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ON IC-COLORINGS FOR COMPLETE PARTITE GRAPHS

LI-MIN LIU AND SHYH-NAN LEE∗

Abstract. Some systematic techniques for proving IC-colorings and finding IC-
indices of complete d-partite graphs are established. A complete solution of the
maximal colorings for K1,1,n is obtained.

1. Introduction

For a given graph G with the vertex set V (G), a coloring f : V (G) → N can
produce α if α =

∑
u∈V (H) f(u) for some connected subgraph H of

G (
∑

u∈V (H) f(u) = 0 if V (H) = ∅). The coloring f is an IC-coloring of G if

f can produce each α ∈ {0, 1, · · · , S(f)}, where S(f) is the maximum number
that can be produced by f . The IC-index M(G) of the graph G is the number
max{S(g) | g is an IC-coloring of G}. A coloring f of G is maximal if it is an IC-
coloring of G such that S(f) = M(G). The problem of finding IC-indices and
IC-colorings of finite graphs was introduced by Salehi et al. in 2005 [7], and it can
be considered as a derived problem of the postage stamp problem in number theory,
which has been extensively studied [1, 2, 3, 4, 5]. A graph G is complete d-partite,
1 < d < ∞, if V (G) can be partitioned into d disjoint partite sets such that two
distinct vertices of G are adjacent if and only if they are in different partite sets.
The IC-index of a complete bipartite graph (i.e., d = 2) was obtained by Shiue
and Fu [8]. In this paper, we shall study the theory of IC-colorings for complete
d-partite graphs by means of partite sets and establish some techniques which may
be used to prove IC-colorings and find maximal colorings.

2. Definitions and notations

A complete d-partite graph G is a family {Vr}dr=1 of disjoint finite sets, where
1 < d < ∞. The class of all complete d-partite graphs G = {Vr}dr=1 with |Vr| =
αr (1 ≤ r ≤ d) is denoted by Kα1,α2,··· ,αd

. We shall assume α1 ≤ α2 ≤ · · · ≤
αd. Let G = {Vr}dr=1 ∈ Kα1,α2,··· ,αd

be given. We call V (G) :=
∪d

r=1 Vr the
vertex set of G and each Vr a partite set of G. We write u ∼ v if u, v ∈ Vr

for some 1 ≤ r ≤ d, that is, u and v are in the same partite set. A subset H
of V (G) is an IC-subgraph (induced connected subgraph) of G if H ̸⊂ Vr for all
1 ≤ r ≤ d whenever |H| > 1. The collection of all IC-subgraphs of G is denoted
by BG. The graph G is connected if V (G) ∈ BG. For each coloring f : V (G) →
N of G there is a corresponding sum operator Sf : BG → Z which is given by
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Sf (H) :=
∑

u∈H f(u) (Sf (H) := 0 if H = ∅). We call Sf (H) the sum of f on
H and S(f) := maxSf (BG) the IC-sum of f , where Sf (BG) := {Sf (H) |H ∈
BG} is the range of Sf . We see that S(f) = Sf (G) if G is connected. We say
that α ∈ Z can be produced by f if α ∈ Sf (BG) and that f is an IC-coloring
of G if Sf (BG) = {α ∈ Z | 0 ≤ α ≤ S(f)}, that is, f can produce each of the
integers 0, 1, · · · , S(f). The IC-index of the class Kα1,α2,··· ,αd

is M(Kα1,α2,··· ,αd
) :=

max{S(g) | g is an IC-coloring of some member in Kα1,α2,··· ,αd
} and any maximizer

is a maximal coloring (or a maximal IC-coloring) for Kα1,α2,··· ,αd
.When f : V (G) →

N is one-to-one, that is, f(u) ̸= f(v) whenever u ̸= v, V (G) and f(V (G)) can
be put in a one-to-one correspondence, and we may identify u with f(u) for all
u ∈ f(G). We shall use the notation f = ⟨V1, V2, · · · , Vd⟩ to denote the one-to-
one coloring of the graph G = {Vr}dr=1 in which f is the identity function on the
vertex set V (G) (thus G is a family of disjoint subsets of N in this case) and we
shall write f = ⟨V1, V2, · · · , Vd⟩ ≃ Kα1,α2,··· ,αd

if G = {Vr}dr=1 ∈ Kα1,α2,··· ,αd
. Two

one-to-one colorings fi : V (Gi) → N, where Gi = {V (i)
r }dr=1 ∈ Kα1,α2,··· ,αd

for

i = 1, 2, are IC-equivalent if {f1(V (1)
r ) | 1 ≤ r ≤ d} = {f2(V (2)

r ) | 1 ≤ r ≤ d}. We see
that h := f−1

2 ◦ f1 is a one-to-one correspondence from V (G1) to V (G2) satisfying

f1(u) = f2(h(u)) for all u ∈ V (G1) and {h(V (1)
r ) | 1 ≤ r ≤ d} = {V (2)

r | 1 ≤ r ≤ d},
so that h(H) ∈ BG2 if and only if H ∈ BG1 for all H ⊂ V (G1), it follows that f1 can
produce some α ∈ Z if and only if f2 can, thus f1 and f2 share the same property
of being an IC-coloring or being a maximal coloring. We also see that every one-to-
one coloring of some complete d-partite graph is IC-equivalent to a coloring of the
form f = ⟨V1, V2, · · · , Vd⟩. For a given one-to-one coloring f = ⟨V1, V2, · · · , Vd⟩ with
V (G) ̸= ∅, we shall write V (G) = {x1, x2, · · · , xk}, si = x1+x2+· · ·+xi (1 ≤ i ≤ k),
where x1 < x2 < · · · < xk and k = |V (G)|, and define s0 = 0, xk+1 = sk+1 = ∞
and f+ = {xi |xi = si−1 + 1}. If G = {Vr}dr=1 ∈ Kα1,α2,··· ,αd

and u ̸= v where u,
v ∈ V (G), then a subset H of V (G) is uv-preconnected provided H ∩ {u, v} = ∅,
H ∪ {u} ∈ BG and H ∪ {v} ∈ BG and the collection of all uv-preconnected subsets
of V (G) is denoted by BG(u, v). For a coloring f : V (G) → N, if f(u) = f(v)
for some u ̸= v then Sf (H ∪ {u}) = Sf (H ∪ {v}) for all H ∈ BG(u, v) so that
|Sf (BG)| ≤ |BG|− |BG(u, v)|, it follows that if |Sf (BG)| > |BG|−min

u̸=v
|BG(u, v)| then

f is one-to-one, here |V (G)| ≥ 2.

3. Complete d-partite graphs and IC-colorings

Proposition 3.1. Let G = {Vr}dr=1 ∈ Kα1,α2,··· ,αd
. Then:

(a) |BG| = 2
∑d

r=1 αr −
∑d

r=1 2
αr +

∑d
r=1 αr + d.

(b) |BG(u, v)| = 2

(∑d
r=1 αr

)
−2 − 2αs−2 + 1 if {u, v} ⊂ Vs and u ̸= v for some

1 ≤ s ≤ d.

(c) |BG(u, v)| = 2

(∑d
r=1 αr

)
−2 − 2αs−1 − 2αt−1 +2 if u ∈ Vs and v ∈ Vt for some

1 ≤ s < t ≤ d.

(d) min
u ̸=v

|BG(u, v)| = 2

(∑d
r=1 αr

)
−2 − 2αd−1−1 − 2αd−1 + 2 if αd−1 > 0.
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Proof. We denote by 2T the collection of all subsets of a given set T . We have

BG = 2V (G)\
∪d

r=1(2
Vr\({∅}∪(

∪
u∈Vr

{{u}}))), so that |BG| = 2|V (G)|−
∑d

r=1(2
|Vr|−

(1 + |Vr|)) and (a) follows. (b) follows from BG(u, v) = 2V (G)\{u,v}\(2Vs\{u,v}\{∅})
if {u, v} ⊂ Vs and u ̸= v. (c) follows from BG(u, v) = 2V (G)\{u,v}\((2Vs\{u}\{∅}) ∪
(2Vt\{v}\{∅})) if u ∈ Vs and v ∈ Vt with s ̸= t. To see (d), we recall that α1 ≤
α2 ≤ · · · ≤ αd. If the right side of the equality in (d) is subtracted from that in (b),
we obtain 2αd−1 − 2αs−2 + 2αd−1−1 − 1 > 0, and the right side of the equality in (c)
minus that in (d) is 2αd−1−1 − 2αs−1 + 2αd−1 − 2αt−1 ≥ 0. These two inequalities
imply (d). �

Proposition 3.2. Let G = {Vr}dr=1 ∈ Kα1,α2,··· ,αd
, f : V (G) → N, V (G) =

{u1, u2, · · · , uk}, xi = f(ui) (1 ≤ i ≤ k) such that x1 ≤ x2 ≤ · · · ≤ xk and let
s0 = 0, si = x1 + x2 + · · ·+ xi (1 ≤ i ≤ k) and sk+1 = ∞. Then:

(a) If sj−1 < α < xj+1 (α ∈ N) for some 1 ≤ j ≤ k, then uj must be used in
producing α in the sense that if α =

∑
u∈H f(u) then uj ∈ H.

(b) Let α, p, q ∈ Z be such that 1 ≤ p < q ≤ k. If xi ≤ si−1+α for all p < i ≤ q
then sq + α ≤ 2q−p(sp + α).

Proof. If sj−1 <
∑

u∈H f(u) < xj+1 then H ̸⊂ {u1, u2, · · · , uj−1} and H ⊂
{u1, u2, · · · , uj}. This proves (a). If xi ≤ si−1 + α then si + α = si−1 + xi + α ≤
2(si−1 + α), thus sq + α ≤ 2(sq−p + α) ≤ · · · ≤ 2q−1(sp + α) and (b) follows. �

Proposition 3.3. Let f = ⟨V1, V2, · · · , Vd⟩ ≃ Kα1,α2,··· ,αd
be an IC-coloring and

αd−1 ̸= 0. Then:

(a) xi ≤ si−1 + 1 for all 1 ≤ i ≤ k.
(b) If xi ∈ f+ and si−1 < xi + xj < xj+1 for some 1 ≤ i < j ≤ k then

{xi, xj} ∈ BG and Sf (H) = xi + xj only if H = {xi, xj}.

Proof. As αd−1 ̸= 0, G = {Vr}dr=1 is connected. As f is an IC-coloring of G and G is
connected, f can produce 0, 1, · · · , sk = S(f). If sj−1 +1 < xj for some 1 ≤ j ≤ k,
then sj−1 < sj−1 + 1 < xj+1, so that, by Proposition 3.2 (a) with α = sj−1 + 1, xj
should be used in producing sj−1 +1, which contradicts sj−1 +1 < xj . This proves
(a). To see (b), let xi+xj = Sf (H). By Proposition 2(a) with α = xi+xj , we obtain
xj ∈ H. As xi ∈ f+, we have si−1 < si−1 + 1 = xi < xi+1, so that, by Proposition
3.2 (a) again, xi must be used in producing xi. Hence H = {xi, xj} ∈ BG. �

Proposition 3.4. Let α, x1, x2, · · · , xk ∈ N, s0 = 0, si = x1 + x2 + · · · +
xi(1 ≤ i ≤ k) and α ≤ sk. Assume that xi ≤ si−1 + 1 for all 1 ≤ i ≤ k, then
α = xj1 + xj2 + · · ·+ xjp for some 1 ≤ jp < · · · < j2 < i1 ≤ k.

Proof. As 0 = s0 < s1 < · · · < sk and 0 < α ≤ sk, there is a unique 1 ≤ j1 ≤ k
such that sj1−1 < α ≤ sj1 , so that sj1−1 − xj1 < α − xj1 ≤ sj1 − xj1 , that is,
(sj1−1 + 1) − xj1 ≤ α − xj1 ≤ sj1−1. By assumption with i = j1, we have 0 ≤
α − xj1 ≤ sj1 − 1. If α − xj1 ̸= 0 then we have 0 = s0 < s1 < · · · < sj1−1 and
0 < α − xj1 ≤ sj1−1. A similar argument shows that 0 ≤ α − xj1 − xj2 ≤ sj2−1

for some unique 1 ≤ j2 ≤ j1 − 1. Continuing in this manner if necessary, we will
eventually obtain α−xj1−xj2−· · ·−xjp = 0 for some 1 ≤ jp < · · · < j2 < j1 ≤ k. �
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The following statements (I1)-(I7) will be used frequently in finding maximal
colorings and they hold for any IC-coloring f = ⟨V1, V2, · · · , Vd⟩ ≃ Kα1,α2,··· ,αd

with
αd−1 ̸= 0.

(I1) If bi ≤ si (bi ∈ R) for some 1 ≤ i ≤ k then bi − si−1 ≤ xi ≤ si−1 + 1.
(I2) If 1 ≤ p < q ≤ k (p, q ∈ N) then sq < 2q−p(sp + 1).
(I3) If 1 ≤ p < q ≤ k (p, q ∈ N) and xi /∈ f+ for all p < i ≤ q then sq ≤ 2p−qsp.
(I4) If xi ∈ f+ and sj−1 < xi + xj < xj+1 for some 1 ≤ i < j ≤ k then

{xi, xj} ∈ BG.
(I5) If xi ∈ f+ and xi ∼ xj for some 1 ≤ i < j ≤ k then xj ≤ sj−1 − xi or

xj+1 ≤ xi + xj .
(I6) If sj ≤ sj−1 − xi for some i, j ∈ {1, 2, · · · , k} then sj ≤ 2sj−1 − xi.
(I7) If xj+1 ≤ xi + xj for some i, j ∈ {1, 2, · · · , k} then sj+1 ≤ 3sj−1 + 2 + xi.

(I1) follows from xi = si−si−1 and Proposition 3.3(a). (I2) and (I3) follow from (I1)
and Proposition 3.2(b). (I4) follows from Proposition 3.3(b). (I5) is a contrapositive
of (I4). (I6) is an immediate consequence of sj = sj−1+xj . Finally, the inequalities
xj ≤ sj−1+1 and xj+1 ≤ xi+xj imply sj+1 = sj−1+xj +xj+1 ≤ sj−1+2xj +xi ≤
3sj−1 + 2 + xi and (I7) follows.

4. Maximal colorings for K1,1,n

The aim of this section is to illustrate some techniques in proving IC-colorings
and finding maximal colorings by exploring the class K1,1,n. Numbers in f+ are
usually printed in boldface.

Theorem 4.1. Up to IC-equivalence, we have:

(a) The maximal coloring for K1,1,1 is ⟨{1}, {2}, {4}⟩.
(b) The maximal colorings for K1,1,2 are

(1) ⟨{3}, {7}, {1,2}⟩,
(2) ⟨{2}, {4}, {1, 6}⟩,
(3) ⟨{1}, {6}, {2,4}⟩,
(4) ⟨{1}, {2}, {3,7}⟩.

(c) The maximal colorings for K1,1,n, n ≥ 3, are
(1) ⟨{2}, {4}, {1, 6, · · · , 3 · 2n−1}⟩,
(2) ⟨{1}, {2}, {3, 6, · · · , 3 · 2n−2,3 · 2n−1 + 1}⟩.
Consequently, the IC-index of K1,1,n is M(K1,1,n) = 3 · 2n + 1.

Theorem 4.1 will follow from the following Lemmas 4.2–4.9.

Lemma 4.2. The colorings in Theorem 4.1 are IC-colorings.

Proof. We shall see that each f = ⟨V1, V2, V3⟩ in Theorem 4.1 satisfies xi ≤ si−1+1
for all 1 ≤ i ≤ n + 2. Since G = {V1, V2, V3} ∈ K1,1,n is connected, S(f) = sn+2.
From Proposition 3.4 with k = n + 2, it follows that if α ∈ N and α ≤ S(f) then
α =

∑
x∈H x for some H ⊂ V (G). Thus α can be produced by f if H ∈ BG. When

H /∈ BG, by modifying H, we shall obtain some K ∈ BG such that α = Sf (K).

(a) The coloring f = ⟨{1}, {2}, {4}⟩ ≃ K1,1,1 satisfies xi = si−1 + 1 for i ∈
{1, 2, 3} and every subset H of V (G) is in BG. Hence f is an IC-coloring.
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(b) (1) f = ⟨{3}, {7}, {1,2}⟩ satisfies xi = si−1 + 1 for i ∈ {1, 2, 4} and xi =
si−1 for i = 3. The only subset of V (G) not an IC-subgraph is {x1, x2}
and x1 + x2 = x3 = Sf ({x3}). Hence f is an IC-coloring.

(2) f = ⟨{2}, {4}, {1, 6}⟩ satisfies xi = si−1 + 1 for i ∈ {1, 2, 3} and xi =
si−1 − 1 for i = 4. We see that if H ⊂ V (G) and H /∈ BG then
H = {x1, x4}. As x1 + x4 = Sf ({x1, x2, x3}), f is an IC-coloring.

(3) f = ⟨{1}, {6}, {2,4}⟩ satisfies xi ≤ si−1 + 1 for all 1 ≤ i ≤ 4 as in the
previous one. As x2 + x3 = Sf ({x4}), f is an IC-coloring.

(4) f = ⟨{1}, {2}, {3,7}⟩ is an IC-coloring because xi ≤ si−1 + 1 for all
1 ≤ i ≤ 4 and x3 + x4 = Sf ({x1, x2, x4}).

(c) (1) f = ⟨V1, V2, V3⟩ ≃ K1,1,n (n ≥ 3) is the coloring satisfying V1 = {x2},
V2 = {x3}, V3 = {x1}∪{x4, x5, · · · , xn+2}, xi = si−1+1 for i ∈ {1, 2, 3},
and xi = si−1 − 1 for i ∈ {4, 5, · · · , n + 2}. Let H ⊂ V (G), H /∈ BG.
Then |H| > 1 and H ⊂ V3. If xj = min(V3\{x1}) then j ≥ 4 and
xj = sj−1 − 1 = (x1 + x2 + · · ·+ xj−1)− x1, so that

∑
x∈H x = Sf (K),

where K = (H\{xj}) ∪ {x2, x3, · · · , xj−1}. Hence f is an IC-coloring.
(2) We have V1 = {x1}, V2 = {x2}, V3 = {x3, x4, · · · , xn+2}, xi = si−1 +

1 for i ∈ {1, 2, n + 2}, and xi = si−1 for i ∈ {3, 4, · · · , n + 1}. If
|H| > 1, H ⊂ V3 and xj = min(H\{xn+2}), then 3 ≤ j ≤ n + 1 and
xj = sj−1 = x1 + x2 + · · · + xj−1, so that

∑
x∈H x = Sf (K), where

K = (H\{xj}) ∪ {x1, x2, · · · , xj−1}. Hence f = ⟨V1, V2, V3⟩ ≃ K1,1,n

(n ≥ 3) is an IC-coloring.

�
Lemma 4.3. Maximal colorings for K1,1,n are one-to-one.

Proof. By Lemma 4.2, we have M(K1,1,n) ≥ 3 ·2n+1. If G ∈ K1,1,n and f : V (G) →
N is maximal for K1,1,n then |Sf (BG)| = |{0, 1, 2, · · · ,M(K1,1,n)}| = M(K1,1,n)+1,
and, by Proposition 3.1, |BG| −min

u̸=v
|BG(u, v)| = 3 · 2n − 2n−1 + n. It follows that

|Sf (BG)| − (|BG| − min
u̸=v

|BG(u, v)|) ≥ 2n−1 − n + 2 > 0. Hence f is one-to-one as

mentioned at the end of Section 2. �
For convenience sake, we define the b(1, 1, n)-sequence b1, b2, · · · , bn+3 to be

b1 = 1, bi = 3 · 2i−2 for 2 ≤ i ≤ n + 2, and bn+3 = ∞. In the following, b1,
b2, · · · , bn+3 will be the b(1, 1, n)-sequence when we deal with a given coloring
f = ⟨V1, V2, V3⟩ ≃ K1,1,n which is maximal.

Lemma 4.4. Let f = ⟨V1, V2, V3⟩ ≃ K1,1,n be maximal. Then:

(a) (x1, x2, x3) = (1,2, 3) or (1,2,4).
(b) bi ≤ si for all 1 ≤ i ≤ n+ 3.
(c) |f+| ≥ 3.

Proof. As x1 < x2 < x3 and xi ≤ si−1 + 1 (1 ≤ i ≤ 3), (a) follows. As sn+2 =
M(K1,1,n) ≥ 3 · 2n + 1 and sn+3 = ∞, we see that bi ≤ si for i ∈ {1, 2, 3} ∪ {n +
2, n+ 3}. If sp < bp for some 4 ≤ p < n+ 2, by (I2) with q = n+ 2, we would have
Sn+2 ≤ 2n+2−pbp = 3 · 2n < sn+2. Hence (b) is true. Similarly, if |f+| < 3 then
f+ = {1,2}, by (I3) with (p, q) = (2, n + 2), we would have sn+2 ≤ 3 · 2n < sn+2.
This prove (c). �
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Lemma 4.5. Let f = ⟨V1, V2, V3⟩ ≃ K1,1,n (n ≥ 2) be maximal. Then:

(a) If (x1, x2, x3) = (1,2, 3) then 6 ≤ x4 ≤ 7 and {x1, x3}, {x2, x3} ∈ BG.
(b) If (x1, x2, x3) = (1,2,4) then 6 ≤ x4 ≤ 8 and {x1, x2}, {x1, x3} ∈ BG.

Proof. Let (x1, x2, x3) = (1,2, 3). By (I1) with i = 4, we obtain 6 ≤ x4 ≤ 7. By (I4)
with i ∈ {1, 2} and j = 3, we have {xi, x3} ∈ BG (1 ≤ i ≤ 2). This prove (a). To see
(b), let (x1, x2, x3) = (1,2,4). By (I4) with (i, j) = (1, 2), we see that {x1, x2} ∈ BG.
We prove {x1, x3} ∈ BG by a contradiction. If x1 ∼ x3, by (I5) with (i, j) = (1, 3),
we would have (x1, x2, x3, x4) = (1,2,4, 5), and, by (I1) with i = 5, we would have
x5 ≥ 12, it follows from these and (I4) with (i, j) = (3, 4) that {x3, x4} ∈ BG.
Now, x1 ∼ x3, {x1, x2} ∈ BG and {x3, x4} ∈ BG would imply V1 ∪ V2 = {x2, x4}
and {x1, x3} ⊂ V3, so that x5 ∈ V (G) (s4 < M(K1,1,2)) and, by (I5)-(I7) with
(i, j) = (1, 5), s5 ≤ 2s4 − x1 = 23 < b5 or s6 ≤ 3s4 + 2 + x1 = 39 < b6, which
contradicts Lemma 4.4 (b). Hence {x1, x3} ∈ BG is proved. By (I1) with i = 4, we
have 5 ≤ x4 ≤ 8. Let us check the case x4 = 5. We have (x1, x2, x3, x4) = (1,2,4, 5)
and x5 ≥ 12 by (I1), so that x5 > s4 − xi for all 1 ≤ i ≤ 3. If xi ∼ x5 for some
1 ≤ i ≤ 3, by (I5) and (I7) with j = 5, we would have s6 ≤ 3s4+2+xi ≤ 42 < b6 (we
have proved that x5 ≤ s4−xi is false). This contradiction proves that {xi, x5} ∈ BG

for all 1 ≤ i ≤ 3. It follows from this and {x1, x2}, {x1, x3} ∈ BG that x2 ∼ x3 ( we
have only three partite sets), so that {x1, x5} = V1 ∪ V2 and {x2, x3, x4} ⊂ V3. By
x4 > s3 − x3 and (I5) with (i, j) = (3, 4), we have x5 ≤ x1 + x4 = 9, which would
imply s5 ≤ 21 < b5. Thus x4 = 5 is impossible and we have 6 ≤ x4 ≤ 8. This
completes the proof. �
Lemma 4.6. Let f = ⟨V1, V2, V3⟩ ≃ K1,1,n (n ≥ 2) be maximal. If x1 ∈ V3 and
x2 ∈ V3 then, up to IC-equivalence, f = ⟨{3}, {7}, {1,2}⟩.

Proof. By (I5) with (i, j) = (1, 2), we obtain (x1, x2, x3) = (1,2, 3). By Lemma 4.5
(a), we have 6 ≤ x4 ≤ 7. Thus x5 = s5−s4 ≥ b4−s4 ≥ 24−13 = 11 (note x5 = ∞ if
n = 2), so that, by (I4) with i = 1 and j ∈ {3, 4}, {x1, x3} ∈ BG and {x1, x4} ∈ BG.
This proves that {x3, x4} = V1 ∪ V2 and {x1, x2} ⊂ V3. If x4 = 6 then x5 ∈ V (G)
(s4 < M(K1,1,2)) and, by (I5)-(I7) with (i, j) = (3, 5), s5 ≤ 2s4 − x1 = 11 < b5
or s6 ≤ 3s4 + 2 + x1 = 39 < b6, which contradicts Lemma 4.4 (b). Hence x4 ̸= 6
and, by 6 ≤ x4 ≤ 7, we have (x1, x2, x3, x4) = (1,2, 3,7). We claim that n = 2. If
not, by (I5)-(I7) with (i, j) = (2, 5), we would have s5 ≤ 24 ≤ b5 or s6 ≤ 43 < b6,
so that s5 = 24 < M(K1,1,3), and, by (I5)-(I8) with (i, j) = (2, 6), we obtain the
contradiction s6 ≤ 46 < b6 or s7 ≤ 76 < b7. �
Lemma 4.7. Let f = ⟨V1, V2, V3⟩ ≃ K1,1,n (n ≥ 2) be maximal. If x1 /∈ V3 and
x2 ∈ V3 then, up to IC-equivalence, f = ⟨{1}, {6}, {2,4}⟩.

Proof. That x1 /∈ V3 and x2 ∈ V3 imply {x1, x2} ∈ BG. If (x1, x2, x3) = (1,2, 3),
by Lemma 4.5 (a), we would have {xi, xj} ∈ BG for all 1 ≤ i < j ≤ 3, and by
(I5) and (I7) with (i, j) = (2, 4), s5 ≤ 3s3 + 2 + x2 = 22 < b5, which contradicts
b5 ≤ s5. Hence (x1, x2, x3) = (1,2,4). We claim that x3 ∈ V3. Suppose on the
contrary that {x1, x3} = V1 ∪ V2 and {x2, x4} ⊂ V3. By Lemma 4.5 (b), 6 ≤ x4 ≤ 8.
If 6 ≤ x4 ≤ 7, then x4 > s3 − x2, so that, by (I5) with (i, j) = (2, 4), x5 ≤
x2+x4 ≤ 9, we would have s5 ≤ 23 < b5. If x4 = 8 then, by (I5) with (i, j) = (2, 4),
x5 ≤ x2 + x4 = 10 < ∞, so that, by (I5) with (i, j) = (4, 5), x6 ≤ x4 + x5 ≤ 18,
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we would have s6 ≤ 43 < b6. This proves that x3 ∈ V3 and x2 ∼ x3. By (I5)
with (i, j) = (2, 3), x4 ≤ x2 + x3 = 6. From this and Lemma 4.5 (b), it follows
that (x1, x2, x3, x4) = (1,2,4, 6). Let us now check whether {x2, x4} ∈ BG or not.
If x2 ∼ x4, by (I5) with (i, j) = (2, 4), x5 ≤ x2 + x4 ≤ 8, and we would have
s5 ≤ 21 < b5 ≤ s5. This proves that {x2, x4} ∈ BG and that {x1, x4} = V1 ∪ V2

and {x2, x3} ⊂ V3. Finally, if x5 ∈ V (G), by (I1) with i = 5, we would have
x5 ≥ 11, and by (I5) and (I7) with (i, j) = (3, 5), we obtain the contradiction
s6 ≤ 3s4 + 2 + x3 = 45 < b6. Hence x5 /∈ V (G). �
Lemma 4.8. Let f = ⟨V1, V2, V3⟩ ≃ K1,1,n (n ≥ 2) be maximal. If x1 ∈ V3 and
x2 /∈ V3 then, up to IC-equivalence, f = ⟨{2}, {4}, {1, 6, · · · , 3 · 2n−1}⟩.
Proof. Let x1 ∈ V3 and x2 /∈ V3. If x3 = 3, by Lemma 4.5 (a), we would have
{x2, x3} = V1∪V2, {x1, x4} ⊂ V3 and x4 ≥ 6 > s3−x1, so that, by (I5) and (I7) with
(i, j) = (1, 4), we would have s5 ≤ 3s3+2+x1 = 21 < b5, which contradicts b5 ≤ s5.
Thus (x1, x2, x3) = (1,2,4) and, by Lemma 4.5 (b), we have {x2, x3} = V1 ∪ V2,
{x1, x4} ⊂ V3 and 6 ≤ x4 ≤ 8. If x4 ∈ {7,8} then x4 > s3 − x1, by (I5) and (I7)
with (i, j) = (1, 4), we would have s5 ≤ 3s3 + 2 + x1 = 24 < M(K1,1,3), so that
x6 ∈ V (G) and b5 ≤ s5 ≤ 24 = b5. We have to discuss the following two cases for
s5 = 24.

Case 1 (x1, x2, x3, x4, x5) = (1,2,4, 7, 10). By (I4) with (i, j) = (1, 4), we
would obtain {x1, x4} ∈ BG which contradicts {x1, x4} ⊂ V3.
Case 2 (x1, x2, x3, x4, x5) = (1,2,4,8, 9). By (I1) with i = 6, we would
obtain x6 ≥ 24. It follows from this and (I4) with (i, j) = (4, 5) that
{x4, x5} ∈ BG which contradicts {x4, x5} ⊂ V3.

Thus (x1, x2, x3, x4) = (1,2,4, 6). Let xp = 3 · 2p−3 and sp = 3 · 2p−2 + 1 for
some 4 ≤ p < n + 2. We claim that xp+1 = 3 · 2p−2 and sp+1 = 3 · 2p−1 + 1. If
xp+1 < 3 · 2p−2 then sp+1 = sp + xp+1 ≤ bp+1, so that sp+1 = bp+1 < M(K1,1,p−1)
(bp+1 is a lower bound for sp+1 by Lemma 4.4 (b)), thus xp+2 ∈ V (G) and, by
(I5)-(I7) with (i, j) = (1, p + 2), we would have sp+2 ≤ 2sp+1 − x1 < bp+2 or
sp+3 ≤ 3sp+1 + 2+ x1 = 3bp+1 + 3 < 3bp+1 + bp+1 ≤ bp+3, which contradicts bi ≤ si
for all 1 ≤ i ≤ n+ 3. Similarly, if xp+1 > 3 · 2p−2 then xp+1 > sp − x1, so that, by
(I5) and (I7) with (i, j) = (1, p+1), we would have sp+2 ≤ 3sp+2+x1 = 3bp+6 <
3bp + bp ≤ bp+2, a contradiction. Hence xp+1 = 3 · 2p−2 and our claim is proved.
This completes the proof. �
Lemma 4.9. Let f = ⟨V1, V2, V3⟩ ≃ K1,1,n (n ≥ 2) be maximal. If x1 /∈ V3 and
x2 /∈ V3 then, up to IC-equivalence, f = ⟨{1}, {2}, {3, 6, · · · , 3 ·2n−2,3 · 2n−1 + 1}⟩.
Proof. We have {x1, x2} = V1 ∪ V2 and {x3, x4, · · · , xn+2} = V3. Suppose on the
contrary that (x1, x2, x3) = (1,2,4). By Lemma 4.5 (b), we would have three cases
to discuss.

Case 1 x4 = 6. By (I5) with (i, j) = (3, 4), x5 ≤ x3 + x4 = 10, we would
obtain the contradiction s5 ≤ 23 < b5.
Case 2 x4 = 7. By (I5) with (i, j) = (3, 4), x5 ≤ x3 + x4 = 11. By (I1)
with i = 5, x5 ≥ b5 − s4 = 10. Thus 10 ≤ x5 ≤ 11. If (x1, x2, x3, x4, x5) =
(1,2,4, 7, 10), by (I1) with i = 6 (x6 ∈ V (G) for s5 = 24 < M(K1,1,3)),
x6 ≥ 24, we would have s4 < 21 < x6. By Proposition 3.2 (a) with (j, α) =
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(5, 21), x5 = 10 should be used in producing 21, so that {4, 7, 10} ∈ BG

for Sf (H) = 21 only if H = {4, 7, 10}, which contradicts {x3, x4, x5} ⊂ V3.
Similarly, if (x1, x2, x3, x4, x5) = (1,2,4, 7, 11) then x6 = s6−s5 ≥ b6−s5 ≥
48 − 25 = 23 (x6 = s6 = b6 = ∞ if n = 3), we would haves4 < 22 < x6,
so that, by Proposition 3.2 (a) with (j, α) = (5, 22), {4, 7, 11} ∈ BG, which
contradicts {x3, x4, x5} ⊂ V3.
Case 3 x4 = 8. Then (x1, x2, x3, x4) = (1,2,4,8). By (I5) with (i, j) =
(3, 4), x5 ≤ x3 + x4 = 12. By (I1) with i = 5, x5 ≥ b5 − s4 = 9. Thus
9 ≤ x5 ≤ 12. From this and (I5) with (i, j) = (4, 5) it would follow that
x6 ≤ x4 + x5 ≤ 20, so that s6 ≤ 47 < b6, a contradiction.

Thus, we have proved (x1, x2, x3) = (1,2, 3). Let f+ = {xi1 , xi2 , xi3 , · · · }, where
xi1 < xi2 < xi3 < · · · . Then xi1 = 1, xi2 = 2, and 4 ≤ i3 ≤ n + 2 by Lemma
4.4 (c). By (I1) with 3 ≤ i < i3, we see that bi − si ≤ xi ≤ si−1 (each xi /∈
f+), it follows that (x1, x2, x3, · · · , xi3−1, xi3) = (1,2, b2, · · · , bi3−2, bi3−1 + 1) and
(s1, s2, s3, · · · , si3−1, si3) = (b1, b2, b3, · · · , bi3−1, bi3 + 1). To complete the proof, we
must show that i3 = n+ 2. Suppose, to the contrary, that i3 < n+ 2, by (I1) with
i = i3+1, we would obtain bi3−1 ≤ xi3+1 ≤ bi3+2 and bi3+1 ≤ si3+1 ≤ bi3+1+3. By
(I5) and (I8) with (i, j) = (i3, i3+1), we would have si3+2 ≤ 3si3+2+xi3 = 2bi3+1+
6 − bi3−1 ≤ 2bi3+1 < M(K1,1,i3), so that xi3+3 ∈ V (G) and xi3 ∼ xi3+3. It follows
from si3+1 ≤ bi3+1+3 and (I5)-(I7) with (i, j) = (i3, i3+3) that si3+2 ≤ 2si3+1−xi3 ≤
bi3+2+5−bi3−1 < bi3+2 or si3+3 ≤ 3si3+1+2+xi3 ≤ bi3+3+12−bi3 −bi3−1 < bi3+3,
which contradicts Lemma 4.4 (b). Hence i3 = n+ 2. �

Proof of Theorem 4.1. Lemma 4.3 shows that maximal colorings for K1,1,n are of
the form f = ⟨V1, V2, V3⟩ up to IC-equivalence. The desired results now follow from
Lemma 4.2, Lemma 4.4 (a), and Lemmas 4.6–4.9. �
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