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A NOTE ON EXPLICITLY QUASICONVEX SET-VALUED MAPS

DAVIDE LA TORRE, NICOLAE POPOVICI, AND MATTEO ROCCA

Abstract. This note concerns explicitly quasiconvex set-valued maps, defined
on a nonempty convex subset of a real linear space with values in a real linear
space, partially ordered by a solid vectorially closed convex cone. It is shown
that these generalized convex set-valued maps can be characterized in terms of
classical explicit quasiconvexity of certain scalar functions.

1. Introduction

Real-valued explicitly quasiconvex functions (also known under different termi-
nology in the literature) constitute a special class of quasiconvex functions. Enjoying
certain properties similar to that of convex functions, they play an important role
in scalar optimization. For instance, as already mentioned in the classical mono-
graph of Stoer and Witzgall [15], every local minimum of such a function is indeed a
global one. In what concerns multicriteria optimization problems, several interest-
ing questions have been solved assuming that the vector-valued objective function
is componentwise explicitly quasiconvex: the connectedness and contractibility of
efficient sets in [5], [3] and [2], the parametric methods for scalarizing bicriteria
optimization problems in [14] and [10], and the Pareto reducibility of multicriteria
optimization problems in [11] and [12].

The notion of explicit quasiconvexity has been extended in [13] for set-valued
maps and vector-valued functions in a more general framework, where the com-
ponentwise setting doesn’t have any sense, since these functions take values in a
real linear space partially ordered by an arbitrary relatively solid convex cone. The
principal aim of our work is to prove that, under some mild assumptions, explic-
itly cone-quasiconvex set-valued maps can be characterized in terms of classical
explicit quasiconvexity of certain scalar functions, in the same manner as set-valued
cone-quasiconvex maps have been characterized in [4].

The paper is organized as follows. In Section 2 we state some properties of solid
convex cones, which allow us to extend the Gerstewitz’s scalarization function in-
troduced in [6] to our general (algebraic, but not necessarily topological) setting. In
Section 3 we state our main result (Theorem 3.7) concerning the characterization of
explicitly cone-quasiconvex set-valued maps and we derive from it a characterization
of explicitly cone-quasiconvex vector-valued functions.
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2. Gerstewitz’s scalarization functions in algebraic framework

Throughout this paper Y will be a linear space over the field R of real num-
bers. For convenience, let us denote R+ := [0,+∞[, R∗

+ := ]0,+∞[, and R :=
R∪{−∞,+∞}. Recall that the algebraic interior and the relative algebraic interior
of any set M ⊂ Y are given by:

corM := {x ∈ M | ∀ y ∈ Y, ∃λ ∈ R∗
+, x+ [0, λ]·y ⊂ M};

icrM := {x ∈ M | ∀ y ∈ span(M −M), ∃λ ∈ R∗
+, x+ [0, λ]·y ⊂ M}.

The set M is called solid (relatively solid) if corM ̸= ∅ (resp. icrM ̸= ∅). Following
Adán and Novo [1], we say that M is vectorially closed if M = vclM , where the
so-called vector closure of M is given by

vclM := {y ∈ Y | ∃ y′ ∈ Y, ∀λ ∈ R∗
+, ∃λ′ ∈ ]0, λ], y + λ′y′ ∈ M}

= {y ∈ Y | ∃ ỹ ∈ Y, ∃ {λn}n∈N ⊂ R, λn → 0, y + λnỹ ∈ M, ∀n ∈ N}.

Notice that, if M is convex, then vclM = M ∪ {y ∈ Y | ∃x ∈ M, ∀ t ∈ [0, 1[, (1 −
t)x+ ty ∈ M} =: linM , the latter set representing the so-called algebraic closure of
M . When a convex set M is relatively solid, we also have vclM = vcl(icrM) and
(1 − t)·icrM + t·vclM ⊂ icrM for all t ∈ [0, 1[. In the particular case when Y is
endowed with a linear topology, the vector closure of any solid convex set coincides
with its topological closure (see [1] and [7]).

In the sequel we will assume that the real linear space Y is partially ordered by
a solid convex cone C, i.e., ∅ ̸= corC ⊂ C = R+ ·C = C + C ⊂ Y . It is easy to
check that for every e ∈ corC we have:

R∗
+ · e− C = Y ;(2.1)

R∗
+ · e+ C = corC.(2.2)

Lemma 2.1. Assume that C is vectorially closed and let e ∈ corC. Then, for every
x ∈ Y , the set

Ae(x) := {α ∈ R | x ∈ αe− C}

is nonempty and closed. Moreover, if C ̸= Y , then Ae(x) is bounded from below.

Proof. Consider an arbitrary point x ∈ Y . The nonemptiness of Ae(x) follows by
(2.1).

Let (αn)n∈N be a sequence in Ae(x), which converges to some α ∈ R. For all
n ∈ N we have αne−x ∈ C and hence αe−x = (α−αn)e+(αne−x) ∈ vclC = C,
which yields α ∈ Ae(x). Thus Ae(x) is closed.

Assume now that C ̸= Y and suppose on the contrary that Ae(x) is not bounded
from below. Then there exists n0 ∈ N such that −n ∈ Ae(x), i.e., −e ∈ 1

nx + C,
for all n ∈ N ∩ [n0,+∞[, showing that −e ∈ vclC = C. Hence 0Y = e + (−e) ∈
(corC) + C = corC, which yields C = Y , a contradiction. �

Lemma 2.1 shows that, for each couple (e, v) ∈ (corC) × Y , one can define a
function he,v : Y → R by

he,v(y) := minAe(y − v) = min{α ∈ R | y ∈ v + αe− C}, ∀ y ∈ Y.(2.3)
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Notice that, in the particular case when Y is a real topological linear space, partially
ordered by a proper closed convex cone with nonempty interior, the function he,v
actually represents the Gerstewitz’s scalarization function, introduced in [6] (the
so-called smallest strictly monotonic function in [9]).

3. Explicitly quasiconvex functions

In what follows S will be a nonempty convex subset of a real linear space X. For
all points x1, x2 ∈ X we denote ]x1, x2[ := {(1− t)x1 + tx2 | t ∈ ]0, 1[}. Notice that
]x1, x2[ becomes a singleton whenever x1 = x2.

Definition 3.1. An extended real-valued function φ : S → R is said to be explicitly
quasiconvex if for all x1, x2 ∈ S and x ∈ ]x1, x2[ one has

φ(x) ≤ max{φ(x1), φ(x2)},
where the strict inequality holds whenever φ(x1) ̸= φ(x2).

Proposition 3.2. For any function φ : S → R the following assertions are equivalent:

1◦ φ is explicitly quasiconvex.
2◦ For all λ ∈ R ∪ {+∞} and x1, x2 ∈ S with φ(x1) < λ and φ(x2) ≤ λ one

has φ(x) < λ for every x ∈ ]x1, x2[.

Proof. 1◦ ⇒ 2◦. Assume that 1◦ holds and let λ ∈ R ∪ {+∞}. Let x1, x2 ∈ S
with φ(x1) < λ, φ(x2) ≤ λ, and let x ∈ ]x1, x2[. If φ(x1) = φ(x2), then 1◦ implies
φ(x) ≤ max{φ(x1), φ(x2)} = φ(x1) < λ. Otherwise, if φ(x1) ̸= φ(x2), then we can
also deduce by 1◦ that φ(x) < max{φ(x1), φ(x2)} ≤ λ. Hence 2◦ holds.

2◦ ⇒ 1◦. Assume that 2◦ holds and consider some arbitrary points x1, x2 ∈ S
and x ∈ ]x1, x2[. Without loss of generality we can assume that φ(x1) ≤ φ(x2).

Case 1 : φ(x1) = φ(x2).
If φ(x2) = +∞, then φ(x) ≤ +∞ = max{φ(x1), φ(x2)}. Otherwise, if φ(x2) ∈ R,

then for each real number ε > 0, denoting λε := φ(x2) + ε, we have φ(x1) =
φ(x2) < λε. By 2◦ we can deduce that φ(x) < λε and then, letting ε ↘ 0, we get
φ(x) ≤ φ(x2) = max{φ(x1), φ(x2)}.

Case 2 : φ(x1) ̸= φ(x2), i.e., φ(x1) < φ(x2).
In this case, denoting λ := φ(x2), we have λ ∈ R ∪ {+∞}, φ(x1) < λ, and

φ(x2) ≤ λ. By 2◦ it follows that φ(x) < λ = max{φ(x1), φ(x2)}. �

Definition 3.3. ([13]) A set-valued map F : S → 2Y , defined on a nonempty
convex subset S of X, is said to be explicitly C-quasiconvex if for all x1, x2 ∈ S and
x ∈ ]x1, x2[ the following inclusion holds:

(F (x1) + corC) ∩ (F (x2) + C) ⊂ F (x) + corC.

A function f : S → Y is called explicitly C-quasiconvex if the set-valued map
F : S → 2Y , defined for all x ∈ S by F (x) = {f(x)}, is explicitly C-quasiconvex.

Proposition 3.4. Let Φ : S → 2R be a set-valued map and let φ : S → R be its
marginal function, defined for all x ∈ S by φ(x) = inf Φ(x). Then the following
hold:

a) If φ is explicitly quasiconvex, then Φ is explicitly R+-quasiconvex.
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b) If Φ is explicitly R+-quasiconvex and its values are nonempty and closed,
then φ is explicitly quasiconvex.

Proof. a) Assuming that φ is explicitly quasiconvex, consider some arbitrary x1, x2 ∈
S and x ∈ ]x1, x2[. Then, for any λ ∈ (Φ(x1) + intR+) ∩ (Φ(x2) + R+), there exist
y1 ∈ Φ(x1) and y2 ∈ Φ(x2) such that φ(x1) ≤ y1 < λ and φ(x2) ≤ y2 ≤ λ. Since φ is
explicitly quasiconvex, it follows by Proposition 3.2 that φ(x) < λ, i.e., inf Φ(x) < λ,
which shows that λ ∈ Φ(x)+intR+. We infer that (Φ(x1) + intR+)∩(Φ(x2) + R+) ⊂
Φ(x) + intR+, proving that Φ is explicitly R+-quasiconvex.

b) Since for all x ∈ S the nonempty set Φ(x) is closed, we actually have φ(x) =
minΦ(x), hence the conclusion follows from Proposition 3.2. �
Remark 3.5. The closeness assumption in Proposition 3.4 (b) is essential, as shown
below.

Example 3.6. Let Φ : R → 2R be the set-valued map defined by

Φ(x) :=

{
]1,+∞[ if x ̸= 0
[0,+∞[ if x = 0.

It is easily seen that for all x1, x2 ∈ R and λ ∈ (Φ(x1) + intR+)∩ (Φ(x2) + R+), we
actually have λ > 1, hence λ ∈ Φ(x)+ intR+ for all x ∈]x1, x2[. Thus Φ is explicitly
R+-quasiconvex. However, its marginal function, given by

φ(x) := inf Φ(x) =

{
1 if x ̸= 0
0 if x = 0,

is not explicitly quasiconvex.

Theorem 3.7. Consider an arbitrary point e ∈ corC and let F : S → 2Y be a
set-valued map such that F (x)+C is nonempty and vectorially closed for all x ∈ S.
For any v ∈ Y , define the set-valued map Φv : S → 2R by

Φv(x) := {α ∈ R | v + αe ∈ F (x) + C} for all x ∈ S,

and denote by φv : S → R its marginal function, i.e.

φv(x) = inf Φv(x) for all x ∈ S.

The following assertions are equivalent:

1◦ The map F is explicitly C-quasiconvex.
2◦ For every v ∈ Y the map Φv is explicitly R+-quasiconvex.
3◦ For every v ∈ Y the function φv is explicitly quasiconvex.

Proof. In order to prove that 2◦ ⇔ 3◦ one can apply Proposition 3.4 for Φv in the
role of Φ, where v ∈ Y . We just have to check that Φv(x) is nonempty and closed
for any x ∈ S. Indeed, F (x) + C being nonempty, we can choose y ∈ F (x). Since
e ∈ corC, it follows by (2.1) that ∅ ≠ {α ∈ R | y − v ∈ αe − C} ⊂ Φv(x). Thus
Φv(x) ̸= ∅. Let (αn)n∈N be a sequence in Φv(x), converging to α ∈ R. Since v+αe =
v+αne+(α−αn)e for all n ∈ N, we infer that v+αe ∈ vcl(F (x)+C) = F (x)+C,
hence α ∈ Φv(x). Thus Φv(x) is closed.

Assume now that 1◦ holds. In order to prove 2◦, consider an arbitrary v ∈ Y ,
let x1, x2 ∈ S, let x ∈ ]x1, x2[, and let λ ∈ (Φv(x1) + intR+) ∩ (Φv(x2) + R+).
Then there exist α1 ∈ Φv(x1) and α2 ∈ Φv(x2) such that α1 < λ and α2 ≤ λ.
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We have v + λe = v + α1e + (λ − α1)e ∈ F (x1) + C + corC = F (x1) + corC
and v + λe = v + α2e + (λ − α2)e ∈ F (x2) + C + C = F (x2) + C. By 1◦ it
follows that v + λe ∈ F (x) + corC. Due to (2.2), we can find τ > 0 such that
v + λe ∈ τe + F (x) + C, which yields λ ∈ Φv(x) + τ ⊂ Φv(x) + intR+. Hence
(Φv(x1) + intR+) ∩ (Φv(x2) + R+) ⊂ Φv(x) + intR+. Thus 2

◦ holds.
Finally, assume that 2◦ holds and suppose to the contrary that 1◦ is not true.

Then there exist some points x01, x
0
2 ∈ S, x0 ∈ ]x01, x

0
2[, and y0 ∈

(
F (x01) + corC

)
∩(

F (x02) + C
)
\ (F (x0) + corC). By (2.2) we can find some τ0 > 0 such that y0 ∈

τ0e+ F (x01) + C, which yields 0 ∈ Φy0(x
0
1) + intR+. Since y0 ∈ F (x02) + C, we also

have 0 ∈ Φy0(x
0
2) ⊂ Φy0(x

0
2) +R+. Hence 0 ∈

(
Φy0(x

0
1) + intR+

)
∩
(
Φy0(x

0
2) + R+

)
.

Taking into account that Φy0 is explicitly R+-quasiconvex (by 2◦), we infer that

0 ∈ Φy0(x
0) + intR+. Thus there exists β > 0 such that −β ∈ Φy0(x

0), i.e.,

y0−βe ∈ F (x0)+C. It follows that y0 ∈ F (x0)+C+βe ⊂ F (x0)+C+R∗
+ ·corC =

F (x0) + corC, which contradicts the fact that y0 /∈ F (x0) + corC. �

Corollary 3.8. Assume that C ̸= Y is vectorially closed and consider an arbitrary
point e ∈ corC. For any vector-valued function f : S → Y the following assertions
are equivalent:

1◦ f is explicitly C-quasiconvex.
2◦ The composite function he,v ◦ f : S → R is explicitly quasiconvex, for every

v ∈ Y .

Proof. The desired equivalence directly follows from Theorem 3.7, applied to the
single-valued map defined as F (x) := {f(x)} for all x ∈ S. Indeed, since C is
vectorially closed, the set F (x) +C = f(x) +C is nonempty and vectorially closed,
for all x ∈ S. Moreover, for all v ∈ Y and x ∈ S, we have φv(x) := inf Φv(x) =
inf{α ∈ R | v+αe ∈ f(x)+C}. In view of (2.3), this means that φv(x) = he,v(f(x))
for all x ∈ S, i.e., φv = he,v ◦ f . �

Remark 3.9. The well-known characterization of cone-quasiconvex vector-valued
functions obtained by Dinh The Luc in [9] (Proposition 1.6.3), as well as the charac-
terization of cone-quasiconvex set-valued maps established by Benoist and Popovici
in [4] (Theorem 3.2) under the framework of a real topological vector space, par-
tially ordered by a closed convex cone with nonempty interior, can be extended in
the general setting of our paper. Moreover, by replacing the linear segments by
continuous arcs, as in [8], further generalizations of these characterization theorems
may be obtained for an appropriate definition of explicitly cone-quasiconvexity.
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