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ON IC-COLORINGS FOR COMPLETE PARTITE GRAPHS

LI-MIN LIU AND SHYH-NAN LEE*

ABSTRACT. Some systematic techniques for proving IC-colorings and finding IC-
indices of complete d-partite graphs are established. A complete solution of the
maximal colorings for K71 1,, is obtained.

1. INTRODUCTION

For a given graph G with the vertex set V(G), a coloring f : V(G) — N can

produce o if a = ZueV(H) f(u) for some connected subgraph H of
G (XCuevin f(w) = 0if V(H) = @). The coloring f is an IC-coloring of G if
f can produce each a € {0,1,---,5(f)}, where S(f) is the maximum number

that can be produced by f. The IC-index M(G) of the graph G is the number
max{S(g) | g is an IC-coloring of G}. A coloring f of G is mazimal if it is an IC-
coloring of G such that S(f) = M(G). The problem of finding IC-indices and
IC-colorings of finite graphs was introduced by Salehi et al. in 2005 [7], and it can
be considered as a derived problem of the postage stamp problem in number theory,
which has been extensively studied [1, 2, 3, 4, 5]. A graph G is complete d-partite,
1 < d < o0, if V(G) can be partitioned into d disjoint partite sets such that two
distinct vertices of G are adjacent if and only if they are in different partite sets.
The IC-index of a complete bipartite graph (i.e., d = 2) was obtained by Shiue
and Fu [8]. In this paper, we shall study the theory of IC-colorings for complete
d-partite graphs by means of partite sets and establish some techniques which may
be used to prove IC-colorings and find maximal colorings.

2. DEFINITIONS AND NOTATIONS

A complete d-partite graph G is a family {V,.}¢_, of disjoint finite sets, where
1 < d < oco. The class of all complete d-partite graphs G = {V,}¢_; with |V;| =
ar (1 < r < d) is denoted by Kq, g, .ay- We shall assume a3 < ag < -+ <
ag. Let G = {(V,}_| € Koyas..a, be given. We call V(G) := J°_, V, the
vertex set of G and each V,. a partite set of G. We write u ~ v if u,v € V,
for some 1 < r < d, that is, v and v are in the same partite set. A subset H
of V(G) is an IC-subgraph (induced connected subgraph) of G if H ¢ V, for all
1 <r < d whenever |H| > 1. The collection of all IC-subgraphs of G is denoted
by Bg. The graph G is connected if V(G) € Bg. For each coloring f : V(G) —
N of G there is a corresponding sum operator Sy : Bg — Z which is given by

2010 Mathematics Subject Classification. 05CT78.

Key words and phrases. 1C-coloring, IC-index, complete d-partite graph.
*Corresponding Author. This research was supported by NSC grant 98-2115-M-033-005.

Copyright © 2011 Yokohama Publishers  http://www.ybook.co.jp



104 L.-M. LIU AND S.-N. LEE

Si(H) =Y eu f(u) (Sy(H) := 0if H = &). We call S¢(H) the sum of f on
H and S(f) := maxS;(Bg) the IC-sum of f, where S¢(Bg) = {Sy(H)|H €
Bc} is the range of Sy. We see that S(f) = S¢(G) if G is connected. We say
that o € Z can be produced by f if a € S§(Bg) and that f is an IC-coloring
of G if S¢(Bg) = {a € Z|0 < a < S(f)}, that is, f can produce each of the
integers 0,1,---,S(f). The IC-index of the class Ko, a9, 0y 18 M (Koo, 0q4) =
max{S(g) | g is an IC-coloring of some member in K, as, ... o, } and any maximizer
is a mazimal coloring (or a mazimal IC-coloring) for Ko, oy . ay-When f: V(G) —
N is one-to-one, that is, f(u) # f(v) whenever v # v, V(G) and f(V(G)) can
be put in a one-to-one correspondence, and we may identify v with f(u) for all
u € f(G). We shall use the notation f = (V1,Va,---,Vy) to denote the one-to-
one coloring of the graph G' = {V,}?¢_, in which f is the identity function on the
vertex set V(G) (thus G is a family of disjoint subsets of N in this case) and we
shall write f = (V1,Va, -+, Vi) =~ Koy ag. oy it G = {Vi}ey € Koy g0y TWO
one-to-one colorings f; : V(G;) — N, where G; = {VT(Z) ,‘?:1 € Ko a9, 0y for
i = 1,2, are IC-equivalent if {fl(\/}(l)) [1<r<d}= {fg(W(Q)) |1 <r <d}. We see
that h = fy Lo f1 is a one-to-one correspondence from V(G1) to V(Gy) satisfying
fi(u) = fo(h(w)) for all w € V(Gy) and {R(V;)Y |1 <r < d} = {V? |1 <r < d},
so that h(H) € Bg, if and only if H € Bg, for all H C V(G), it follows that f; can
produce some « € Z if and only if fo can, thus f; and fs share the same property
of being an IC-coloring or being a maximal coloring. We also see that every one-to-
one coloring of some complete d-partite graph is IC-equivalent to a coloring of the
form f = (V1,Va,---,Vy). For a given one-to-one coloring f = (Vi, Va, -+, Vy) with
V(G) # @, we shall write V(G) = {x1,z2, -+ ,x1}, i = x1+wa+- - +x; (1 <i < k),
where 1 < x9 < -+ <z and k = |V(G)|, and define so = 0, xp+1 = Sky1 = 00
and fT = {z;|z; =s;1+1}. G = {W}le € Ko, a9, .0, and u # v where u,
v € V(Q), then a subset H of V(G) is uv-preconnected provided H N {u,v} = &,
H U {u} € Bg and H U {v} € Bg and the collection of all uv-preconnected subsets
of V(@) is denoted by Bg(u,v). For a coloring f : V(G) — N, if f(u) = f(v)
for some u # v then Sf(H U {u}) = S¢(H U {v}) for all H € Bg(u,v) so that
|S¢(Ba)| < |Ba|—|Ba(u,v)|, it follows that if |S¢(Bg)| > |Ba| —m;n |BG(u,v)| then

f is one-to-one, here |V (G)| > 2.

3. COMPLETE d-PARTITE GRAPHS AND IC-COLORINGS

Proposition 3.1. Let G = {V,}¢_; € Ko, 05, ay- Then:

)

(a) |Bg| = 25izior — 524 gar y 54 o 4y
d
(b) |Bg(u,v)| = 2(2,«:1%)—2 — 2972 1 1 if {u,v} C Vi and u # v for some

1 <s<d.
(¢) |Bg(u,v)| = Z(ZLl o) =2 _ 20—t _ga=1 4 9 ify € Vs and v € V; for some
1<s<t<d.

() min B (u,v)| = o(Tiyar) =2 _gousi=1 _g0u=1l L 9 i oy 4 > 0,
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Proof. We denote by 27 the collection of all subsets of a given set 7. We have
Bo = 2V O\UL, (2" \({@}U(Uyey, {{u}})), so that [Bg| = 2V(@T-371_ 2Vl -
(1+ |V;])) and (a) follows. (b) follows from Bg(u,v) = 2V(E\Mwvh (2Vs\{wvh fo51)
if {u,v} C Vs and u # v. (c) follows from Bg(u,v) = 2V (E\wvh ((2¥Vs\{uh {@}) U
2V M\ {@})) if u € V, and v € V; with s # t. To see (d), we recall that a; <
ag < -+ < ag. If the right side of the equality in (d) is subtracted from that in (b),
we obtain 2¢4~1 —2@s=2 4 9@a-1=1 _ 1 > 0 and the right side of the equality in (c)
minus that in (d) is 2%-171 — 2@s=1 4 2@a=1 _ 9a:=1 > (. These two inequalities
imply (d). O

Proposition 3.2. Let G = {V,}?_, € Kojagway, [ : V(G) = N, V(G) =
{ur,ug, - ,u}, x; = f( i) (1 < i < k) such that z1 < x9 < --- < x and let
so=0,si=z14+z2+ -+x; (1 <i<k)and sgy1 = oco. Then:

(a) If sj-1 < a < zjq1 (a € N) for some 1 < j < k, then u; must be used in
producing o in the sense that if a =Y,y f(u) then uj € H.

(b) Let o, p, ¢ € Z be such that 1 <p < q<k. Ifx; <si_14+a forallp<i<gq
then sq+ o < 297P(s, + a).

Proof. If Sj—1 < ZueH f(u) < Zjt1 then H ¢ {Ul,ug,"' ,Uj_l} and H C
{ui,u2, - ,u;}. This proves (a). If z; < s;-1 +a then s;, + o = s;—1 +z; + a <
2(si—1 + @), thus s, + @ < 2(sq—p + @) < --- < 2971(s, + ) and (b) follows. O

Proposition 3.3. Let f = (V1,Va, -+, Vi) ~ Koy a0, 04 be an IC-coloring and
ag_1 #0. Then:

(a) x; < sj—1+1 foralll <i<k.
(b) If i € T and si-1 < xi + x; < xjq1 for some 1 < i < j < k then
{xi, 2} € Bg and S§(H) = x; + x5 only if H = {x;,x;}.

Proof. As ag_1 # 0, G = {V,}¢_, is connected. As f is an IC-coloring of G and G is
connected, f can produce 0, 1, ---, s, = S(f). If s;_1 +1 < x; for some 1 < j <k,
then s;_1 < sj—1 + 1 < 241, so that, by Proposition 3.2 (a) with o = s;_1 + 1, z;
should be used in producing s;_1 + 1, which contradicts s;_1 +1 < x;. This proves
(a). To see (b), let z;+x; = S§(H). By Proposition 2(a) with o = z;+x;, we obtain
z; € H. As z; € f*, we have s;_1 < s;_1 + 1 = 2; < x;41, so that, by Proposition
3.2 (a) again, x; must be used in producing z;. Hence H = {z;,z;} € Bg. O

Proposition 3.4. Let o, x1, a2, -+, x € N, 59 =0, s = x1 + a2 + -+ +
zi(1 <1 < k) and a < 8. Assume that x; < si—1 + 1 for all 1 < i < k, then
a=xj +Tj, + -+ x5, for some 1 < jp <--- < jgop <y <k

Proof. As 0 = sp < 51 < -+ < s and 0 < a < s, there is a unique 1 < j; < k
such that s;, 1 < a < sj,, so that s, 1 —7j, < a—xj < s; — xj, that is,
(sji—1+1) —z;; < a—=xj < sj-1. By assumption with ¢ = j;, we have 0 <
a—xj < s; —1. If a—xz; # 0 then we have 0 = 59 < 51 < --- < 55,1 and
0 < a—wxj < sj-1. A similar argument shows that 0 < o — x;, — xj, < 55,1
for some unique 1 < js < j; — 1. Continuing in this manner if necessary, we will

eventually obtain a—x;, —xj,—--—z;, = 0forsome 1 < j, <--- <jo<ji <k. 0O
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The following statements (I1)-(I7) will be used frequently in finding maximal
colorings and they hold for any IC-coloring f = (V1,Va, -+, Vg) =~ Ko, a9, 0y With
ag—1 # 0.

(I1) If b; < s; (b; € R) for some 1 <i <k then b; — s;-1 < z; < 8,1 + L.

(I2) If 1 <p< g <k (p,geN)then s, <297 P(s, + 1).

(B) If1<p<q<k(pgeN)and z; ¢ f for all p < i < q then s, < 2P,

(I4) If z; € f* and sj_1 < @; + xj < zj41 for some 1 < i < j < k then

{zi,z;} € Bg.
(I5) If z; € f* and z; ~ x; for some 1 < i < j < k then z; < sj_1 — x; or
Tj+1 < x; + Zj-

(I6) If s; < sj_1 —x; for some 4,5 € {1,2,--- ,k} then s; < 2s;_1 — x;.

(17) If Tjir1 < x;+ x5 for some ,j € {]., 2, ,k} then Sj11 < 3Sj_1 + 2 4+ z;.
(I1) follows from x; = s; —s;—1 and Proposition 3.3(a). (12) and (I3) follow from (I1)
and Proposition 3.2(b). (I4) follows from Proposition 3.3(b). (I5) is a contrapositive
of (I4). (I6) is an immediate consequence of s; = s;_1 +x;. Finally, the inequalities
z; <sj_1+1land xjy1 < x;+x; imply sj41 = sj_1+xj+xj41 < sj1+ 2z +x; <
3sj—1+ 2+ z; and (I7) follows.

4. MAXIMAL COLORINGS FOR K7 1,

The aim of this section is to illustrate some techniques in proving IC-colorings
and finding maximal colorings by exploring the class Kj1,. Numbers in fT are
usually printed in boldface.

Theorem 4.1. Up to IC-equivalence, we have:

(a) The mazimal coloring for Ky 11 is ({1},{2},{4}).
(b) The maximal colorings for K112 are
(1) ({3}, {7}.{1,2}),
(2) ({2}, {4},{1,6}),
(3) ({1},{6},{2,4}),
(4) ({1}, {2},{3,7}).
(¢) The maximal colorings for Ki1,, n > 3, are
(1) <{2}’ {4}’ {17 6,---,3" 2n—1}>’
(2) ({1},{2},{3,6,---,3-2""2 3.27"1 1 1}).
Consequently, the IC-index of K115 is M(K11,) =3-2" + 1.

Theorem 4.1 will follow from the following Lemmas 4.2-4.9.
Lemma 4.2. The colorings in Theorem 4.1 are 1C-colorings.

Proof. We shall see that each f = (Vi, V5, V3) in Theorem 4.1 satisfies z; < s;_1 +1
for all 1 < i < mn+2. Since G = {V1, Vs, V3} € Ky 1, is connected, S(f) = sp42.
From Proposition 3.4 with k = n + 2, it follows that if & € N and a < S(f) then
a =) g for some H C V(G). Thus a can be produced by f if H € Bg. When
H ¢ Bg, by modifying H, we shall obtain some K € B¢ such that a = S¢(K).

(a) The coloring f = ({1},{2},{4}) ~ K11 satisfies x; = s,_; + 1 for i €
{1,2,3} and every subset H of V(G) is in Bg. Hence f is an IC-coloring.
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(b) (1) f=({3},{7},{1,2}) satisfies x; = ;-1 + 1 for i € {1,2,4} and z; =
si—1 for i = 3. The only subset of V(G) not an IC-subgraph is {x1,z2}
and x1 + 22 = 23 = S¢({z3}). Hence f is an IC-coloring.

(2) f=({2},{4},{1,6}) satisfies x; = 5,1 + 1 for i € {1,2,3} and z; =
si.1 — 1 for i = 4. We see that if H C V(G) and H ¢ Bg then
H = {z1,24}. As 1 + x4 = S¢({z1,22,23}), f is an IC-coloring.

(3) f=({1},{6},{2,4}) satisfies ; < s;_1 + 1 for all 1 <7 < 4 as in the
previous one. As xo + x3 = S¢({x4}), f is an IC-coloring.

(4) f = ({1},{2},{3,7}) is an IC-coloring because z; < s;—1 + 1 for all
1<i<4and z3+ x4 = Sf({x1,$2,$4}).

(¢) (1) f=(W1,Va,V3) >~ Kq1,, (n > 3) is the coloring satisfying Vi = {z2},
VQ = {xg}, VE; = {xl}U{x4,:c5, te ,l‘n+2}, Ty = Si_1+1 fori € {1,2,3},
and z; = s;j—1 — 1 for i € {4,5,--- ,n+2}. Let H C V(G), H ¢ Bg.
Then |[H| > 1 and H C V3. If 2; = min(V3\{z1}) then j > 4 and
rj=s81—1=(x1+x2+ - +xj_1) —x1, 50 that }° 2= Sy(K),
where K = (H\{z;}) U{x2,23, -+ ,zj—1}. Hence f is an IC-coloring.

(2) We have Vi = {x1}, Vo = {z2}, V3 = {x3, 24, -+ ,Tpy2}, i = si—1 +
1for ¢ € {1,2,n + 2}, and z; = s;-1 for ¢ € {3,4,---,n+ 1}. If
|H| > 1, H C V3 and z; = min(H\{zp42}), then 3 < j < n+1 and
rj = 8j_1 =21+ 22+ - +xj_1, sothat Yy x = Sp(K), where
K = (H\{z;}) U{z1,22,--- ,zj_1}. Hence f = (V1,V5,V3) ~ Kj 1,
(n > 3) is an IC-coloring.

g
Lemma 4.3. Mazimal colorings for K11, are one-to-one.

Proof. By Lemma 4.2, we have M (K1 1,) > 3-2"+1. f G € K11, and f: V(G) —

N is maximal for Ky 1, then |S¢(Bg)| = [{0,1,2, -+ ,M(Ki10)}| = M(K11,0) +1,

and, by Proposition 3.1, |Bg| — myién \B(u,v)| = 3-2" — 2"~ 4+ n. It follows that
UFV

|S¢(Ba)| — (|Ba| — m;n|l3g(u,v)\) >2""! —n 42> 0. Hence f is one-to-one as
UFV
mentioned at the end of Section 2. g

For convenience sake, we define the b(1,1,n)-sequence by, ba, -+, byt3 to be
by =1, b, =3-272for 2 <i<n+2 and byy3 = oco. In the following, b1,
by, -+, bpts will be the b(1,1,n)-sequence when we deal with a given coloring
f=(V1,V5,V3) ~ K 1, which is maximal.

Lemma 4.4. Let f = (V1,V2,V3) >~ K11, be mazimal. Then:
(@) (z1,22,23) = (1,2,3) or (1,2,4).
(b) b; <sj foralll <i<n+3.
() [fF]=3.

Proof. As 1 < x9 < x3 and z; < s;1 + 1 (1 < i < 3), (a) follows. As sp12 =
M(Kii,) >3-2"4+1 and s,43 = 00, we see that b; < 's; for ¢ € {1,2,3} U{n +
2,n+3}. If s, < by for some 4 < p < n+ 2, by (I2) with ¢ = n + 2, we would have
Spio < 20F27Ph, = 3. 2" < 5,49, Hence (b) is true. Similarly, if [f*] < 3 then
ft =1{1,2}, by (I3) with (p,q) = (2,n + 2), we would have s,12 < 32" < sp,49.
This prove (c). O
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Lemma 4.5. Let f = (V1,Va,V3) ~ K11, (n > 2) be mazimal. Then:
(a) If (z1,29,23) = (1,2,3) then 6 < x4 <7 and {z1,23}, {x2,23} € Bg.
(b) If (w1, 29,23) = (1,2,4) then 6 < x4 < 8 and {x1, 22}, {x1,23} € Bg.

Proof. Let (x1,z2,23) = (1,2,3). By (I1) with ¢ = 4, we obtain 6 < x4 < 7. By (I4)
with i € {1,2} and j = 3, we have {x;,23} € Bg (1 < i < 2). This prove (a). To see
(b), let (w1, x2,x3) = (1,2,4). By (I4) with (i, 5) = (1,2), we see that {z1,22} € Bg.
We prove {x1, 23} € Bg by a contradiction. If z; ~ z3, by (I5) with (7, j) = (1, 3),
we would have (x1,x2,x3,24) = (1,2,4,5), and, by (I1) with i = 5, we would have
x5 > 12, it follows from these and (I4) with (i,5) = (3,4) that {z3,24} € Bg.
Now, x1 ~ z3, {x1,22} € Bg and {3, 24} € Bg would imply Vi U Vo = {x9, x4}
and {x1,z3} C V3, so that x5 € V(G) (sa < M(Ki,12)) and, by (I5)-(I7) with
(i,7) = (1,5), s5 < 284 —x1 = 23 < bs or sg < 3s4+ 2+ 21 = 39 < bg, which
contradicts Lemma 4.4 (b). Hence {z1, 23} € Bg is proved. By (I1) with ¢ = 4, we
have 5 < x4 < 8. Let us check the case x4 = 5. We have (z1, 2, z3,24) = (1,2,4,5)
and z5 > 12 by (I1), so that z5 > s4 — z; for all 1 < i < 3. If x; ~ x5 for some
1 <4 <3, by (I5) and (I7) with j = 5, we would have sg < 3s4+2+z; < 42 < bg (we
have proved that x5 < s4 —x; is false). This contradiction proves that {x;, z5} € Bg
for all 1 <14 < 3. It follows from this and {x1,x2}, {z1, 23} € Bg that o ~ x5 ( we
have only three partite sets), so that {x1,25} = V3 U V4 and {z2, 23,24} C V3. By
x4 > s3 — x3 and (I5) with (7, j) = (3,4), we have x5 < x; + 24 = 9, which would
imply s5 < 21 < bs. Thus x4 = 5 is impossible and we have 6 < x4 < 8. This
completes the proof. O

Lemma 4.6. Let f = (V1,V2,V3) >~ K11, (n > 2) be mazimal. If x1 € V3 and
x9 € V3 then, up to IC-equivalence, f = ({3},{7},{1,2}).

Proof. By (I5) with (7, ) = (1,2), we obtain (z1,x2,23) = (1,2,3). By Lemma 4.5
(a), we have 6 < x4 < 7. Thus x5 = s5—84 > by —s4 > 24—13 = 11 (note x5 = oo if
n = 2), so that, by (I4) with i = 1 and j € {3,4}, {x1,23} € Bg and {z1, 24} € Bg.
This proves that {x3,z4} = V4 U Vs and {x1,29} C V5. If 4 = 6 then x5 € V(G)
(84 < M(KLLQ)) and, by (15)-(17) with (Z,]) = (3,5), s5 < 284 —x1 = 11 < by
or sg < 3s4 + 2+ x1 = 39 < bg, which contradicts Lemma 4.4 (b). Hence x4 # 6
and, by 6 < x4 < 7, we have (x1,x2,x3,74) = (1,2,3,7). We claim that n = 2. If
not, by (I5)-(I7) with (¢,7) = (2,5), we would have s5 < 24 < b5 or sg < 43 < bg,
so that s5 = 24 < M(K713), and, by (I5)-(I8) with (¢, j) = (2,6), we obtain the
contradiction sg < 46 < bg or s7 < 76 < by. O

Lemma 4.7. Let f = (V1,V2,V3) ~ Ky 1, (n > 2) be mazimal. If x1 ¢ V3 and
x9 € V3 then, up to IC-equivalence, f = ({1},{6},{2,4}).

Proof. That x1 ¢ V3 and z9 € V3 imply {x1, 22} € Bg. If (z1,22,23) = (1,2,3),
by Lemma 4.5 (a), we would have {z;,z;} € Bg for all 1 < i < j < 3, and by
(I5) and (I7) with (i,7) = (2,4), s5 < 3s3 + 2 + x92 = 22 < bs, which contradicts
bs < s5. Hence (z1,x2,23) = (1,2,4). We claim that x3 € V3. Suppose on the
contrary that {x1,z3} = V1 UV and {z2, 24} C V3. By Lemma 4.5 (b), 6 < x4 < 8.
If 6 < x4 <7, then x4 > s3 — xg, so that, by (I5) with (4,7) = (2,4), x5 <
xo+ x4 <9, we would have s5 < 23 < bs. If x4 = 8 then, by (I5) with (¢,7) = (2,4),
x5 < x9 + x4 = 10 < o0, so that, by (I5) with (4,5) = (4,5), z¢ < x4 + x5 < 18,
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we would have sg < 43 < bg. This proves that x3 € V3 and 2o ~ x3. By (I5)
with (4,7) = (2,3), 4 < 22 + 3 = 6. From this and Lemma 4.5 (b), it follows
that (z1,z2,23,24) = (1,2,4,6). Let us now check whether {z2, 24} € Bg or not.
If xo9 ~ x4, by (I5) with (i,5) = (2,4), 5 < x2 + x4 < 8, and we would have
s5 < 21 < bs < s5. This proves that {xa, 24} € Bg and that {x1,24} = V3 U Vs
and {z2,z3} C V3. Finally, if 5 € V(G), by (I1) with ¢ = 5, we would have
x5 > 11, and by (I5) and (I7) with (4,5) = (3,5), we obtain the contradiction
s6 < 3s4+ 2+ w3 = 45 < bg. Hence z5 ¢ V(G). O

Lemma 4.8. Let f = (V1,Vo,V3) >~ K1, (n > 2) be mazimal. If 1 € V3 and
1o ¢ V3 then, up to IC-equivalence, f = ({2}, {4},{1,6,---,3-2"71}).

Proof. Let x; € V3 and zo ¢ V3. If 3 = 3, by Lemma 4.5 (a), we would have
{z2, 23} = V1UVa, {z1,24} C V3 and x4 > 6 > s3—x1, so that, by (I5) and (I7) with
(i,7) = (1,4), we would have s5 < 3s3+2+x1 = 21 < bs, which contradicts bs < s5.
Thus (x1,x2,23) = (1,2,4) and, by Lemma 4.5 (b), we have {2, 23} = V4 U V3,
{z1,24} C V3 and 6 < x4y < 8. If 24 € {7,8} then x4 > s3 — x1, by (I5) and (I7)
with (i,7) = (1,4), we would have s5 < 3s3 +2+ 21 = 24 < M(K;,13), so that
x6 € V(G) and bs < s5 < 24 = bs. We have to discuss the following two cases for
S5 — 24.

Case 1 (z1,x2,23,24,25) = (1,2,4,7,10). By (I4) with (¢,75) = (1,4), we

would obtain {x1,z4} € Bg which contradicts {z1,z4} C V.

Case 2 (z1,x2,73,24,25) = (1,2,4,8,9). By (I1) with i = 6, we would

obtain xg > 24. It follows from this and (I4) with (¢,5) = (4,5) that

{z4,25} € Bg which contradicts {x4, x5} C V3.
Thus (z1,22,73,74) = (1,2,4,6). Let z, = 3-2P73 and s, = 3-2P"2 + 1 for
some 4 < p < n+ 2. We claim that 2,41 = 3-27"2 and sp41 = 3-2P"L + 1. If
Tpr1 < 3 - 2P=2 then Sp+1 = Sp + Tpy1 < bpy1, so that spp1 = bpp1 < M(K11p-1)
(bp+1 is a lower bound for spi1 by Lemma 4.4 (b)), thus x,42 € V(G) and, by
(I5)-(I7) with (i,7) = (1,p + 2), we would have sp12 < 28p41 — 21 < bpp2 Or
Sp3 < 3Spp1 + 2+ 21 = 3bpy1 + 3 < 3bpy1 + bpr1 < bpys, which contradicts b; < s;
for all 1 <14 < n+ 3. Similarly, if xp41 >3- 2P=2 then Tp41 > Sp — x1, so that, by
(I5) and (I7) with (4,7) = (1,p+1), we would have s,;2 < 3s,+2+ 21 = 3b,+6 <
3b, + by < bpia, a contradiction. Hence x,41 = 3 -2P~2 and our claim is proved.
This completes the proof. O

Lemma 4.9. Let f = (V1,V5,V3) ~ Ky 1, (n > 2) be mazimal. If x1 ¢ V3 and
xo ¢ V3 then, up to IC-equivalence, f = ({1},{2},{3,6,---,3-2772,3. 2771 1 11},

Proof. We have {z1,z2} = V1 U Vs and {x3,24, -+ ,xn4r2} = V3. Suppose on the
contrary that (z1,x2,23) = (1,2,4). By Lemma 4.5 (b), we would have three cases
to discuss.
Case 1 24 = 6. By (I5) with (4,7) = (3,4), x5 < x3 + x4 = 10, we would
obtain the contradiction s5 < 23 < bs.
Case 2 x4 = 7. By (I5) with (4,7) = (3,4), 5 < 23+ 24 = 11. By (I1)
with ¢ = 5, x5 > by — s4 = 10. Thus 10 < x5 < 11. If (21, 22,23, 24, 75) =
(1,2,4,7, 10), by (Il) with ¢ = 6 (.CEG S V(G) for s5 = 24 < M(Klyl’g)),
xg > 24, we would have sy < 21 < xg. By Proposition 3.2 (a) with (j,«) =
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(5,21), x5 = 10 should be used in producing 21, so that {4,7,10} € Bg
for S¢(H) = 21 only if H = {4,7,10}, which contradicts {x3, 24,25} C V3.
Similarly, if (1, x2, 3, x4, 25) = (1,2,4,7,11) then xg = s — S5 > bg — s5 >
48 — 25 = 23 (xg = s¢ = bg = oo if n = 3), we would havesy; < 22 < wg,
so that, by Proposition 3.2 (a) with (j, o) = (5,22), {4,7,11} € B¢, which
contradicts {x3,z4,25} C V.

Case 3 x4 = 8. Then (x1,x92,x3,24) = (1,2,4,8). By (I5) with (7,j) =
(3,4), z5 < w3+ x4 = 12. By (I1) with i« = 5, 25 > b5 — s4 = 9. Thus
9 < x5 < 12. From this and (I5) with (4,5) = (4,5) it would follow that
re < x4 + 25 < 20, so that sg < 47 < bg, a contradiction.

Thus, we have proved (z1,x2,23) = (1,2,3). Let f* = {x;,, 2y, Tis, - }, where
Ty, < Tjy < Tjg < ---. Then z;; =1, 25, = 2, and 4 < i3 < n + 2 by Lemma
44 (¢). By (I1) with 3 < i < i3, we see that b; —s; < z; < s;-1 (each z; ¢
f+), it follows that (x1,x9,x3,- - - ,$i3_1,$i3) =(1,2,bg,--- ybis—2,big_1 + 1) and
(81, 82,83, ,Siz—1, Sig) = (bl, by, bs, - - - ,bi3_1, bi3 + 1). To complete the proof, we
must show that i3 = n + 2. Suppose, to the contrary, that i3 < n + 2, by (I1) with
i = i3+ 1, we would obtain big—l < Tjy41 < bi3+2 and bi3+1 < Sjy41 < bi3+1+3. By
(I5) and (I8) with (¢, 7) = (i3,i3+1), we would have s;, 42 < 38, +2+x, = 2bjy 41+
6 — bi3_1 < 2bi3+1 < M(K1717i3)7 so that Tist3 € V(G) and Ty ~ Tjg43. It follows
from Sizt1 < bi3+1—|—3 and (15)—(17) with (i, ]) = (ig, i3+3) that Sig42 < 285,41 Ty <
bigy2+5—biz;—1 < bjyyo or 8i543 < 384541+ 2+ w5 < bijy13+12—0j5 —biz—1 < biyys,
which contradicts Lemma 4.4 (b). Hence i3 = n + 2. O

Proof of Theorem 4.1. Lemma 4.3 shows that maximal colorings for Kj i, are of
the form f = (V1, Vo, V3) up to IC-equivalence. The desired results now follow from
Lemma 4.2, Lemma 4.4 (a), and Lemmas 4.6-4.9. O
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