, z2, . . . , zl−1)) with Rl,t a polynomial in z1, . . . , zl−1 of degree at most Ml

and depending polynomially on t. Substituting these into the differential equation
·
xj= αjxj + rj(x1, x2, . . . , xj−1), one obtains

·
xj= αjxj + rj(e

α1tz1, e
tα2(z2 +R2,t(z1)), . . .

. . . , etαj−1(zj−1 +Rj−1,t(z1, z2, . . . , zj−2))).

Therefore the solution is of the form eαjtg(t) for some function g such that g(0) = zj
and

·
g (t) = e−αjtrj(x1, x2, . . . , xj−1).

Now, rj contains only resonant monomials for αj . Let zm be such a resonant
monomial. Then, taking into account that mj = . . . = mn = 0 by Lemma 21, it
follows

zm = azm1
1 · · · zmj−1

j−1 = e(m,α)t[zm1
1 · · · (zj−1 +Rj−1,t(z1, z2, . . . , zj−2))

mj−1 ].

Hence
·
g (t) = e(−αj+(m,α))t[zm1

1 · · · (zj−1 +Rj−1,t(z1, z2, . . . , zj−2))
mj−1 ],

and, being αj = (m,α), then actually

·
g (t) = zm1

1 · · · (zj−1 +Rj−1,t(z1, z2, . . . , zj−2))
mj−1 .

Since this holds for all resonant monomials in rj , this proves that Rt,j(z) is a poly-
nomial in both z1, . . . , zj−1 and t. The degree of Rt,j is at most Mj because it
contains only resonant monomials for αj . This proves the induction and the claim
about the Rj,t’s.
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This fact implies that ψ−t(z) is well defined for all t ≥ 0 and z ∈ Cn. Therefore,
{ψt}t∈R is a group of polynomial automorphisms of Cn.

Finally, since O is an attracting fixed point by hypothesis, then h can be extended
to all D by imposing h(w) = ψ−t(h(φt(w))) for all w ∈ D. �

Example 23. For n = 2 there is only one possible resonance, namely, α2 = mα1.
Hence, up to conjugation, the dilation semigroups in C2 are of the form:

φt(z) = (eα1tz1, e
α2t(z2 + atzm1 ))

for some a ∈ C.

So, if the matrix A = dfτ is resonant, it may happen that all elements of the semi-
group generated by f are not linearizable. In this connection the following question
arises naturally. Suppose that one of the elements of the semigroup S = {φt}t≥0

(say, φt0) is linearizable. Find conditions which ensure that all other elements
φt, t ̸= t0, are linearizable too.

To answer this question we need the following notion.

Definition 24. We say that the matrix A = diag(α1 . . . αn) has pure real resonance
if there are j = 1, . . . , n and k ∈ Nn such that Reαj = Re (α, k) but αj ̸= (α, k).

In particular, if all eigenvalues αj have the same argument, then A doesn’t have
pure real resonances.

Theorem 25. Let D ⊂ Cn be a domain containing O. Let {φt}t≥0 be a continuous
dilation semigroup generated by f ∈ Hol(D,Cn) with dfO = A, where A doesn’t
have pure real resonances. If there exists t0 > 0 such that φt0 is linearizable by
biholomorphic mapping h : D 7→ Cn, h(O) = O. Then the semigroup {φt}t≥0 is
linearizable by h.

Not that even for the non-resonant case Theorem 3 completes Theorem 2 since
it asserts the following fact: if h ∈ Hol(D,Cn) is a linearizing mapping for φt0 , it
also can serve as a linearizing mapping for all φt, t ≥ 0.

Proof. Let us define ψt := h ◦ φt ◦ h−1. Then ψt is a semigroup on h(D).
Let ψt(z) = eAtz +

∑
m Pm,t(z) be the homogeneous expansion at O (which is

defined on a small ball containing O and contained in g(D)), wherem ≥ 2 is the least
positive integer such that Pm,t ̸≡ 0 for all t, z. If the theorem holds then m = +∞
(namely, (ψt) is linear). Seeking a contradiction, we assume that m < +∞.

It follows from the theory of semigroups of holomorphic maps that each Pm,t(z)
is real analytic in t.

Since by hypothesis ψt0 = h ◦ φt0 ◦ h−1 is linear, then Pm,t0 ≡ 0.
Now, from ψt+s = ψt ◦ ψs it follows that

(6) Pm,t+s(z) = eAtPm,s(z) + Pm,t(e
Asz).

Write Pm,t(z) = (
∑

|k|=m p
1
k(t)z

k, . . . ,
∑

|k|=m p
n
k(t)z

k), where, as usual, zk =

zk11 · · · zknn . From (6) it follows that for j = 1, . . . , n

pjk(t+ s) = eαjtpjk(s) + pjk(t)e
(α,k)s.
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Differentiating such an expression with respect to t and setting t = 0, we obtain the
following differential equation:

(7)
d

dt
pjk(s) = αjp

j
k(s) + ajke

(α,k)s,

where we set ajk =
dpjk(t)

dt |t=0. There are two cases:

(1) if Reαj ̸= Re (α, k), then imposing the condition pjk(0) = 0, equation (7) has the
solution

(8) pjk(t) = ajk
e(α,k)t − eαjt

(α, h)− αj
.

(2) if Reαj = Re (α, k), then by our assumption αj = (α, k). In this case, imposing

the condition pjk(0) = 0, equation (7) has the solution

(9) pjk(t) = ajke
tαj t.

By (8) and (9) it follows that pjk(t0) = 0 if and only if pjk(t) = 0 for all t ≥ 0, and
hence Pm,t0 ≡ 0 if and only if Pm,t ≡ 0 for all t ≥ 0, reaching a contradiction with
our hypothesis. �

Example 8 above shows that if A has pure real resonance, Theorem 25 fails.

Corollary 26. Let S = {φt}t≥0 be a continuous semigroup of dilation type gen-
erated by f ∈ Hol(D,Cn) with dfO = A = diag(α1, . . . , αn). Suppose that there
is t0 > 0 such that φt0 is a linear mapping. Assume that one of the following
conditions holds:

(i) A doesn’t have pure real resonances;

(ii) e(α,k)t0 ̸= eαjt0 for all j = 1, . . . , n and k ∈ Nn.
Then all elements of S are linear mappings.

Proof. If condition (i) holds, the assertion follows immediately by Theorem 25.
Assume that condition (ii) holds. First, we show that φt0 is uniquely linearizable.

Indeed, let h(z) = z + . . . be a linearizing mapping different from id. This means
that h ◦ φt0 = φt0 ◦ h and for some j = 1, . . . , n, the j-th coordinate of h contains
a non-zero monomial akz1

k1 . . . zn
kn with |k| ≥ 2. Therefore,

hj
(
eα1t0z1, . . . , e

αnt0
)
= eαjt0hj(z),

and so
ake

(α,k)t0zk = ake
αjt0zk.

The contradiction provides that φt0 is uniquely linearizable by the identity mapping
id.

Now, Corollary 16 implies that the all mappings φt, t ≥ 0, are linearizable by
the identity mapping. Hence, they are linear. �

Combining Corollary 26 with Proposition 9, we get the following result.

Corollary 27. Let Bn be the unit ball of Cn and let S = {φt}t≥0 be a contin-
uous semigroup of dilation type generated by f ∈ Hol(B,Cn) with dfO = A =
diag(α1, . . . , αn). Suppose that there is t0 > 0 such that φt0 is a linear fractional
self-mapping of Bn. Assume that one of the following conditions holds:
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(i) A doesn’t have pure real resonances;
(ii) S is normally linearizable;

(iii) e(α,k)t0 ̸= eαjt0 for all j = 1, . . . , n and k ∈ Nn.
Then for all t ≥ 0 the mapping φt is a linear fractional self-map of Bn.

Proof. According to [5, Thm. 3.2 and Rmk. 3.4] (and its proof) there exists h :
Bn 7→ Cn a linear fractional mapping fixing O such that h ◦ φt0 ◦ h−1 is linear. By
Corollary 26 and Proposition 9, it follows that h ◦ φt ◦ h−1 is linear for all t ≥ 0.
Therefore, φt is the composition of linear fractional maps and hence linear fractional
for all t ≥ 0. �
Corollary 28. Let S = {φt}t≥0 be a continuous semigroup of dilation type gen-
erated by f ∈ Hol(B,Cn), f(z) = Az +

∑
ℓ≥m

Qℓ(z), where Qℓ is a homogenous

polynomial of order ℓ and m > λ(A). If for some t0 > 0, the semigroup element φt0

is a linear (respectively, linear fractional) mapping, then all the elements of S are
linear (respectively, linear fractional) mappings.

A direct consequence of our Theorems 22 and 25 and a recent Forelli type exten-
sion theorem (see [10, Theorem 6.2]) is the following assertion.

Corollary 29. Let S = {φt}t≥0 be a continuous semigroup of dilation type gen-
erated by f ∈ Hol(D,Cn) with dfO = A = diag(α1, . . . , αn), where all eigenvalues
αj have the same argument. Suppose that a function F defined on D is real ana-
lytic at O, and that its restrictions to the integral curves of the vector field f are
holomorphic. If at least one of the following conditions holds:

(i) A is not resonant,
or

(ii) there is t0 such that φt0 is linearizable,
then F is holomorphic on D.
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