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TWO POSITIVE SOLUTIONS FOR AN INHOMOGENEOUS

SCALAR FIELD EQUATION

TATSUYA WATANABE

Abstract. We consider the following nonlinear elliptic equation:

−∆u+ u = g(u) + f(x), x ∈ RN ,

where N ≥ 3, f(x) ̸≡ 0. For a wide class of nonlinearities, we show the existence
of two positive solutions to this problem when ∥f∥L2(RN ) is small.

1. Introduction

In this paper, we consider the following nonlinear elliptic equation:

(1.1) −∆u+ u = g(u) + f(x), x ∈ RN ,

where N ≥ 3. When f(x) ≡ 0, it is known that there is a nontrivial solution of (1.1)
for a wide class of nonlinearities (see [5]). Even though f(x) ̸≡ 0, we can expect the
existence of a nontrivial solution if f(x) is small in a suitable sense. Our purpose
is to show the existence of positive solutions of (1.1) via the variational approach
when ∥f∥L2(RN ) is small.

For the nonlinearity g, we assume
(g1) g ∈ C1(R,R), g(s) ≡ 0 for all s ≤ 0.
(g2) There exists s0 > 0 such that

∫ s0
0 (g(s)− s)ds > 0.

(g3) lim
s→∞

g(s)

s
N+2
N−2

= 0.

(g4) There exists η > 0 such that lims→0
g(s)
s1+η = 0.

(g5) There exists δ0 > 0 such that g(s)
s is non-decreasing on (0, δ0].

Compared with assumptions in [1], we only require stronger assumptions on the
behavior of the nonlinearity g near zero.

For the inhomogeneous term f , we assume
(f1) f(x) ≥ 0 for all x ∈ RN and f(x) ̸≡ 0.
(f2) There exist c > 0 and a > 0 such that

|Dαf(x)| ≤ ce−(1+a)|x| for all x ∈ RN and |α| ≤ 1.

(f3)
∂f

∂xi
xi ≤ 0 and f(x1, . . . , xi, . . . , xN ) = f(x1, . . . ,−xi, . . . , xN ) for i = 1, 2, . . . , N .

We obtain the following result.

Theorem 1.1. There exists C∗ > 0 such that if ∥f∥L2 ≤ C∗, then problem (1.1)
has at least two positive solutions.
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This kind of inhomogeneous problems has been studied widely (see e.g. [1], [2],
[4], [6], [7], [8], [9], [10], [12], [14], [19], [21], [23] and references therein). Compared
with the previous works, the class of the inhomogeneous term f is rather restricted.
However we can treat a wide class of the nonlinearity g. Especially we do not require
neither the convexity of g nor so-called global Ambrosetti-Rabinowitz condition,
namely

(1.2) there exists µ > 2 such that 0 < µ

∫ u

0
g(s)ds ≤ g(u)u for all u > 0.

Moreover since we do not impose any condition on the behavior of g at infinity
except for (g3), we can treat the case that g(s) is asymptotically linear at infinity
or g(s) is negative at infinity. Especially we can apply Theorem 1.1 for the case g
is Fitz-Hugh Nagomo type, that is, g(s)− s = s(s− b)(c− s) for b < c with bc = 1.

The main idea to find two solutions is the followings. We define an energy func-
tional I : H1(RN ) 7→ R by

I(u) :=
1

2

∫
RN

|∇u|2 + u2dx−
∫
RN

G(u)dx−
∫
RN

f(x)udx,

where G(u) =
∫ u
0 g(s)ds. Firstly we will show that if ∥f∥L2 is small, then there exist

ρ0 > 0 and v ∈ H1(RN ) with ∥v∥H1(RN ) < ρ0 such that I(u) > 0 on ∥u∥H1(RN ) = ρ0
and I(v) < 0. Then by Ekeland’s Variational Principle, we can see that there is a
local minimizer u0 which satisfies I(u0) < 0 and ∥u0∥H1(RN ) < ρ0.

The second solution will be obtained by the Mountain Pass Method. We consider
a Mountain Pass value whose paths connect from the local minimizer to a point
where the energy is negative and the norm is greater than ρ0. We can see that this
Mountain Pass value is positive if ∥f∥L2 is small. Since we do not impose any global
condition like (1.2), we can not obtain the boundedness of a Palais-Smale sequence
directly. To this aim, we use the Monotonicity Trick due to [15] and [20]. Then we
can obtain a bounded Palais-Smale sequence. As a consequence, we can prove the
existence of a second nontrivial critical point. However this critical point might lose
its energy, that is, the energy might be strictly less that the Mountain Pass value.
Hence we can not distinguish from the local minimizer readily.

To this aim, we construct a suitable path and give a precise interaction estimate
to obtain certain energy estimate. This estimate will enable us to establish the
existence of the second critical point The most hardest part of this paper is to
obtain the interaction estimate. If we assume the convexity of g(s), we can easily
prove the desired estimate. However since we don’t assume neither the convexity
nor the positivity of g(s), we need to estimate the interaction term more carefully.
To this aim, we restrict the class of the inhomogeneous term f(x) to obtain sharp
informations of solutions of (1.1). This kind of interaction estimates appears when
we study elliptic problems with group symmetries (see [3], [13]).

This paper is organized as follows. In section 2, we correct basic properties
of solutions of (1.1) and a corresponding homogeneous scalar field equation (i.e.
problem (1.1) with f(x) ≡ 0). In section 3, we prove the existence of a local
minimizer via Ekeland’s Variational Principle. In section 4, we show one energy
estimate which plays an important role to find a second solution. Finally in section
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5, we prove the existence of the second solution by using the Mountain Pass Method
and the Monotonicity Trick.

2. Preliminaries

2.1. Properties of solutions for the homogeneous scalar field equation.
We consider the following scalar field equation:

(2.1) −∆u+ u = g(u), x ∈ RN .

By (f2), the inhomogeneous term f(x) decays to zero at infinity. Thus problem
(2.1) can be regarded as the problem at infinity. We define I∞ : H1(RN ) 7→ R by

I∞(u) =
1

2

∫
RN

|∇u|2 + u2dx−
∫
RN

G(u)dx.

We denote c∞ by the least energy level for I∞, that is,

c∞ := inf{I∞(u);u ∈ H1(RN ), I ′∞(u) = 0}.

Proposition 2.1 ([5]). Assume (g1)-(g4). Then (2.1) has a positive least energy
solution w(x) ∈ C2(RN ) (namely I∞(w) = c∞, I ′∞(w) = 0) and it satisfies

(i) w(x) = w(|x|) = w̃(r) and ∂w̃
∂r < 0 for all r > 0.

(ii) w(x) satisfies the following Pohozaev type identity:

N − 2

2

∫
RN

|∇w|2dx = N

∫
RN

G(u)− u2

2
dx.

(iii) There exist positive constants c1, c
′
1, c2, c

′
2 and R0 such that

c1|x|−
N−1

2 e−|x| ≤ w(x) ≤ c2|x|−
N−1

2 e−|x|,

−c′1r
−N−1

2 e−r ≤ w̃′(r) ≤ −c′2r
−N−1

2 e−r for all r = |x| ≥ R0.

Although results above are obtained under weaker assumptions on the nonlinear-
ity, we do not provide precise statements here. By Proposition 2.1 (ii), it follows

c∞ = I∞ =
1

N

∫
RN

|∇w|2dx > 0.

Especially I∞(u) > 0 for any nontrivial critical point u of I∞.

2.2. Properties of solutions of (1.1). In this subsection, we correct basic prop-
erties of solutions of (1.1) and the energy functional which corresponds to (1.1).

Lemma 2.2. Assume (f1)-(f3) and (g1)-(g4). Let u(x) be a positive solution of
(1.1). Then

(i) u(x) ∈ L∞(RN ) and u(x) → 0 as |x| → ∞.
(ii) (∇u · x)(x) < 0 and u(x1, . . . , xi, . . . , xN ) = u(x1, . . . ,−xi, . . . , xN ).
(iii) There exist positive constants c3, c

′
3, c4, c

′
4 and R1 such that

c3|x|−
N−1

2 e−|x| ≤ u(x), |∇u(x)| ≤ c4|x|−
N−1

2 e−|x|, for all |x| ≥ R1.
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Proof. (i) By (f2), it follows f(x) ∈ Lq(RN ) for all q ∈ [1,∞]. Then we can show
that u ∈ L∞(RN ) and u(x) → 0 as |x| → ∞ (see [7], [23] for the proof).

(ii) By (f3), the claim follows from the moving plane method due to [11], [17],
[18].

(iii) By (f2), we can prove that for any δ > 0, there exists cδ > 0 such that

(2.2) cδe
−(1+δ)|x| ≤ u(x) ≤ cδe

−(1−δ)|x|

for all x ∈ RN (see [23] for the proof). Using assumption (g4) and (f2), we have

g(u(x)) + f(x) = o(|x|−
N−1

2 e−|x|) as |x| → ∞.

Then by the asymptotic result by Gidas, Ni and Nirenberg [11], we obtain

u(x) = O(|x|−
N−1

2 e−|x|) as |x| → ∞.

Moreover using (g4) and (f2) again, we also have

|∇u(x)| = O(|x|−
N−1

2 e−|x|) as |x| → ∞.

Choosing c3, c
′
3, c4, c

′
4 suitably, we can prove the claims. �

Next we prepare the Pohozaev type identity which we will use in section 5. The
proof is similar to that of Proposition 2.1 (ii).

Lemma 2.3. Let u(x) be a nontrivial solution of (1.1). Then u(x) satisfies the
following Pohozaev type identity:

N − 2

2

∫
RN

|∇u|2dx = N

∫
RN

G(u)− u2

2
dx+N

∫
RN

f(x)udx+

∫
RN

∇f · xudx.

Next we recall the energy functional:

I(u) =
1

2

∫
RN

|∇u|2 + u2dx−
∫
RN

G(u)dx−
∫
RN

f(x)udx.

Hereafter in this paper, we denote ∥u∥2 :=
∫
RN |∇u|2 + u2dx.

Next we need some modification because we don’t impose any condition on g(s) at
infinity except for (g3). We claim that there exists M > 0 such that g(s) +Ms > 0
for all s > 0 without loss of generality.

Let s > 0 be a constant which satisfies s > max{s0, ∥f∥L∞}, where s0 is a
constant defined in (g2). We consider the case that there exists s̃ ≥ s such that

(2.3) g(s̃)− s̃+ ∥f∥L∞ = 0.

Then we define

g̃(s) =

{
g(s), 0 ≤ s ≤ s̃
g(s̃), s ≥ s̃.

We claim that if u(x) is a solution of the problem:

−∆u+ u = g̃(u) + f(x), x ∈ RN ,

then u is a solution of the original problem (1.1). In fact if Ω := {x ∈ RN ;u(x) >
s̃} ̸= ∅, then we have

−∆u = g̃(u)− u+ f ≤ g̃(s̃)− s̃+ ∥f∥L∞ = 0 on Ω.

By Maximum Principle, this leads a contradiction.
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Now we take M > 0 so that

M > max
{
0,− min

0≤s≤s̃

g(s)

s

}
.

Then we can see that g̃(s) +Ms > 0 for all s > 0. Thus replacing g(s) by g̃(s), we
can set

(2.4) g(s) +Ms > 0 for all s > 0.

Remark 2.4. (i) Suppose g(s) − s + ∥f∥L∞ ≥ 0 for all s ≥ s. Then it follows

g(s) ≥ s − ∥f∥L∞ > 0 for all s ≥ s. Choosing M > max{0,−min0≤s≤s
g(s)
s }, we

have g(s) +Ms > 0 for all s ≥ 0.
(ii) (2.3) implies g(s̃)− s̃ < 0 because f(x) ≥ 0. Then we can see that ∥u∥L∞ ≤ s̃

for any solution of (2.1). Thus we can replace g(s) by g̃(s) in (2.1) without loss of
generality.

Lemma 2.5. Let u be a nontrivial critical point of I(u). Then u(x) > 0 for all
x ∈ RN .

Proof. Let u−(x) = min{0, u(x)}. Since I ′(u) = 0, it follows

∥u−∥2 =
∫
RN

g(u)u−dx+

∫
RN

f(x)u−dx.

By (f1) and (g1), we have ∥u−∥ = 0 and hence u(x) ≥ 0 for all x ∈ RN . Then by
Maximum Principle, we obtain u(x) > 0. �

Finally we introduce a global compactness type result for I.

Lemma 2.6. Let {un} ⊂ H1(RN ) be a sequence such that

I(un) → c ∈ R, I ′(un) → 0, ∥un∥ is bounded.

Then there exist u0 ∈ H1(RN ), k ∈ N∪{0}, {yin} ⊂ RN , wi ∈ H1(RN ), i = 1, . . . , k
such that

(i) un ⇀ u0 in H1(RN ), I ′(u0) = 0.

(ii) |yin| → ∞, |yin − yi
′
n | → ∞, i ̸= i′.

(iii) wi ̸≡ 0, I ′∞(wi) = 0, i = 1, . . . , k.

(iv) ∥un − u0 −
∑k

i=1w
i(· − yin)∥ → 0.

(v) I(un) → I(u0) +
∑k

i=1 I∞(wi).

3. Existence of a local minimizer

In this section, we show that there is a local minimizer of I if ∥f∥L2 is small.

Lemma 3.1. There exist C0 > and ρ0 > 0 such that if ∥f∥L2 ≤ C0, then I(u) > 0
for all u ∈ H1(RN ) with ∥u∥ = ρ0.
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Proof. We choose 0 < ϵ < 1 arbitrary. By (g3) and (g4), there exists cϵ > 0 such
that

(3.1) |G(s)| ≤ ϵ

2
s2 + cϵs

2N
N−2 for all s ≥ 0.

Then we obtain

I(u) ≥ 1

2
∥u∥2 −

∫
RN

|G(u)|dx−
∫
RN

fudx

≥ 1

2
(1− ϵ)∥u∥2 − c′∥u∥

2N
N−2 − ∥f∥L2∥u∥(3.2)

for some c′ > 0. Choosing ρ0 > 0 so that 1
2(1− ϵ)− c′ρ0

4
N−2 > 0, we have

I(u) ≥ ρ20

(1
2
(1− ϵ)− c′ρ

4
N−2

0

)
− ρ0∥f∥L2

for all u ∈ H1(RN ) with ∥u∥ = ρ0. Then there exists C0 > 0 such that if ∥f∥L2 ≤ C0,
it follows I(u) > 0 for all u ∈ H1(RN ) with ∥u∥ = ρ0. �
Lemma 3.2. There exists ϕ ∈ H1(RN ) such that I(ϕ) < 0 and ∥ϕ∥ ≤ ρ0.

Proof. We fix u ∈ H1(RN ) so that
∫
RN f(x)udx > 0. For t > 0, we have

I(tu)

t
=

t

2
∥u∥2 −

∫
RN

G(tu)

t
dx−

∫
RN

fudx.

From (3.1), we have limt→0

∫
RN

|G(tu)|
t dt = 0. Choosing t sufficiently small, ϕ := tu

satisfies I(ϕ) < 0 and ∥ϕ∥ ≤ ρ0. �
Lemma 3.3. There exists u0 ∈ H1(RN ) such that

I(u0) = inf
u∈Bρ0

I(u) < 0,

where Bρ0 = {u ∈ H1(RN ); ∥u∥ ≤ ρ0}. Moreover it follows ∥u0∥ < ρ0.

Proof. First we observe that there exists 0 < ρ′ < ρ0 such that

(3.3) I(u) ≥ 1

2
inf

u∈Bρ0

I(u)

for any u ∈ H1(RN ) with ρ′ ≤ ∥u∥ ≤ ρ0.
Now let {un} be a sequence such that I(un) → infu∈Bρ0

I(u). From (3.3), we

may assume that ∥un∥ ≤ ρ′. Let Bρ0 be endowed with the metric dist (u1, u2) =
∥u1 − u2∥, u1, u2 ∈ Bρ0 . By Ekeland’s Variational Principle, there exists ϵn > 0
with ϵn → 0 as n → ∞ such that

I(un) = inf
u∈Bρ0

I(u) + ϵn∥un − u∥.

Then we can see that {un} is a Palais-Smale sequence for I. Since ∥un∥ ≤ ρ′, we
may assume that un ⇀ u0 in H1(RN ) for some u0 ∈ H1(RN ). By the weakly lower
semi-continuity, we have ∥u0∥ ≤ ρ′ < ρ0. By Lemma 2.6, we have

I ′(u0) = 0 and inf
u∈Bρ0

I(u) = I(u0) +

k∑
i=1

I∞(wi)
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for some k ∈ N ∪ {0}. Suppose k ≥ 1. Then it follows

inf
u∈Bρ0

I(u) ≥ I(u0) + kc∞ > I(u0).

This is a contradiction. Thus we have k = 0 and hence I(u0) = infu∈Bρ0
I(u). �

Next we prove that I(u0) + c∞ > 0 if ∥f∥L2 is small. This estimate will be used
to find a second nontrivial critical point of I.

Lemma 3.4. There exists C1 > 0 such that if ∥f∥L2 ≤ C1, then I(u0) + c∞ > 0.

Proof. From (3.2), we have

I(u) ≥ ∥u∥2
(1
2
(1− ϵ)− c′ρ

4
N−2

0

)
− ∥f∥L2∥u∥ =: cρ0∥u∥2 − ∥f∥L2∥u∥

for all u ∈ Bρ0 .
First we claim that there exists 0 < ρ1 < ρ0 such that if ∥u∥ ≤ ρ1, then I(u) >

−c∞. Now we choose ϵ1 > 0 so that ϵ1∥f∥2L2 < c∞
2 . Then by Young’s inequality,

we have

I(u) ≥ ∥u∥2
(
cρ0 −

1

ϵ1

)
− ϵ1∥f∥2L2 ≥ −∥u∥2

∣∣∣cρ0 − 1

ϵ1

∣∣∣− c∞
2
.

Next we choose ρ1 > 0 so that |cρ0 − 1
ϵ1
|ρ21 < c∞

2 . Then we obtain I(u) > −c∞ for

all u ∈ H1(RN ) with ∥u∥ ≤ ρ1.
Next we claim that there exists C1 = C1(ρ0, ρ1) > 0 such that if ∥f∥L2 ≤ C1,

then I(u) > −c∞ for all u ∈ Bρ0 . We take ϵ2 > 0 so that cρ0ρ
2
1 − ϵ2ρ

2
0 > 0. Using

Young’s inequality again, we have

I(u) ≥ c2ρ0ρ
2
1 − ϵ2ρ

2
0 −

1

ϵ2
∥f∥2L2 .

Choosing ∥f∥2
L2(RN )

< ϵ2(c∞+ c2ρ0ρ
2
1− ϵ2ρ

2
0), we obtain I(u) > −c∞ for all u ∈ Bρ0 .

Thus it follows
I(u0) = inf

u∈Bρ0

I(u) > −c∞.

�
Hereafter in this paper, we put C∗ = max{C0, C1} and assume ∥f∥L2 ≤ C∗.

4. An interaction estimate

In this section, we prove one energy estimate which plays an important role to
find a second solution. We consider a path γl(t) : [0, 1] 7→ H1(RN ) by:

γl(t) =

{
u0 + w( ·t − le), t ≥ 0

u0, t = 0,

where l ≥ 0, e = (1, 0, . . . , 0) ∈ RN and w(x) is a least energy solution of (2.1). We
notice that ∥γl(0)∥ < ρ0 and ∥γl(t)∥ > ρ0 for large t where ρ0 is a constant which
appears in Lemma 3.1. Then we have supt≥0 I(γl(t)) > 0 by Lemma 3.1. On the
other hand by Lemma 3.4, we know that I(u0) + c∞ > 0. Our purpose is to show
that

(4.1) 0 < sup
t≥0

I(γl(t)) < I(u0) + c∞
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for sufficiently large l.
Now we consider a function h(t) := I∞(w(xt )) for t > 0. Then by Proposition 2.1

(ii), we have

(4.2) h(t) =
( tN−2

2
− N − 2

2N
tN

)
∥∇w∥2L2 .

Since N ≥ 3, it follows h(t) < 0 for large t. We choose T > 1 so that I∞(w( xL)) +
I(u0) < 0 and ∥u0 + w( ·

T − le)∥ > ρ0. We note that T is independent of l because

∥u0 + w( ·t − le)∥ ≥ ∥w( ·t − le)∥ − ∥u0∥ ≥ tN−2∥w∥ − ∥u0∥ for t ≥ 1.
To show (4.1), we use the following lemma.

Lemma 4.1. Assume (g1)-(g5). Let K > 0 be arbitrary given.

(i) There exists cK > 0 such that if u1 ∈ (0, K2 ) and u2 ∈ (0, K2 ), then∣∣∣G(u1 + u2)−G(u1)−G(u2)−
1

2
g(u1)u2 −

1

2
g(u2)u1

∣∣∣ ≤ cK(u1+η
1 u2 + u1+η

2 u1).

Here η is a positive constant defined in (g4).
(ii) For any ϵ > 0, there exists δϵ,K > 0 such that if u1 ∈ (0, K2 ) and u2 ∈

(0, δϵ,K ], then

G(u1 + u2)−G(u1)−G(u2)−
1

2
g(u1)u2 −

1

2
g(u2)u1

≥ 1

2
g(u1)u2 − ϵ

(
u2 +

1

2
u22 +

1

2
u1u2

)
.

Conversely if u1 ∈ (0, δϵ,K ] and u2 ∈ (0, K2 ), then

G(u1 + u2)−G(u1)−G(u2)−
1

2
g(u1)u2 −

1

2
g(u2)u1

≥ 1

2
g(u2)u1 − ϵ

(
u1 +

1

2
u21 +

1

2
u1u2

)
.

(iii) If u1, u2 ∈ (0, δ02 ), then

G(u1 + u2)−G(u1)−G(u2)−
1

2
g(u1)u2 −

1

2
g(u2)u1 ≥ 0.

Here δ0 is a positive constant defined in (g5).

Proof. (i) Now we have

G(u1 + u2)−G(u1)−G(u2)−
1

2
g(u1)u2 −

1

2
g(u2)u1

=

∫ u2

0
g(u1 + τ)− g(τ)dτ − 1

2
g(u1)u2 −

1

2
g(u2)u1

=

∫ u2

0

∫ u1

0
g′(s+ τ)dsdτ − 1

2
g(u1)u2 −

1

2
g(u2)u1.

From (g4), there exists c > 0 such that g′(s) ≤ csη for all s ∈ [0, k2 ]. Thus we obtain

G(u1 + u2)−G(u1)−G(u2)−
1

2
g(u1)u2 −

1

2
g(u2)u1

≤ c(u1 + u2)
ηu1u2 + cu1+η

1 u2 + cu1+η
2 u1 ≤ cu1+η

1 u2 + cu1+η
2 u1.
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(ii) Now for any ϵ > 0, there exists δϵ,K > 0 such that

G(u1 + u2)−G(u1)−G(u2) ≥ g(u1)u2 − ϵu2

if u2 ∈ [0, ϵk]. Moreover choosing δϵ,K smaller if necessary, we have

g(s) ≤ ϵs, G(s) ≤ ϵ

2
s2 for all s ∈ [0, δϵ,K ].

Thus for u1 ∈ (0, K2 ) and 0 < u2 ≤ δϵ,K , we obtain

G(u1 + u2)−G(u1)−G(u2)−
1

2
g(u1)u2 −

1

2
g(u2)u1

≥ 1

2
g(u1)u2 − ϵ

(
u2 +

1

2
u22 +

1

2
u1u2

)
.

(iii) For the proof, we refer to [3]. �
We will apply Lemma 4.1 provided K = 2max{∥u0∥L∞ , ∥w∥L∞}, u1 = u0(tx)

and u2 = w(x− le). As we will see later, the terms g(u1)u2 and g(u2)u1 will be key
terms to obtain strict inequality in (4.1). However we can not see the sign of them
readily because g(s) may change its sign.

Now let τ ∈ (0, T ) be arbitrary given. We choose R > 1
τ max{R0, R1, 1} so that

u0(Tx) <
δ0
2 , w(x) <

δ0
2 for all x ∈ RN \BR(0). Here BR(0) := {x ∈ RN ; |x| ≤ R},

R0 and R1 are positive constants which appear in Proposition 2.1 (iii) and Lemma

2.2 (iii) respectively. We note that if |x| ≥ R, then u0(tx) < δ0
2 for all t ∈ (0, T ].

Then we can obtain the following estimates.

Lemma 4.2 ([22]). Assume (f1)-(f3) and (g1)-(g4). Then there exist cR > 0 and
lR > 0 which are independent of t ∈ [τ, T ] such that

(i)

∫
BR(0)

(g(u0(tx)) + f(tx))w(x− le)dx ≥ cR

∫
BR(0)

w(x− le)dx,

(ii)

∫
BR(le)

g(w(x− le))u0(tx)dx ≥ cR

∫
BR(le)

u0(tx)dx

for all l ≥ lR and t ∈ [τ, T ].

Proof. First we prove (i). Integrating by parts, we obtain∫
BR(0)

(g(u0(tx)) + f(tx))w(x− le)dx =

∫
BR(0)

(−∆u0(tx) + u0(tx))w(x− le)dx

=

∫
BR(0)

∇u0(tx)∇w(x− le) + u0(tx)w(x− le)dx−
∫
∂BR(0)

∂u0
∂n

(tx)w(x− le)dS

=

∫
BR(0)

u0(tx)(−∆w(x− le) + w(x− le))dx

+

∫
∂BR(0)

u0(tx)
∂w

∂n
(x− le)dS −

∫
∂BR(0)

∂u0
∂n

(tx)w(x− le)dS

=

∫
BR(0)

u0(tx)g(w(x− le))dx+

∫
∂BR(0)

u0(tx)
∂w

∂n
(x− le)dS

−
∫
∂BR(0)

∂u0
∂n

(tx)w(x− le)dS.
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Here we denote n by the unit normal vector on ∂BR(0). We recall here that w(|x|) =
w̃(r). Writing ∂w̃

∂r = w̃′, we have

∂w

∂n
(x− le) = w̃′(|x− le|)x · (x− le)

|x− le||x|
.

Thus we obtain∫
BR(0)

(g(u0(tx)) + f(tx))w(x− le)dx =

∫
BR(0)

u0(tx)g(w(x− le))dx

−
∫
∂BR(0)

∂u0
∂n

(tx)w(x− le)dS

+

∫
∂BR(0)

u0(tx)w̃
′(|x− le|)x · (x− le)

|x− le||x|
dS

=: (I) + (II) + (III).

First we claim that there exists cR > 0 such that (I) ≥ −cRw(−le)1+η for large
l. In fact by (g4), we have

(I) ≥ −
∫
BR(0)

u0(tx)|g(w(x− le))|dx ≥ −c

∫
BR(0)

u0(tx)w(x− le)1+ηdx.

Now we recall that if l is large, then for x ∈ BR(0),

c′ ≤ w(x− le)

|x− le|−
N−1

2 e−|x−le|
≤ c

by Proposition 2.1 (iii). We also observe that liml→∞
|x−le|−

N−1
2

l−
N−1

2

= 1,

lim
l→∞

(−|x− le|+ | − le|) = lim
l→∞

( −|x|2

|x− le|+ l
+

2x1l

|x− le|+ l

)
= x1

for x ∈ BR(0). Thus there exist c, c′ and l0 > 0 such that if l ≥ l0, then

(4.3) c′ex1 ≤ w(x− le)

w(−le)
≤ cex1 for x ∈ BR(0).

Using (4.3), we obtain

(I) ≥ −c∥u0∥L∞

∫
BR(0)

e(1+η)x1dx× w(−le)1+η =: −cRw(−le)1+η.

Next we prove that there exists c′R > 0 such that (II) ≥ c′Rw(−le) for large l.
Now by Lemma 2.2 (ii), it follows (∇u0 · n) < 0. Then from (4.3), we obtain

(II) ≥ −c sup
t∈[τ,T ]

sup
x∈∂BR(0)

(∇u0 · n)(tx)
∫
∂BR(0)

ex1dS × w(−le) =: c′Rw(−le).

Finally we claim that (III) ≥ c′′Rw(−le) for large l. Now by Proposition 2.1 (iii), it
follows if l is large, then for x ∈ ∂BR(0),

w̃′(|x− le|)
w(x− le)

≥ −c.
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We also have

lim
l→∞

x · (x− le)

|x− le||x|
= −x1

|x|
.

Thus there exists l1 > 0 such that if l ≥ l1, then

w̃′(|x− le|)x · (x− le)

|x− le||x|
=

w̃′(|x− le|)
w(x− le)

w(x− le)

w(−le)
w(−le)

x · (x− le)

|x− le||x|

≥ c

R
x1e

x1w(−le) for x ∈ ∂BR(0).

Hence we obtain

(III) ≥ c

R

∫
∂BR(0)

u0(tx)x1e
x1dS × w(−le).

By Lemma 2.2 (ii), we observe that∫
∂BR(0)

u0(tx)x1e
x1dS =

∫
∂BR(0)∪{x1>0}

u0(tx)x1e
x1dS

+

∫
∂BR(0)∪{x1<0}

u0(tx)x1e
x1dS

=

∫
∂BR(0)∪{x1>0}

u0(tx)x1e
x1dS

−
∫
∂BR(0)∪{x1>0}

u0(tx)x1e
−x1dS

≥ inf
t∈[τ,T ]

inf
x∈∂BR(0)

u0(tx)

∫
∂BR(0)∪{x1>0}

x1(e
x1 − e−x1)dS

>0.

Thus we have (III) ≥ c′′Rw(−le) for some c′′R > 0. Consequently, we have∫
BR(0)

(g(u0(tx)) + f(tx))w(x− le)dx ≥ cw(−le)(1− w(−le)η)

for l ≥ max{l0, l1}. Since w(−le) decays exponentially as l → ∞, we may assume
that w(−le)η ≤ 1

2 for all l ≥ lR. We also observe that from (4.3),∫
BR(0)

w(x− le)dx ≤ c

∫
BR(0)

ex1dx× w(−le) =: c̃Rw(−le).

Thus we obtain∫
BR(0)

(g(u0(tx)) + f(tx))w(x− le)dx ≥ c

c̃R

∫
BR(0)

w(x− le)dx for all l ≥ lR.
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Next we prove (ii). In a similar calculation, we obtain∫
BR(le)

g(w(x− le))u0(tx)dx =

∫
BR(0)

g(w(x))u0(t(x+ le))dx

=

∫
BR(0)

w(x)g(u0(t(x+ le)))dx

+

∫
BR(0)

w(x)f(t(x+ le))dx

−
∫
∂BR(0)

∂w

∂n
(x)u0(t(x+ le))dS

+

∫
∂BR(0)

w(x)
∂u0
∂n

(t(x+ le))dS

≥
∫
BR(0)

w(x)g(u0(t(x+ le)))dx

− w̃′(R)

∫
∂BR(0)

u0(t(x+ le))dS

+ w̃(R)

∫
∂BR(0)

∂u0
∂n

(t(x+ le))dS.

Here we used w(x) = w̃(r) and w(x)f(t(x+ le)) ≥ 0. We claim that∫
∂BR(0)

∂u0
∂n

(t(x+ le))dS ≥ c̃Ru0(tle)

for large l and some c̃R > 0. Now we have∫
∂BR(0)

∂u0
∂n

(t(x+ le))dS = t

∫
∂BR(0)

(∇u0 · x)(t(x+ le))

|t(x+ le)|
t(x+ le) · x
|t(x+ le)||x|

dS.

By Lemma 2.2 (iii), there exists l2 > 0 such that for l ≥ l2,

c′e−x1 ≤ u0(t(x+ le))

u0(tle)
≤ ce−x1 for x ∈ BR(0),

−c′ ≤ (∇u0 · x)(t(x+ le))

u0(t(x+ le))|t(x+ le)|
≤ c for x ∈ ∂BR(0).

Moreover it follows

t(x+ le) · x
|t(x+ le)||x|

→ x1
|x|

for x ∈ ∂BR(0).

Thus we have∫
∂BR(0)

∂u0
∂n

(t(x+ le))dS ≥ c

∫
∂BR(0)

−x1e
−x1dS × u0(tle) =: c̃Ru0(tle).

Here we used∫
∂BR(0)

−x1e
−x1dS =

∫
∂BR(0)∪{x1<0}

−x1(e
−x1 − ex1)dS > 0.
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Finally we can see that there exists l3 > 0 such that for l ≥ l3,∫
BR(le)

u0(tx)dx ≤ c

∫
BR(0)

e−x1dx× u0(tle).

Thus for l ≥ max{l2, l3}, it follows∫
∂BR(0)

∂u0
∂n

(t(x+ le))dS ≥ c

∫
BR(le)

u0(tx)dx.

Arguing similarly as (i), we obtain∫
BR(le)

g(w(x− le))u0(tx)dx ≥ c

∫
BR(le)

u0(tx)dx.

Putting lR := max{l0, l1, l2, l3}, the claims follow. �

Now we state the main result of this section.

Proposition 4.3. There exist l∗ > lR and 0 < t0 < 1 such that for all l ≥ l∗,

(i) sup
t∈(0,t0]

I
(
u0(x) + w

(x
t
− le

))
< 0,

(ii) I
(
u0(x) + w

( x

T
− le

))
< 0,

(iii) sup
t∈[t0,T ]

I
(
u0(x) + w

(x
t
− le

))
< I(u0) + c∞.

Proof. Step 1: [Decomposition of the energy]. Now we have

I
(
u0 + w

(x
t
− le

))
=
1

2

∫
RN

∣∣∣∇(
u0 + w

(x
t
− le

))∣∣∣2dx
+

1

2

∫
RN

(
u0 + w

(x
t
− le

))2
dx

−
∫
RN

G
(
u0 + w

(x
t
− le

))
dx

−
∫
RN

f(x)
(
u0 + w

(x
t
− le

))
dx

=I(u0) + I∞

(
w
(x
t

))
+

1

t

∫
RN

∇u0∇w
(x
t
− le

)
dx

+

∫
RN

u0w
(x
t
− le

)
dx−

∫
RN

f(x)w
(x
t
− le

)
dx

+

∫
RN

G(u0)dx+

∫
RN

G
(
w
(x
t
− le

))
dx

−
∫
RN

G
(
u0 + w

(x
t
− le

))
dx.
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Since I ′(u0) = 0, we have

1

2t

∫
RN

∇u0∇w
(x
t
− le

)
dx =− 1

2

∫
RN

u0w
(x
t
− le

)
dx

+
1

2

∫
RN

g(u0)w
(x
t
− le

)
dx

+
1

2

∫
RN

fw
(x
t
− le

)
dx.

Since I ′∞(w) = 0, we also have

1

2t

∫
RN

∇u0∇w
(x
t
− le

)
dx = − t

2

∫
RN

u0w
(x
t
− le

)
dx+

t

2

∫
RN

g
(
w
(x
t
− le

))
u0dx.

Thus we obtain

I
(
u0 + w

(x
t
− le

))
− I(u0)− I∞(w) ≤ I∞

(
w
(x
t

))
− I∞(w)

− tN

2

∫
RN

f(tx)w(x− le)dx+
tN

2
(1− t)

∫
RN

u0(tx)w(x− le)dx

+
tN

2
(1− t)

∫
RN

g(w(x− le))u0(tx)dx+ tN
∫
RN

G(u0(tx))

+G(w(x− le))−G(u0(tx) + w(x− le))dx

+
tN

2

∫
RN

g(u0(tx))w(x− le) + g(w(x− le))u0(tx)dx

≤ I∞

(
w
(x
t

))
− I∞(w)− tN

2

∫
RN

f(tx)w(x− le)dx

+ctN |t− 1|
∫
RN

u0(tx)w(x− le)dx− tN
∫
RN

J(x)dx.(4.4)

Here we put

J(x) := G(u0(tx) + w(x− le))−G(u0(tx))−G(w(x− le))

− 1

2
g(u0(tx))w(x− le)− 1

2
g(w(x− le))u0(tx).

�
Step 2: [Proof of (i)]. From (4.4) and by Lemma 4.1 (i), it follows

I
(
u0 + w

(x
t
− le

))
≤ I(u0) + I∞

(
w
(x
t

))
+

tN

2
|1− t|

∫
RN

u0(tx)w(x− le)dx

+
tN

2

∫
RN

f(tx)w(x− le)dx+ ctN
∫
RN

u0(tx)
1+ηw(x− le)

+ u0(tx)w(x− le)1+ηdx

≤ c(tN+1 + tN )

∫
RN

u0(tx)w(x− le)dx

+
tN

2

∫
RN

f(tx)w(x− le)dx+ I(u0) + I∞

(
w
(x
t

))
.
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Now we have ∫
RN

u0(tx)w(x− le)dx ≤ t−
N
2 ∥w∥L2∥u0∥L2 .

Combining with (4.2), we obtain

I
(
u0 + w

(x
t
− le

))
≤ I(u0) + c

(
t
N
2 + t

N
2
+1 + tN + tN−2

)
.

Since N > 2, we can take small t0 > 0 so that

I(u0) + c
(
t
N
2 + t

N
2
+1 + tN + tN−2

)
<

1

2
I(u0) < 0

for all 0 ≤ t ≤ t0. Thus we obtain (i). �
Now We decompose

RN = Ω ∪BR(0) ∪BR(le), Ω := RN \ (BR(0) ∪BR(le)).

As we mentioned earlier, it follows u0(tx) <
δ0
2 , w(x) <

δ0
2 on Ω.

Step 3: [Estimate of J]. By Lemma 4.1 (ii), it follows

−
∫
BR(0)

Jdx ≤− 1

2

∫
BR(0)

g(u0(tx))w(x− le)dx

+ ϵ

∫
BR(0)

w(x− le) +
1

2
w(x− le)2

+
1

2
w(x− le)u0(tx)dx.

Now we can apply Lemma 4.2 provided τ = t0 because t0 is independent of l. Then
for l ≥ lR, we obtain

−
∫
BR(0)

Jdx ≤− cR
2

∫
BR(0)

w(x− le)dx+
1

2

∫
BR(0)

f(tx)w(x− le)dx

+ ϵ

∫
BR(0)

w(x− le) +
1

2
w(x− le)2 +

1

2
w(x− le)u0(tx)dx.

Now we choose ϵ > 0 so that

ϵ
(
1 +

1

2
∥w∥L∞ +

1

2
∥u0∥L∞

)
≤ cR

4
.

Then we have

(4.5) −
∫
BR(0)

Jdx ≤ −cR
4

∫
BR(0)

w(x− le)dx+
1

2

∫
BR(0)

f(tx)w(x− le)dx.

Similarly we have

(4.6) −
∫
BR(le)

Jdx ≤ −cR
4

∫
BR(le)

u0(tx)dx.
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Finally by Lemma 4.1 (iii), it follows J(x) ≥ 0 for x ∈ Ω. Thus from (4.4), (4.5)
and (4.6), we obtain

I
(
u0 + w

(x
t
− le

))
− I(u0)− I∞(w) ≤ I∞

(
w
(x
t

))
− I∞(w)

+ctN |t− 1|
∫
RN

u0(tx)w(x− le)dx

−cR
4
tN

(∫
BR(0)

w(x− le)dx+

∫
BR(le)

u0(tx)dx
)
.(4.7)

Here we dropped the term f(tx)w(x− le) because f(x) ≥ 0 and w(x) > 0. �
Step 4: [Exponentially decay estimate]. Here we use the exponential decays of

u0 and w. We choose 0 < δ arbitrary. By Proposition 2.1 (iii) and (2.2), we have∫
BR(0)

w(x− le)dx ≥ c

∫
BR(0)

e−(1+δ)|x−le|dx ≥ ce−(1+δ)l,∫
BR(le)

u0(tx)dx ≥ c

∫
BR(le)

e−t(1+δ)|x|dx ≥ ce−t(1+δ)l.

Moreover it follows

(4.8)

∫
RN

u0(tx)w(x− le)dx ≤ c

∫
RN

e−t(1−δ)|x|e−(1−δ)|x−le|dx

If t ≥ 1, then

r.h.s. of (4.8) ≤
∫
RN

e−(1−δ)(|x|+|x−le|)dx

≤ ce−(1−2δ)l

∫
RN

e−δ(|x|+|x−le|)dx

≤ ce−(1−2δ)l.

If t0 ≤ t < 1, then

r.h.s. of (4.8) ≤
∫
RN

e−t(1−δ)(|x|+|x−le|)dx

≤ ce−t(1−2δ)l

∫
RN

e−t0δ(|x|+|x−le|)dx

≤ ce−t(1−2δ)l.

Thus we obtain ∫
RN

u0(tx)w(x− le)dx ≤ ce−(1−2δ)l + ce−t(1−2δ)l.

�
From (4.7) and by step 4, we obtain

I
(
u0 + w

(x
t
− le

))
− I(u0)− I∞(w) ≤ ctN−1|t− 1|(e−t(1−2δ)l + e−(1−2δ)l)

− ctN (e−(1+δ)l + e−t(1+δ)l) + I∞

(
w(

x

t

))
− I∞(w).

Now we choose 0 < δ so that δ < 1
5 .
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Step 5: [Proof of (ii)]. From (4.9), we obtain

I
(
u0 + w

( x

T
− le

))
≤ I(u0) + I∞

(
w
( x

T

))
− cTN (e−(1+δ)l + e−T (1+δ)l)

+ cTN−1|T − 1|(e−T (1−2δ)l + e−(1−2δ)l).

By Young’s inequality, we have

I
(
u0 + w

( x

T
− le

))
≤ I(u0) + I∞

(
w
( x

T

))
+ ϵ(cTN−1|T − 1|)2

+ cϵ(e
−2T (1−2δ)l + e−2(1−2δ)l)

− cTN (e−(1+δ)l + e−T (1+δ)l).

First we take ϵ > 0 so that ϵ(cTN−1|T − 1|)2 + I(u0) + I∞(w( xT )) < 0. Next we

observe that δ < 1
5 implies 2(1 − 2δ) > 1 + δ. Thus we can choose l2 ≥ lR so that

I(u0 + w( xT − le)) < 0 for all l ≥ l2. �
Step 6: We claim that there exists A > 0 such that

(4.9) I∞

(
w
(x
t

))
− I∞(w) ≤ −A(t− 1)2 for all t ∈ (0, T ].

In fact by Proposition 2.1 (ii), we have

I∞

(
w
(x
t

))
− I∞(w) =

1

2
(tN−1 − 1)

∫
RN

|∇w|2dx

+
1

2
(tN − 1)

∫
RN

w2dx− (tN − 1)

∫
RN

G(w)dx

=− 1

2N
((N − 2)tN −NtN−2 + 2)

∫
RN

|∇w|2dx

=− 1

2N
(t− 1)2a(t)

∫
RN

|∇w|2dx,

where a(t) = (N − 2)tN−2 +
∑N−3

k=0 2(k + 1)tk. We can see that a(t) > 0 for all
t ∈ (0, T ]. Thus we obtain

I∞

(
w
(x
t

))
− I∞(w) ≤ −(t− 1)2 ×

( 1

2N
inf

t∈(0,L]
a(t)

∫
RN

|∇w|2dx
)
.

�
Step 7: [Proof of (iii)]. From (4.9) and (4.10), we obtain

I
(
u0 + w

(x
t
− le

))
− I(u0)− I∞(w) ≤ −A(t− 1)2

+ ctN−1|t− 1|(e−(1−2δ)l + e−t(1−2δ)l)

− ctN (e−(1+δ)l + e−t(1+δ)l).

By Young’s inequality, we obtain

I
(
u0 + w

(x
t
− le

))
− I(u0)− I∞(w) ≤−A|t− 1|2 + ϵ(cTN−1)2|t− 1|2

+ cϵ(e
−2(1−2δ)l − e−(1+δ)l)

+ cϵ(e
−2t(1−2δ)l − e−t(1+δ)l).
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Now we choose ϵ > 0 so that ϵ(cTN−1)2 ≤ A
2 . Next we take large l3 ≥ lR so that

e−(1−5δ)t0l2 ≤ 1
4 . Then we have

cϵ(e
−2(1−2δ)l − e−(1+δ)l) ≤ −1

2
e−(1+δ)l, cϵ(e

−2t(1−2δ)l − e−t(1+δ)l) ≤ −1

2
e−t(1+δ)l

for all t ∈ [t0, T ] and l ≥ l3. Thus for l ≥ l3, we obtain

sup
t∈[t0,T ]

I(u0 + w(
x

t
− le)) ≤ −A

2
|t− 1|2 − cϵ

2
(e−t(1+δ)l + e−(1+δ)l) < 0.

Putting l∗ = max{l2, l3}, the proof is complete. �

Hereafter in this paper, we fix l ≥ l∗.

5. Existence of the second solution

In this section, we prove the existence of another nontrivial critical point of I.
To this aim, we use the Monotonicity Trick.

Now by Proposition 4.3, we know that

(5.1) sup
t≥0

I
(
u0 + w

(x
t
− le

))
< I(u0) + c∞, I

(
u0 + w

( x

T
− le

))
< 0.

For λ0 ∈ (0, 1), we put

Iλ0(u) =
1

2

∫
RN

|∇u|2 + (1 +M)u2dx− λ0

∫
RN

G(u) +
M

2
u2dx−

∫
RN

fudx.

Here M is a positive constant defined in (2.4). We choose λ0 < 1 sufficiently close
to 1. Then from (5.1), we have Iλ0(u0) < 0,

(5.2) Iλ0

(
u0(x) +w

( x

T
− le

))
< 0, sup

t∈[0,T ]
Iλ0

(
u0(x) +w

(x
t
− le

))
< I(u0) + c∞.

For λ ∈ [λ0, 1], we define

Iλ(u) =
1

2

∫
RN

|∇u|2 + (1 +M)u2dx− λ

∫
RN

G(u) +
M

2
u2dx−

∫
RN

fudx.

We define

Γ :=
{
γ ∈ C([0, 1],H1(RN )); γ(0) = u0, γ(1) = u0 + w

( ·
T

− le
)}

,

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)).

Since G(s) + M
2 s

2 ≥ 0, it follows

I(u) = I1(u) ≤ Iλ(u) ≤ Iλ0(u) for all u ∈ H1(RN ),

and hence c1 ≤ cλ ≤ cλ0 . Moreover we have ∥u0∥ < ρ0 < ∥u0 + w( xT − le)∥. Then

for all γ ∈ Γ, we have γ([0, 1]) ∩ {u ∈ H1(RN ); ∥u∥ = ρ0} ̸= ∅. Thus by Lemma 3.1
and from (5.2), we obtain

(5.3) 0 < c1 ≤ cλ ≤ cλ0 < I(u0) + c∞.

Next we introduce the Monotonicity Trick due to [15] and [20].



TWO POSITIVE SOLUTIONS FOR AN INHOMOGENEOUS SCALAR FIELD EQUATION 137

Proposition 5.1 ([15], [20]). Let X be a Banach space with the norm ∥ · ∥X and
Λ ⊂ (0,∞) be an interval. We consider a family {Lλ}λ∈Λ of C1-functional on X
of the form:

Lλ(u) = A(u)− λB(u), λ ∈ Λ,

where B(u) ≥ 0 for all u ∈ X and either A(u) → ∞ or B(u) → ∞ as ∥u∥X → ∞.
We assume there exist v0, v1 ∈ X such that

mλ := inf
γ∈ΓX

max
t∈[0,1]

Lλ(γ(t)) > max{Lλ(v0), Lλ(v1)} for all λ ∈ Λ,

where

ΓX = {γ(t) ∈ C([0, 1], X); γ(0) = v0, γ(1) = v1}.
Then for almost every λ ∈ Λ, there exists a sequence {uλn} ⊂ X such that

(i) Lλ(u
λ
n) → mλ, (ii) L′

λ(u
λ
n) → 0, (iii) ∥uλn∥X is bounded.

Moreover a map λ 7→ mλ is left-continuous with respect to λ.

Since G(s) + M
2 s

2 ≥ 0 for all s ≥ 0 and

1

2

∫
RN

|∇u|2 + (1 +M)u2dx−
∫
RN

fudx ≥
(1
2
− ϵ

)
∥u∥2 − 1

ϵ
∥f∥2L2

for any ϵ > 0, we can apply Proposition 5.1. Then for a.e. λ ∈ [λ0, 1], there exists
{un} ⊂ H1(RN ) such that

Iλ(un) → cλ, I
′
λ(un) → 0, {un} is bounded in H1(RN ).

Now we fix λ ∈ [λ0, 1]. Then we may assume that un ⇀ uλ in H1(RN ) for some
uλ ∈ H1(RN ).

Lemma 5.2. uλ satisfies I ′λ(uλ) = 0 and Iλ(uλ) ≤ cλ. Moreover it follows either
Iλ(uλ) = cλ or ∥uλ∥ ≥ ρ0.

Proof. The proof of the first part is rather standard. Applying Concentration Com-
pactness Principle to Iλ, we have

Iλ(un) → cλ = Iλ(uλ) +

k∑
i=1

I∞λ (wi
λ),

∥∥∥un − uλ −
k∑

i=1

wi
λ(· − yin,λ)

∥∥∥ → 0 as n → ∞,

I∞
′

λ (wi
λ) = 0, |yin,λ| → ∞, |yin,λ − yi

′
n,λ| → ∞ for i ̸= i′

for k ∈ N ∪ {0}, {yin,λ} ⊂ RN , wi
λ ∈ H1(RN ) \ {0}. Here

I∞λ (u) :=
1

2

∫
RN

|∇u|2 + (1 +M)u2dx− λ

∫
RN

G(u) +
M

2
u2dx.

We can see that for any nontrivial critical point u of I∞λ , it follows I∞λ (u) > 0. Thus
we have cλ ≥ Iλ(uλ).

Now we have to distinguish into two cases. (i) The case k = 0. In this case, we
have cλ = Iλ(uλ).
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(ii) The case k ≥ 1. In this case, it follows ∥uλ∥ ≥ ρ0. Now we have

(5.4) cλ = Iλ(uλ) +

k∑
i=1

I∞λ (wi
λ) ≥ Iλ(uλ) + kc∞λ ≥ I(uλ) + kc∞λ ,

where c∞λ is the least energy level for I∞λ . We can see that c∞λ ≥ c∞ for λ ≤ 1.
Thus from (5.4), we obtain cλ ≥ I(uλ) + c∞.

On the other hand from (5.3), it follows cλ ≤ cλ0 < I(u0) + c∞. Thus we obtain

(5.5) I(u0) > I(uλ) + (k − 1)c∞ ≥ I(uλ).

If ∥uλ∥ < ρ0, then we have

I(u0) > I(uλ) ≥ inf
u∈Bρ0

I(u) = I(u0).

This is a contradiction. Thus it follows ∥uλ∥ ≥ ρ0. �
Now for a non-decreasing sequence λj → 1 as j → ∞, we apply Proposition 5.1.

Then by Lemma 5.2, there exists {(λj , uj)} ⊂ [λ0, 1] × H1(RN ) with λj ↗ 1 as
j → ∞ such that

(5.6) I ′λj
(uj) = 0, Iλj

(uj) ≤ cλj
and either ∥uj∥ ≥ ρ0 or Iλj

(uj) = cλj
.

Next we prove the boundedness of {uj}.

Lemma 5.3. {uj} is bounded in H1(RN ).

Proof. We argue as in [16]. Now we have

cλj
≥ Iλj

(uj) =
1

2

∫
RN

|∇uj |2dx+
1 + (1− λj)M

2

∫
RN

u2jdx

−λj

∫
RN

G(uj)dx−
∫
RN

fujdx.

On the other hand, by Lemma 2.3, it follows

N − 2

2

∫
RN

|∇uj |2dx = −N

2
(1 + (1− λj)M)

∫
RN

u2jdx+Nλj

∫
RN

G(uj)dx

+N

∫
RN

fujdx+

∫
RN

∇f · xujdx.

Thus we have

(5.7)

∫
RN

|∇uj |2dx = Ncλj
−

∫
RN

∇f · xujdx.

Now by (f2), it follows ∇f · x ∈ L
2N
N+2 (RN ). Then from (5.7), we have

∥∇uj∥2L2 ≤ Ncλ0 + ∥∇f · x∥
L

2N
N+2

∥uj∥
L

2N
N−2

≤ Ncλ0 + c∥∇f · x∥
L

2N
N+2

∥∇uj∥L2 .

By Young’s inequality, we have

(5.8) ∥∇uj∥L2 ≤ c for some c > 0.

Next by (g3) and (g4), we have for all ϵ > 0, there exists cϵ > 0 such that

g(s) ≤ ϵs+ cϵs
N+2
N−2 for all s ≥ 0.
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Since I ′λj
(uj)uj = 0, we have

∥∇uj∥2L2 + (1 + (1− λj)M)u2jdx = λj

∫
RN

g(uj)ujdx+

∫
RN

fujdx.

Since λj ∈ [λ0, 1] and M ≥ 0, we have

∥uj∥2L2 ≤
∫
RN

g(uj)ujdx+

∫
RN

fujdx

≤ ϵ

∫
RN

u2jdx+ cϵ|uj |
2N
N−2dx+ ∥f∥L2∥uj∥L2

≤ ϵ∥uj∥2L2 + c′ϵ∥∇uj∥
2N
N−2

L2 + ϵ∥uj∥2L2 + c′′ϵ ∥f∥2L2

for some c′ϵ, c
′′
ϵ > 0. Thus we have

(1− 2ϵ)∥uj∥2L2 ≤ c∥∇uj∥
2N
N−2

L2 + c.

Combining with (5.8), we obtain the boundedness of {uj}. �

Next we show that {uj} is a Palais-Smale sequence for I.

Lemma 5.4. {uj} is a bounded Palais-Smale sequence for I and it satisfies
lim sup
j→∞

I(uj) ≤ c1. Moreover it follows either I(uj) → c1 or ∥uj∥ ≥ ρ0.

Proof. Now by the definition of Iλ, we have

I(u) = Iλj
(uj) +

(λj − 1)M

2

∫
RN

u2jdx+ (λj − 1)

∫
RN

G(uj)dx,

I ′(uj) = I ′λj
(uj) + (λj − 1)Muj + (λj − 1)g(uj) in H−1.

We observe that
∫
RN G(uj)dx and ∥g(uj)∥H−1 are bounded because of the bound-

edness of ∥uj∥. Since λj → 1 and Iλj
(uj) = 0, we obtain I ′(uj) → 0. Moreover we

have

lim sup
j→∞

I(uj) = lim sup
j→∞

Iλj
(uj) ≤ lim sup

j→∞
cλj

.

Since cλ is left-continuous with respect to λ, it follows limj→∞ cλj
= c1. Thus we

obtain lim supj→∞ I(uj) ≤ c1.
Finally we show either I(uj) → c1 or ∥uj∥ ≥ ρ0. From (5.6), we have ∥uj∥ ≥ ρ0

or Iλj
(uj) = cλj

. If ∥uj∥ ≥ ρ0, we have nothing to prove. If Iλj
(uj) = cλj

, then it
follows

lim
j→∞

I(uj) = lim
j→∞

Iλj
(uj) = lim

j→∞
cλj

= c1.

�

Now we may assume that uj ⇀ u1 in H1(RN ) for some u1 ∈ H1(RN ) because of
the boundedness of {uj}. Then by a standard argument, we have I ′(u1) = 0.

Lemma 5.5. u1 ̸≡ u0, that is, u1 and u0 are different critical points of I.
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Proof. We suppose by contradiction that u1 ≡ u0. Applying Concentration Com-
pactness Principle to I, we have

(5.9) lim
j→∞

I(uj) = I(u1) +

k∑
i=0

I∞(wi), ∥uj − u1 −
k∑

i=0

wi(· − yij)∥ → 0.

We distinguish into three cases: (i) k ≥ 1. (ii) k = 0 and I(uj) → c1. (iii) k = 0
and ∥uj∥ ≥ ρ0.

(i) From (5.3), (5.9) and by Lemma 5.4,

I(u0) + c∞ > c1 ≥ lim sup
j→∞

I(uj) = I(u1) +

k∑
i=0

I∞(wi) ≥ I(u0) + kc∞.

Thus we have (k − 1)c∞ < 0. Since k ≥ 1 and c∞ > 0, this is a contradiction.
(ii) From (5.3) and (5.9), it follows

0 < c1 = lim
j→∞

I(uj) = I(u1) = I(u0).

This contradicts to the fact I(u0) < 0.
(iii) From (5.9), we have

ρ0 ≤ lim inf
j→∞

∥uj∥ = ∥u1∥ = ∥u0∥ < ρ0.

This is a contradiction. Therefore it follows u1 ̸≡ u0. �

Remark 5.6. Suppose that f(x) = f(|x|). Then we can obtain two critical points
easily. Indeed if f(x) = f(|x|), then all positive solution of (1.1) should be radially
symmetric. Thus critical points of I(u) belong toH1

rad(RN ) = {u ∈ H1(RN );u(x) =
u(|x|)}.

In a same argument, we can prove the existence of a local minimizer whose energy
is negative. To obtain the second critical point, we set

Γ̃ := {γ ∈ C([0, 1],H1
rad(RN ); γ(0) = 0, γ(1) = w(

·
T
)},

c̃λ := inf
γ∈Γ̃

max
t∈[0,1]

Iλ(γ(t)).

Then we can see that Iλ(γ(1)) < 0 and c̃1 > 0 if T is sufficiently large. Since the
embedding H1

rad(RN ) ↪→ Lp(RN ) is compact for 2 < p < 2N
N−2 , it follows I(uj) → c̃1

where uj is a bounded Palais-Smale sequence for I constructed by the monotonicity
trick. Especially we don’t need the interaction estimate. Using the compact embed-
ding again, the weak limit u1 of uj satisfies I(u1) = c̃1 > 0 and I ′(u1) = 0. Thus
we obtain two different critical points.
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