Journal of Nonlinear and Convex Analysis Volume 12, Number 1, 2011, 103–111

ON IC-COLORINGS FOR COMPLETE PARTITE GRAPHS

LI-MIN LIU AND SHYH-NAN LEE*

ABSTRACT. Some systematic techniques for proving IC-colorings and finding ICindices of complete *d*-partite graphs are established. A complete solution of the maximal colorings for $K_{1,1,n}$ is obtained.

1. INTRODUCTION

For a given graph G with the vertex set V(G), a coloring $f: V(G) \to \mathbb{N}$ can produce α if $\alpha = \sum_{u \in V(H)} f(u)$ for some connected subgraph H of $G(\sum_{u \in V(H)} f(u) = 0$ if $V(H) = \emptyset$). The coloring f is an IC-coloring of G if f can produce each $\alpha \in \{0, 1, \dots, S(f)\}$, where S(f) is the maximum number that can be produced by f. The IC-index M(G) of the graph G is the number max $\{S(g) \mid g \text{ is an IC-coloring of } G\}$. A coloring f of G is maximal if it is an ICcoloring of G such that S(f) = M(G). The problem of finding IC-indices and IC-colorings of finite graphs was introduced by Salehi et al. in 2005 [7], and it can be considered as a derived problem of the postage stamp problem in number theory, which has been extensively studied [1, 2, 3, 4, 5]. A graph G is complete d-partite, $1 < d < \infty$, if V(G) can be partitioned into d disjoint partite sets such that two distinct vertices of G are adjacent if and only if they are in different partite sets. The IC-index of a complete bipartite graph (i.e., d = 2) was obtained by Shiue and Fu [8]. In this paper, we shall study the theory of IC-colorings for complete d-partite graphs by means of partite sets and establish some techniques which may be used to prove IC-colorings and find maximal colorings.

2. Definitions and notations

A complete d-partite graph G is a family $\{V_r\}_{r=1}^d$ of disjoint finite sets, where $1 < d < \infty$. The class of all complete d-partite graphs $G = \{V_r\}_{r=1}^d$ with $|V_r| = \alpha_r$ $(1 \leq r \leq d)$ is denoted by $K_{\alpha_1,\alpha_2,\cdots,\alpha_d}$. We shall assume $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_d$. Let $G = \{V_r\}_{r=1}^d \in K_{\alpha_1,\alpha_2,\cdots,\alpha_d}$ be given. We call $V(G) := \bigcup_{r=1}^d V_r$ the vertex set of G and each V_r a partite set of G. We write $u \sim v$ if $u, v \in V_r$ for some $1 \leq r \leq d$, that is, u and v are in the same partite set. A subset H of V(G) is an IC-subgraph (induced connected subgraph) of G if $H \not\subset V_r$ for all $1 \leq r \leq d$ whenever |H| > 1. The collection of all IC-subgraphs of G is denoted by \mathcal{B}_G . The graph G is connected if $V(G) \in \mathcal{B}_G$. For each coloring $f : V(G) \to \mathbb{N}$ of G there is a corresponding sum operator $S_f : \mathcal{B}_G \to \mathbb{Z}$ which is given by

Copyright © 2011 Yokohama Publishers *http://www.ybook.co.jp*

²⁰¹⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. IC-coloring, IC-index, complete d-partite graph.

^{*}Corresponding Author. This research was supported by NSC grant 98-2115-M-033-005.

 $S_f(H) := \sum_{u \in H} f(u) \ (S_f(H)) := 0$ if $H = \emptyset$. We call $S_f(H)$ the sum of f on H and $S(f) := \max S_f(\mathcal{B}_G)$ the *IC-sum* of f, where $S_f(\mathcal{B}_G) := \{S_f(H) \mid H \in S_f(\mathcal{B}_G)\}$ \mathcal{B}_G is the range of S_f . We see that $S(f) = S_f(G)$ if G is connected. We say that $\alpha \in \mathbb{Z}$ can be produced by f if $\alpha \in S_f(\mathcal{B}_G)$ and that f is an *IC*-coloring of G if $S_f(\mathcal{B}_G) = \{ \alpha \in \mathbb{Z} \mid 0 \le \alpha \le S(f) \}$, that is, f can produce each of the integers $0, 1, \dots, S(f)$. The *IC-index* of the class $K_{\alpha_1, \alpha_2, \dots, \alpha_d}$ is $M(K_{\alpha_1, \alpha_2, \dots, \alpha_d}) :=$ $\max\{S(g) \mid g \text{ is an IC-coloring of some member in } K_{\alpha_1,\alpha_2,\dots,\alpha_d}\}$ and any maximizer is a maximal coloring (or a maximal IC-coloring) for $K_{\alpha_1,\alpha_2,\cdots,\alpha_d}$. When $f: V(G) \to C$ N is one-to-one, that is, $f(u) \neq f(v)$ whenever $u \neq v$, V(G) and f(V(G)) can be put in a one-to-one correspondence, and we may identify u with f(u) for all $u \in f(G)$. We shall use the notation $f = \langle V_1, V_2, \cdots, V_d \rangle$ to denote the one-toone coloring of the graph $G = \{V_r\}_{r=1}^d$ in which f is the identity function on the vertex set V(G) (thus G is a family of disjoint subsets of N in this case) and we shall write $f = \langle V_1, V_2, \cdots, V_d \rangle \simeq K_{\alpha_1, \alpha_2, \cdots, \alpha_d}$ if $G = \{V_r\}_{r=1}^d \in K_{\alpha_1, \alpha_2, \cdots, \alpha_d}$. Two one-to-one colorings $f_i : V(G_i) \to \mathbb{N}$, where $G_i = \{V_r^{(i)}\}_{r=1}^d \in K_{\alpha_1,\alpha_2,\cdots,\alpha_d}$ for i = 1, 2, are *IC*-equivalent if $\{f_1(V_r^{(1)}) | 1 \le r \le d\} = \{f_2(V_r^{(2)}) | 1 \le r \le d\}$. We see that $h := f_2^{-1} \circ f_1$ is a one-to-one correspondence from $V(G_1)$ to $V(G_2)$ satisfying $f_1(u) = f_2(h(u))$ for all $u \in V(G_1)$ and $\{h(V_r^{(1)}) | 1 \le r \le d\} = \{V_r^{(2)} | 1 \le r \le d\}$, so that $h(H) \in \mathcal{B}_{G_2}$ if and only if $H \in \mathcal{B}_{G_1}$ for all $H \subset V(G_1)$, it follows that f_1 can produce some $\alpha \in \mathbb{Z}$ if and only if f_2 can, thus f_1 and f_2 share the same property of being an IC-coloring or being a maximal coloring. We also see that every one-toone coloring of some complete *d*-partite graph is IC-equivalent to a coloring of the form $f = \langle V_1, V_2, \cdots, V_d \rangle$. For a given one-to-one coloring $f = \langle V_1, V_2, \cdots, V_d \rangle$ with $V(G) \neq \emptyset$, we shall write $V(G) = \{x_1, x_2, \cdots, x_k\}, s_i = x_1 + x_2 + \cdots + x_i \ (1 \le i \le k),$ where $x_1 < x_2 < \cdots < x_k$ and k = |V(G)|, and define $s_0 = 0$, $x_{k+1} = s_{k+1} = \infty$ and $f^+ = \{x_i | x_i = s_{i-1} + 1\}$. If $G = \{V_r\}_{r=1}^d \in K_{\alpha_1,\alpha_2,\cdots,\alpha_d}$ and $u \neq v$ where u, $v \in V(G)$, then a subset H of V(G) is uv-preconnected provided $H \cap \{u, v\} = \emptyset$, $H \cup \{u\} \in \mathcal{B}_G$ and $H \cup \{v\} \in \mathcal{B}_G$ and the collection of all uv-preconnected subsets of V(G) is denoted by $\mathcal{B}_G(u, v)$. For a coloring $f: V(G) \to \mathbb{N}$, if f(u) = f(v)for some $u \neq v$ then $S_f(H \cup \{u\}) = S_f(H \cup \{v\})$ for all $H \in \mathcal{B}_G(u, v)$ so that $|S_f(\mathcal{B}_G)| \leq |\mathcal{B}_G| - |\mathcal{B}_G(u, v)|$, it follows that if $|S_f(\mathcal{B}_G)| > |\mathcal{B}_G| - \min_{u \neq v} |\mathcal{B}_G(u, v)|$ then f is one-to-one, here $|V(G)| \ge 2$.

3. Complete *d*-partite graphs and IC-colorings

Proposition 3.1. Let $G = \{V_r\}_{r=1}^d \in K_{\alpha_1,\alpha_2,\cdots,\alpha_d}$. Then:

- (a) $|\mathcal{B}_G| = 2^{\sum_{r=1}^d \alpha_r} \sum_{r=1}^d 2^{\alpha_r} + \sum_{r=1}^d \alpha_r + d.$ (b) $|\mathcal{B}_G(u, v)| = 2^{\left(\sum_{r=1}^d \alpha_r\right) 2} 2^{\alpha_s 2} + 1$ if $\{u, v\} \subset V_s$ and $u \neq v$ for some
- (c) $|\mathcal{B}_{G}(u,v)| = 2^{\left(\sum_{r=1}^{d} \alpha_{r}\right)-2} 2^{\alpha_{s}-1} 2^{\alpha_{t}-1} + 2$ if $u \in V_{s}$ and $v \in V_{t}$ for some $1 \leq s < t \leq d$.
- (d) $\min |\mathcal{B}_G(u,v)| = 2^{\left(\sum_{r=1}^d \alpha_r\right) 2} 2^{\alpha_{d-1} 1} 2^{\alpha_d 1} + 2 \text{ if } \alpha_{d-1} > 0.$

Proof. We denote by 2^T the collection of all subsets of a given set T. We have $\mathcal{B}_G = 2^{V(G)} \setminus \bigcup_{r=1}^d (2^{V_r} \setminus \{\{\emptyset\} \cup (\bigcup_{u \in V_r} \{\{u\}\})))$, so that $|\mathcal{B}_G| = 2^{|V(G)|} - \sum_{r=1}^d (2^{|V_r|} - (1+|V_r|))$ and (a) follows. (b) follows from $\mathcal{B}_G(u,v) = 2^{V(G) \setminus \{u,v\}} \setminus (2^{V_s \setminus \{u,v\}} \setminus \{\emptyset\}) \cup (2^{V_t \setminus \{v\}} \setminus \{\emptyset\}))$ if $\{u,v\} \subset V_s$ and $u \neq v$. (c) follows from $\mathcal{B}_G(u,v) = 2^{V(G) \setminus \{u,v\}} \setminus ((2^{V_s \setminus \{u\}} \setminus \{\emptyset\}) \cup (2^{V_t \setminus \{v\}} \setminus \{\emptyset\})))$ if $u \in V_s$ and $v \in V_t$ with $s \neq t$. To see (d), we recall that $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_d$. If the right side of the equality in (d) is subtracted from that in (b), we obtain $2^{\alpha_d-1} - 2^{\alpha_s-2} + 2^{\alpha_{d-1}-1} - 1 > 0$, and the right side of the equality in (c) minus that in (d) is $2^{\alpha_{d-1}-1} - 2^{\alpha_s-1} + 2^{\alpha_d-1} - 2^{\alpha_t-1} \geq 0$. These two inequalities imply (d).

Proposition 3.2. Let $G = \{V_r\}_{r=1}^d \in K_{\alpha_1,\alpha_2,\cdots,\alpha_d}, f : V(G) \to \mathbb{N}, V(G) = \{u_1, u_2, \cdots, u_k\}, x_i = f(u_i) \ (1 \le i \le k) \ such \ that \ x_1 \le x_2 \le \cdots \le x_k \ and \ let \ s_0 = 0, \ s_i = x_1 + x_2 + \cdots + x_i \ (1 \le i \le k) \ and \ s_{k+1} = \infty.$ Then:

- (a) If $s_{j-1} < \alpha < x_{j+1}$ ($\alpha \in \mathbb{N}$) for some $1 \le j \le k$, then u_j must be used in producing α in the sense that if $\alpha = \sum_{u \in H} f(u)$ then $u_j \in H$.
- (b) Let α , $p, q \in \mathbb{Z}$ be such that $1 \leq p < q \leq k$. If $x_i \leq s_{i-1} + \alpha$ for all $p < i \leq q$ then $s_q + \alpha \leq 2^{q-p}(s_p + \alpha)$.

Proof. If $s_{j-1} < \sum_{u \in H} f(u) < x_{j+1}$ then $H \not\subset \{u_1, u_2, \cdots, u_{j-1}\}$ and $H \subset \{u_1, u_2, \cdots, u_j\}$. This proves (a). If $x_i \leq s_{i-1} + \alpha$ then $s_i + \alpha = s_{i-1} + x_i + \alpha \leq 2(s_{i-1} + \alpha)$, thus $s_q + \alpha \leq 2(s_{q-p} + \alpha) \leq \cdots \leq 2^{q-1}(s_p + \alpha)$ and (b) follows. \Box

Proposition 3.3. Let $f = \langle V_1, V_2, \cdots, V_d \rangle \simeq K_{\alpha_1, \alpha_2, \cdots, \alpha_d}$ be an IC-coloring and $\alpha_{d-1} \neq 0$. Then:

- (a) $x_i \le s_{i-1} + 1$ for all $1 \le i \le k$.
- (b) If $x_i \in f^+$ and $s_{i-1} < x_i + x_j < x_{j+1}$ for some $1 \le i < j \le k$ then $\{x_i, x_j\} \in \mathcal{B}_G \text{ and } S_f(H) = x_i + x_j \text{ only if } H = \{x_i, x_j\}.$

Proof. As $\alpha_{d-1} \neq 0$, $G = \{V_r\}_{r=1}^d$ is connected. As f is an IC-coloring of G and G is connected, f can produce $0, 1, \dots, s_k = S(f)$. If $s_{j-1} + 1 < x_j$ for some $1 \leq j \leq k$, then $s_{j-1} < s_{j-1} + 1 < x_{j+1}$, so that, by Proposition 3.2 (a) with $\alpha = s_{j-1} + 1, x_j$ should be used in producing $s_{j-1} + 1$, which contradicts $s_{j-1} + 1 < x_j$. This proves (a). To see (b), let $x_i + x_j = S_f(H)$. By Proposition 2(a) with $\alpha = x_i + x_j$, we obtain $x_j \in H$. As $x_i \in f^+$, we have $s_{i-1} < s_{i-1} + 1 = x_i < x_{i+1}$, so that, by Proposition 3.2 (a) again, x_i must be used in producing x_i . Hence $H = \{x_i, x_j\} \in \mathcal{B}_G$.

Proposition 3.4. Let α , x_1 , x_2 , \cdots , $x_k \in \mathbb{N}$, $s_0 = 0$, $s_i = x_1 + x_2 + \cdots + x_i (1 \le i \le k)$ and $\alpha \le s_k$. Assume that $x_i \le s_{i-1} + 1$ for all $1 \le i \le k$, then $\alpha = x_{j_1} + x_{j_2} + \cdots + x_{j_p}$ for some $1 \le j_p < \cdots < j_2 < i_1 \le k$.

Proof. As $0 = s_0 < s_1 < \cdots < s_k$ and $0 < \alpha \le s_k$, there is a unique $1 \le j_1 \le k$ such that $s_{j_1-1} < \alpha \le s_{j_1}$, so that $s_{j_1-1} - x_{j_1} < \alpha - x_{j_1} \le s_{j_1} - x_{j_1}$, that is, $(s_{j_1-1}+1) - x_{j_1} \le \alpha - x_{j_1} \le s_{j_1-1}$. By assumption with $i = j_1$, we have $0 \le \alpha - x_{j_1} \le s_{j_1} - 1$. If $\alpha - x_{j_1} \ne 0$ then we have $0 = s_0 < s_1 < \cdots < s_{j_1-1}$ and $0 < \alpha - x_{j_1} \le s_{j_1-1}$. A similar argument shows that $0 \le \alpha - x_{j_1} - x_{j_2} \le s_{j_2-1}$ for some unique $1 \le j_2 \le j_1 - 1$. Continuing in this manner if necessary, we will eventually obtain $\alpha - x_{j_1} - x_{j_2} - \cdots - x_{j_p} = 0$ for some $1 \le j_p < \cdots < j_2 < j_1 \le k$. \Box

The following statements (I1)-(I7) will be used frequently in finding maximal colorings and they hold for any IC-coloring $f = \langle V_1, V_2, \cdots, V_d \rangle \simeq K_{\alpha_1, \alpha_2, \cdots, \alpha_d}$ with $\alpha_{d-1} \neq 0.$

- (I1) If $b_i \leq s_i$ $(b_i \in \mathbb{R})$ for some $1 \leq i \leq k$ then $b_i s_{i-1} \leq x_i \leq s_{i-1} + 1$.
- (I2) If $1 \le p < q \le k$ $(p, q \in \mathbb{N})$ then $s_q < 2^{q-p}(s_p + 1)$.
- (I3) If $1 \le p < q \le k$ $(p, q \in \mathbb{N})$ and $x_i \notin f^+$ for all $p < i \le q$ then $s_q \le 2^{p-q} s_p$.
- (I4) If $x_i \in f^+$ and $s_{j-1} < x_i + x_j < x_{j+1}$ for some $1 \leq i < j \leq k$ then $\{x_i, x_j\} \in \mathcal{B}_G.$
- (I5) If $x_i \in f^+$ and $x_i \sim x_j$ for some $1 \leq i < j \leq k$ then $x_j \leq s_{j-1} x_i$ or $x_{j+1} \le x_i + x_j.$
- (I6) If $s_j \leq s_{j-1} x_i$ for some $i, j \in \{1, 2, \dots, k\}$ then $s_j \leq 2s_{j-1} x_i$.
- (I7) If $x_{j+1} \le x_i + x_j$ for some $i, j \in \{1, 2, \dots, k\}$ then $s_{j+1} \le 3s_{j-1} + 2 + x_i$.

(I1) follows from $x_i = s_i - s_{i-1}$ and Proposition 3.3(a). (I2) and (I3) follow from (I1) and Proposition 3.2(b). (I4) follows from Proposition 3.3(b). (I5) is a contrapositive of (I4). (I6) is an immediate consequence of $s_i = s_{i-1} + x_i$. Finally, the inequalities $x_j \leq s_{j-1} + 1$ and $x_{j+1} \leq x_i + x_j$ imply $s_{j+1} = s_{j-1} + x_j + x_{j+1} \leq s_{j-1} + 2x_j + x_i \leq x_j$ $3s_{j-1} + 2 + x_i$ and (I7) follows.

4. MAXIMAL COLORINGS FOR $K_{1,1,n}$

The aim of this section is to illustrate some techniques in proving IC-colorings and finding maximal colorings by exploring the class $K_{1,1,n}$. Numbers in f^+ are usually printed in **boldface**.

Theorem 4.1. Up to IC-equivalence, we have:

- (a) The maximal coloring for $K_{1,1,1}$ is $\langle \{1\}, \{2\}, \{4\} \rangle$.
- (b) The maximal colorings for $K_{1,1,2}$ are
 - (1) $\langle \{3\}, \{7\}, \{1, 2\} \rangle$,
 - (2) $\langle \{\mathbf{2}\}, \{\mathbf{4}\}, \{\mathbf{1}, 6\} \rangle$,
 - (3) $\langle \{\mathbf{1}\}, \{6\}, \{\mathbf{2}, \mathbf{4}\} \rangle$,
 - (4) $\langle \{1\}, \{2\}, \{3, 7\} \rangle$.
- (c) The maximal colorings for $K_{1,1,n}$, $n \geq 3$, are

 - (1) $\langle \{2\}, \{4\}, \{1, 6, \cdots, 3 \cdot 2^{n-1}\} \rangle$, (2) $\langle \{1\}, \{2\}, \{3, 6, \cdots, 3 \cdot 2^{n-2}, 3 \cdot 2^{n-1} + 1\} \rangle$.
 - Consequently, the IC-index of $K_{1,1,n}$ is $M(K_{1,1,n}) = 3 \cdot 2^n + 1$.

Theorem 4.1 will follow from the following Lemmas 4.2–4.9.

Lemma 4.2. The colorings in Theorem 4.1 are IC-colorings.

Proof. We shall see that each $f = \langle V_1, V_2, V_3 \rangle$ in Theorem 4.1 satisfies $x_i \leq s_{i-1} + 1$ for all $1 \le i \le n+2$. Since $G = \{V_1, V_2, V_3\} \in K_{1,1,n}$ is connected, $S(f) = s_{n+2}$. From Proposition 3.4 with k = n + 2, it follows that if $\alpha \in \mathbb{N}$ and $\alpha \leq S(f)$ then $\alpha = \sum_{x \in H} x$ for some $H \subset V(G)$. Thus α can be produced by f if $H \in \mathcal{B}_G$. When $H \notin \mathcal{B}_G$, by modifying H, we shall obtain some $K \in \mathcal{B}_G$ such that $\alpha = S_f(K)$.

(a) The coloring $f = \langle \{1\}, \{2\}, \{4\} \rangle \simeq K_{1,1,1}$ satisfies $x_i = s_{i-1} + 1$ for $i \in I$ $\{1, 2, 3\}$ and every subset H of V(G) is in \mathcal{B}_G . Hence f is an IC-coloring.

- (b) (1) $f = \langle \{3\}, \{1, 2\} \rangle$ satisfies $x_i = s_{i-1} + 1$ for $i \in \{1, 2, 4\}$ and $x_i = s_{i-1}$ for i = 3. The only subset of V(G) not an IC-subgraph is $\{x_1, x_2\}$ and $x_1 + x_2 = x_3 = S_f(\{x_3\})$. Hence f is an IC-coloring.
 - (2) $f = \langle \{2\}, \{4\}, \{1, 6\} \rangle$ satisfies $x_i = s_{i-1} + 1$ for $i \in \{1, 2, 3\}$ and $x_i = s_{i-1} 1$ for i = 4. We see that if $H \subset V(G)$ and $H \notin \mathcal{B}_G$ then $H = \{x_1, x_4\}$. As $x_1 + x_4 = S_f(\{x_1, x_2, x_3\}), f$ is an IC-coloring.
 - (3) $f = \langle \{1\}, \{6\}, \{2, 4\} \rangle$ satisfies $x_i \leq s_{i-1} + 1$ for all $1 \leq i \leq 4$ as in the previous one. As $x_2 + x_3 = S_f(\{x_4\})$, f is an IC-coloring.
 - (4) $f = \langle \{1\}, \{2\}, \{3, 7\} \rangle$ is an IC-coloring because $x_i \leq s_{i-1} + 1$ for all $1 \leq i \leq 4$ and $x_3 + x_4 = S_f(\{x_1, x_2, x_4\})$.
- (c) (1) $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ $(n \ge 3)$ is the coloring satisfying $V_1 = \{x_2\}$, $V_2 = \{x_3\}, V_3 = \{x_1\} \cup \{x_4, x_5, \cdots, x_{n+2}\}, x_i = s_{i-1} + 1$ for $i \in \{1, 2, 3\}$, and $x_i = s_{i-1} - 1$ for $i \in \{4, 5, \cdots, n+2\}$. Let $H \subset V(G), H \notin \mathcal{B}_G$. Then |H| > 1 and $H \subset V_3$. If $x_j = \min(V_3 \setminus \{x_1\})$ then $j \ge 4$ and $x_j = s_{j-1} - 1 = (x_1 + x_2 + \cdots + x_{j-1}) - x_1$, so that $\sum_{x \in H} x = S_f(K)$, where $K = (H \setminus \{x_j\}) \cup \{x_2, x_3, \cdots, x_{j-1}\}$. Hence f is an IC-coloring.
 - (2) We have $V_1 = \{x_1\}, V_2 = \{x_2\}, V_3 = \{x_3, x_4, \cdots, x_{n+2}\}, x_i = s_{i-1} + 1$ for $i \in \{1, 2, n+2\}$, and $x_i = s_{i-1}$ for $i \in \{3, 4, \cdots, n+1\}$. If $|H| > 1, H \subset V_3$ and $x_j = \min(H \setminus \{x_{n+2}\})$, then $3 \leq j \leq n+1$ and $x_j = s_{j-1} = x_1 + x_2 + \cdots + x_{j-1}$, so that $\sum_{x \in H} x = S_f(K)$, where $K = (H \setminus \{x_j\}) \cup \{x_1, x_2, \cdots, x_{j-1}\}$. Hence $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ $(n \geq 3)$ is an IC-coloring.

Lemma 4.3. Maximal colorings for $K_{1,1,n}$ are one-to-one.

Proof. By Lemma 4.2, we have $M(K_{1,1,n}) \geq 3 \cdot 2^n + 1$. If $G \in K_{1,1,n}$ and $f: V(G) \rightarrow \mathbb{N}$ is maximal for $K_{1,1,n}$ then $|S_f(\mathcal{B}_G)| = |\{0, 1, 2, \cdots, M(K_{1,1,n})\}| = M(K_{1,1,n}) + 1$, and, by Proposition 3.1, $|\mathcal{B}_G| - \min_{u \neq v} |\mathcal{B}_G(u, v)| = 3 \cdot 2^n - 2^{n-1} + n$. It follows that $|S_f(\mathcal{B}_G)| - (|\mathcal{B}_G| - \min_{u \neq v} |\mathcal{B}_G(u, v)|) \geq 2^{n-1} - n + 2 > 0$. Hence f is one-to-one as mentioned at the end of Section 2.

For convenience sake, we define the b(1,1,n)-sequence b_1, b_2, \dots, b_{n+3} to be $b_1 = 1, b_i = 3 \cdot 2^{i-2}$ for $2 \leq i \leq n+2$, and $b_{n+3} = \infty$. In the following, b_1, b_2, \dots, b_{n+3} will be the b(1,1,n)-sequence when we deal with a given coloring $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ which is maximal.

Lemma 4.4. Let $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ be maximal. Then:

(a) $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, 3)$ or $(\mathbf{1}, \mathbf{2}, \mathbf{4})$. (b) $b_i \leq s_i$ for all $1 \leq i \leq n+3$. (c) $|f^+| \geq 3$.

Proof. As $x_1 < x_2 < x_3$ and $x_i \le s_{i-1} + 1$ $(1 \le i \le 3)$, (a) follows. As $s_{n+2} = M(K_{1,1,n}) \ge 3 \cdot 2^n + 1$ and $s_{n+3} = \infty$, we see that $b_i \le s_i$ for $i \in \{1, 2, 3\} \cup \{n + 2, n+3\}$. If $s_p < b_p$ for some $4 \le p < n+2$, by (I2) with q = n+2, we would have $S_{n+2} \le 2^{n+2-p}b_p = 3 \cdot 2^n < s_{n+2}$. Hence (b) is true. Similarly, if $|f^+| < 3$ then $f^+ = \{1, 2\}$, by (I3) with (p, q) = (2, n+2), we would have $s_{n+2} \le 3 \cdot 2^n < s_{n+2}$. This prove (c). □

Lemma 4.5. Let $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ $(n \ge 2)$ be maximal. Then:

(a) If $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, 3)$ then $6 \le x_4 \le 7$ and $\{x_1, x_3\}, \{x_2, x_3\} \in \mathcal{B}_G$. (b) If $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, \mathbf{4})$ then $6 \le x_4 \le 8$ and $\{x_1, x_2\}, \{x_1, x_3\} \in \mathcal{B}_G$.

Proof. Let $(x_1, x_2, x_3) = (1, 2, 3)$. By (I1) with i = 4, we obtain $6 \le x_4 \le 7$. By (I4) with $i \in \{1, 2\}$ and j = 3, we have $\{x_i, x_3\} \in \mathcal{B}_G$ $(1 \le i \le 2)$. This prove (a). To see (b), let $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, \mathbf{4})$. By (I4) with (i, j) = (1, 2), we see that $\{x_1, x_2\} \in \mathcal{B}_G$. We prove $\{x_1, x_3\} \in \mathcal{B}_G$ by a contradiction. If $x_1 \sim x_3$, by (I5) with (i, j) = (1, 3), we would have $(x_1, x_2, x_3, x_4) = (1, 2, 4, 5)$, and, by (I1) with i = 5, we would have $x_5 \geq 12$, it follows from these and (I4) with (i,j) = (3,4) that $\{x_3, x_4\} \in \mathcal{B}_G$. Now, $x_1 \sim x_3$, $\{x_1, x_2\} \in \mathcal{B}_G$ and $\{x_3, x_4\} \in \mathcal{B}_G$ would imply $V_1 \cup V_2 = \{x_2, x_4\}$ and $\{x_1, x_3\} \subset V_3$, so that $x_5 \in V(G)$ $(s_4 < M(K_{1,1,2}))$ and, by (I5)-(I7) with $(i,j) = (1,5), s_5 \le 2s_4 - x_1 = 23 < b_5$ or $s_6 \le 3s_4 + 2 + x_1 = 39 < b_6$, which contradicts Lemma 4.4 (b). Hence $\{x_1, x_3\} \in \mathcal{B}_G$ is proved. By (I1) with i = 4, we have $5 \le x_4 \le 8$. Let us check the case $x_4 = 5$. We have $(x_1, x_2, x_3, x_4) = (1, 2, 4, 5)$ and $x_5 \ge 12$ by (I1), so that $x_5 > s_4 - x_i$ for all $1 \le i \le 3$. If $x_i \sim x_5$ for some $1 \le i \le 3$, by (I5) and (I7) with j = 5, we would have $s_6 \le 3s_4 + 2 + x_i \le 42 < b_6$ (we have proved that $x_5 \leq s_4 - x_i$ is false). This contradiction proves that $\{x_i, x_5\} \in \mathcal{B}_G$ for all $1 \leq i \leq 3$. It follows from this and $\{x_1, x_2\}, \{x_1, x_3\} \in \mathcal{B}_G$ that $x_2 \sim x_3$ (we have only three particle sets), so that $\{x_1, x_5\} = V_1 \cup V_2$ and $\{x_2, x_3, x_4\} \subset V_3$. By $x_4 > s_3 - x_3$ and (I5) with (i, j) = (3, 4), we have $x_5 \le x_1 + x_4 = 9$, which would imply $s_5 \leq 21 < b_5$. Thus $x_4 = 5$ is impossible and we have $6 \leq x_4 \leq 8$. This completes the proof.

Lemma 4.6. Let $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ $(n \ge 2)$ be maximal. If $x_1 \in V_3$ and $x_2 \in V_3$ then, up to IC-equivalence, $f = \langle \{3\}, \{7\}, \{1, 2\} \rangle$.

Proof. By (I5) with (i, j) = (1, 2), we obtain $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, 3)$. By Lemma 4.5 (a), we have $6 \le x_4 \le 7$. Thus $x_5 = s_5 - s_4 \ge b_4 - s_4 \ge 24 - 13 = 11$ (note $x_5 = \infty$ if n = 2), so that, by (I4) with i = 1 and $j \in \{3, 4\}, \{x_1, x_3\} \in \mathcal{B}_G$ and $\{x_1, x_4\} \in \mathcal{B}_G$. This proves that $\{x_3, x_4\} = V_1 \cup V_2$ and $\{x_1, x_2\} \subset V_3$. If $x_4 = 6$ then $x_5 \in V(G)$ $(s_4 < M(K_{1,1,2}))$ and, by (I5)-(I7) with $(i, j) = (3, 5), s_5 \le 2s_4 - x_1 = 11 < b_5$ or $s_6 \le 3s_4 + 2 + x_1 = 39 < b_6$, which contradicts Lemma 4.4 (b). Hence $x_4 \neq 6$ and, by $6 \le x_4 \le 7$, we have $(x_1, x_2, x_3, x_4) = (\mathbf{1}, \mathbf{2}, 3, \mathbf{7})$. We claim that n = 2. If not, by (I5)-(I7) with (i, j) = (2, 5), we would have $s_5 \le 24 \le b_5$ or $s_6 \le 43 < b_6$, so that $s_5 = 24 < M(K_{1,1,3})$, and, by (I5)-(I8) with (i, j) = (2, 6), we obtain the contradiction $s_6 \le 46 < b_6$ or $s_7 \le 76 < b_7$. □

Lemma 4.7. Let $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ $(n \ge 2)$ be maximal. If $x_1 \notin V_3$ and $x_2 \in V_3$ then, up to IC-equivalence, $f = \langle \{1\}, \{6\}, \{2, 4\} \rangle$.

Proof. That $x_1 \notin V_3$ and $x_2 \in V_3$ imply $\{x_1, x_2\} \in \mathcal{B}_G$. If $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, 3)$, by Lemma 4.5 (a), we would have $\{x_i, x_j\} \in \mathcal{B}_G$ for all $1 \leq i < j \leq 3$, and by (I5) and (I7) with (i, j) = (2, 4), $s_5 \leq 3s_3 + 2 + x_2 = 22 < b_5$, which contradicts $b_5 \leq s_5$. Hence $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, \mathbf{4})$. We claim that $x_3 \in V_3$. Suppose on the contrary that $\{x_1, x_3\} = V_1 \cup V_2$ and $\{x_2, x_4\} \subset V_3$. By Lemma 4.5 (b), $6 \leq x_4 \leq 8$. If $6 \leq x_4 \leq 7$, then $x_4 > s_3 - x_2$, so that, by (I5) with (i, j) = (2, 4), $x_5 \leq x_2 + x_4 \leq 9$, we would have $s_5 \leq 23 < b_5$. If $x_4 = 8$ then, by (I5) with (i, j) = (2, 4), $x_5 \leq x_2 + x_4 = 10 < \infty$, so that, by (I5) with (i, j) = (4, 5), $x_6 \leq x_4 + x_5 \leq 18$,

108

we would have $s_6 \leq 43 < b_6$. This proves that $x_3 \in V_3$ and $x_2 \sim x_3$. By (I5) with $(i, j) = (2, 3), x_4 \leq x_2 + x_3 = 6$. From this and Lemma 4.5 (b), it follows that $(x_1, x_2, x_3, x_4) = (\mathbf{1}, \mathbf{2}, \mathbf{4}, 6)$. Let us now check whether $\{x_2, x_4\} \in \mathcal{B}_G$ or not. If $x_2 \sim x_4$, by (I5) with $(i, j) = (2, 4), x_5 \leq x_2 + x_4 \leq 8$, and we would have $s_5 \leq 21 < b_5 \leq s_5$. This proves that $\{x_2, x_4\} \in \mathcal{B}_G$ and that $\{x_1, x_4\} = V_1 \cup V_2$ and $\{x_2, x_3\} \subset V_3$. Finally, if $x_5 \in V(G)$, by (I1) with i = 5, we would have $x_5 \geq 11$, and by (I5) and (I7) with (i, j) = (3, 5), we obtain the contradiction $s_6 \leq 3s_4 + 2 + x_3 = 45 < b_6$. Hence $x_5 \notin V(G)$.

Lemma 4.8. Let $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ $(n \ge 2)$ be maximal. If $x_1 \in V_3$ and $x_2 \notin V_3$ then, up to IC-equivalence, $f = \langle \{2\}, \{4\}, \{1, 6, \cdots, 3 \cdot 2^{n-1}\} \rangle$.

Proof. Let $x_1 \in V_3$ and $x_2 \notin V_3$. If $x_3 = 3$, by Lemma 4.5 (*a*), we would have $\{x_2, x_3\} = V_1 \cup V_2, \{x_1, x_4\} \subset V_3$ and $x_4 \ge 6 > s_3 - x_1$, so that, by (I5) and (I7) with (i, j) = (1, 4), we would have $s_5 \le 3s_3 + 2 + x_1 = 21 < b_5$, which contradicts $b_5 \le s_5$. Thus $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, \mathbf{4})$ and, by Lemma 4.5 (*b*), we have $\{x_2, x_3\} = V_1 \cup V_2, \{x_1, x_4\} \subset V_3$ and $6 \le x_4 \le 8$. If $x_4 \in \{7, 8\}$ then $x_4 > s_3 - x_1$, by (I5) and (I7) with (i, j) = (1, 4), we would have $s_5 \le 3s_3 + 2 + x_1 = 24 < M(K_{1,1,3})$, so that $x_6 \in V(G)$ and $b_5 \le s_5 \le 24 = b_5$. We have to discuss the following two cases for $s_5 = 24$.

Case 1 $(x_1, x_2, x_3, x_4, x_5) = (\mathbf{1}, \mathbf{2}, \mathbf{4}, 7, 10)$. By (I4) with (i, j) = (1, 4), we would obtain $\{x_1, x_4\} \in \mathcal{B}_G$ which contradicts $\{x_1, x_4\} \subset V_3$.

Case 2 $(x_1, x_2, x_3, x_4, x_5) = (1, 2, 4, 8, 9)$. By (I1) with i = 6, we would obtain $x_6 \ge 24$. It follows from this and (I4) with (i, j) = (4, 5) that $\{x_4, x_5\} \in \mathcal{B}_G$ which contradicts $\{x_4, x_5\} \subset V_3$.

Thus $(x_1, x_2, x_3, x_4) = (\mathbf{1}, \mathbf{2}, \mathbf{4}, 6)$. Let $x_p = 3 \cdot 2^{p-3}$ and $s_p = 3 \cdot 2^{p-2} + 1$ for some $4 \le p < n + 2$. We claim that $x_{p+1} = 3 \cdot 2^{p-2}$ and $s_{p+1} = 3 \cdot 2^{p-1} + 1$. If $x_{p+1} < 3 \cdot 2^{p-2}$ then $s_{p+1} = s_p + x_{p+1} \le b_{p+1}$, so that $s_{p+1} = b_{p+1} < M(K_{1,1,p-1})$ $(b_{p+1} \text{ is a lower bound for } s_{p+1} \text{ by Lemma } 4.4 (b))$, thus $x_{p+2} \in V(G)$ and, by (I5)-(I7) with (i, j) = (1, p + 2), we would have $s_{p+2} \le 2s_{p+1} - x_1 < b_{p+2}$ or $s_{p+3} \le 3s_{p+1} + 2 + x_1 = 3b_{p+1} + 3 < 3b_{p+1} + b_{p+1} \le b_{p+3}$, which contradicts $b_i \le s_i$ for all $1 \le i \le n + 3$. Similarly, if $x_{p+1} > 3 \cdot 2^{p-2}$ then $x_{p+1} > s_p - x_1$, so that, by (I5) and (I7) with (i, j) = (1, p + 1), we would have $s_{p+2} \le 3s_p + 2 + x_1 = 3b_p + 6 < 3b_p + b_p \le b_{p+2}$, a contradiction. Hence $x_{p+1} = 3 \cdot 2^{p-2}$ and our claim is proved. This completes the proof.

Lemma 4.9. Let $f = \langle V_1, V_2, V_3 \rangle \simeq K_{1,1,n}$ $(n \ge 2)$ be maximal. If $x_1 \notin V_3$ and $x_2 \notin V_3$ then, up to IC-equivalence, $f = \langle \{1\}, \{2\}, \{3, 6, \cdots, 3 \cdot 2^{n-2}, 3 \cdot 2^{n-1} + 1\} \rangle$.

Proof. We have $\{x_1, x_2\} = V_1 \cup V_2$ and $\{x_3, x_4, \dots, x_{n+2}\} = V_3$. Suppose on the contrary that $(x_1, x_2, x_3) = (\mathbf{1}, \mathbf{2}, \mathbf{4})$. By Lemma 4.5 (b), we would have three cases to discuss.

Case 1 $x_4 = 6$. By (I5) with (i, j) = (3, 4), $x_5 \le x_3 + x_4 = 10$, we would obtain the contradiction $s_5 \le 23 < b_5$.

Case 2 $x_4 = 7$. By (I5) with (i, j) = (3, 4), $x_5 \le x_3 + x_4 = 11$. By (I1) with i = 5, $x_5 \ge b_5 - s_4 = 10$. Thus $10 \le x_5 \le 11$. If $(x_1, x_2, x_3, x_4, x_5) = (\mathbf{1}, \mathbf{2}, \mathbf{4}, 7, 10)$, by (I1) with i = 6 $(x_6 \in V(G)$ for $s_5 = 24 < M(K_{1,1,3}))$, $x_6 \ge 24$, we would have $s_4 < 21 < x_6$. By Proposition 3.2 (a) with $(j, \alpha) =$

(5,21), $x_5 = 10$ should be used in producing 21, so that $\{4,7,10\} \in \mathcal{B}_G$ for $S_f(H) = 21$ only if $H = \{4,7,10\}$, which contradicts $\{x_3, x_4, x_5\} \subset V_3$. Similarly, if $(x_1, x_2, x_3, x_4, x_5) = (1, 2, 4, 7, 11)$ then $x_6 = s_6 - s_5 \ge b_6 - s_5 \ge 48 - 25 = 23$ ($x_6 = s_6 = b_6 = \infty$ if n = 3), we would have $s_4 < 22 < x_6$, so that, by Proposition 3.2 (a) with $(j, \alpha) = (5, 22)$, $\{4, 7, 11\} \in \mathcal{B}_G$, which contradicts $\{x_3, x_4, x_5\} \subset V_3$.

Case 3 $x_4 = 8$. Then $(x_1, x_2, x_3, x_4) = (\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{8})$. By (I5) with $(i, j) = (3, 4), x_5 \le x_3 + x_4 = 12$. By (I1) with $i = 5, x_5 \ge b_5 - s_4 = 9$. Thus $9 \le x_5 \le 12$. From this and (I5) with (i, j) = (4, 5) it would follow that $x_6 \le x_4 + x_5 \le 20$, so that $s_6 \le 47 < b_6$, a contradiction.

Thus, we have proved $(x_1, x_2, x_3) = (1, 2, 3)$. Let $f^+ = \{x_{i_1}, x_{i_2}, x_{i_3}, \dots\}$, where $x_{i_1} < x_{i_2} < x_{i_3} < \dots$. Then $x_{i_1} = 1$, $x_{i_2} = 2$, and $4 \le i_3 \le n+2$ by Lemma 4.4 (c). By (I1) with $3 \le i < i_3$, we see that $b_i - s_i \le x_i \le s_{i-1}$ (each $x_i \notin f^+$), it follows that $(x_1, x_2, x_3, \dots, x_{i_3-1}, x_{i_3}) = (1, 2, b_2, \dots, b_{i_3-2}, b_{i_3-1} + 1)$ and $(s_1, s_2, s_3, \dots, s_{i_3-1}, s_{i_3}) = (b_1, b_2, b_3, \dots, b_{i_3-1}, b_{i_3} + 1)$. To complete the proof, we must show that $i_3 = n + 2$. Suppose, to the contrary, that $i_3 < n+2$, by (I1) with $i = i_3 + 1$, we would obtain $b_{i_3} - 1 \le x_{i_3+1} \le b_{i_3} + 2$ and $b_{i_3+1} \le s_{i_3+1} \le b_{i_3+1} + 3$. By (I5) and (I8) with $(i, j) = (i_3, i_3 + 1)$, we would have $s_{i_3+2} \le 3s_{i_3} + 2 + x_{i_3} = 2b_{i_3+1} + 6 - b_{i_3-1} \le 2b_{i_3+1} < M(K_{1,1,i_3})$, so that $x_{i_3+3} \in V(G)$ and $x_{i_3} \sim x_{i_3+3}$. It follows from $s_{i_3+1} \le b_{i_3+1} < b_{i_3+2}$ or $s_{i_3+3} \le 3s_{i_3+1} + 2 + x_{i_3} \le b_{i_3+3} + 12 - b_{i_3} - b_{i_3-1} < b_{i_3+3}$, which contradicts Lemma 4.4 (b). Hence $i_3 = n + 2$.

Proof of Theorem 4.1. Lemma 4.3 shows that maximal colorings for $K_{1,1,n}$ are of the form $f = \langle V_1, V_2, V_3 \rangle$ up to IC-equivalence. The desired results now follow from Lemma 4.2, Lemma 4.4 (a), and Lemmas 4.6–4.9.

References

- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly 87 (1980), 206– 210.
- J. A. Gallian, A survey: recent results, conjectures, and open problems in labeling graphs, J. Graph Theory 13 (1989), 491–504.
- [3] R. Guy, The Postage Stamp Problem, Unsolved Problems in Number Theory, second ed., Springer, New York, 1994, pp. 123–127.
- [4] R. L. Heimer and H. Langenbach, The stamp problem, J. Recreational Math. 7 (1974), 235–250.
- [5] W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969), 377–380.
- [6] S. G. Penrice, Some new graph labeling problems: a preliminary report, DIMACS Tech. Rep. 95-26 (1995), 1–9.
- [7] E. Salehi, S. M. Lee and M. Khatirinejad, *IC-Colorings and IC-Indices of graphs*, Discrete Mathematics **299** (2005), 297–310.
- [8] C. L. Shiue and H. L. Fu, The IC-Indices of Complete Bipartite Graphs, The Electronic Journal of Combinatorics 15 (2008), #R43.

LI-MIN LIU

Department of Applied Mathematics Chung Yuan Christian University, R.O.C. *E-mail address:* lmliu@math.cycu.edu.tw

Shyh-Nan Lee

Department of Applied Mathematics Chung Yuan Christian University, R.O.C. *E-mail address:* nan@math.cycu.edu.tw