A PROOF OF FRITZ JOHN'S ELLIPSOID THEOREM

SHENG-YI HSU AND MAU-HSIANG SHIH*
In Memory of Professor Ky Fan

Abstract. We present a simple proof of Fritz John's ellipsoid theorem using a projection theorem proved by the Hahn-Banach theorem.

Fritz John showed in 1948 that any symmetric convex body in \mathbb{R}^{n} lies between two concentric homothetic ellipsoids of ratio $1 / \sqrt{n}$, and the parameter $1 / \sqrt{n}$ is optimal [5]. This basic result in convex geometry is of great impact on geometry of Banach spaces $[6,7]$, complexity of algorithms [2], and a classification of the existence of Liapunov quadratic form for switched linear system [1].

John's proof was based on Lagrange's multiplier rule where the subsidiary conditions are inequalities [5]. A proof based on differential equations is seen in [4]. Functional-theoretic proofs of the complex version of John's ellipsoid theorem may be found in $[1,6,7]$. Here we present a simple proof of this result based on a projection theorem proved by the Hahn-Banach theorem.

Let \mathbb{C}^{n} be the n-dimensional Hilbert space equipped with the inner product

$$
\langle x, y\rangle=\sum_{k=1}^{n} x_{k} \overline{y_{k}}
$$

and the associated norm

$$
\|x\|=\langle x, x\rangle^{1 / 2}
$$

For a Hermitian matrix $A, A>0$ denotes that A is positive definite.
We shall establish the following:
Theorem 1. Let $\|\|\cdot\|\|$ be a norm on \mathbb{C}^{n} and $x_{0} \in \mathbb{C}^{n}$ such that $\left\|\mid x_{0}\right\| \|=1$ and $\left\langle x_{0}, x_{0}\right\rangle=\min _{\|| | x\|=1}\langle x, x\rangle$. Then

$$
\left|\left\langle x, x_{0}\right\rangle\right| \leq\left\langle x_{0}, x_{0}\right\rangle \text { for all }\||x|\| \leq 1
$$

Proof. By the Hahn-Banach theorem, there is a linear functional f on \mathbb{C}^{n} such that

$$
f\left(x_{0}\right)=\left\|\left|x_{0}\right|\right\| \text { and }|f(x)| \leq\|\mid\| x \| \text { for all } x \in \mathbb{C}^{n}
$$

By the Riesz representation theorem, there is a $y \in \mathbb{C}^{n}$ such that

$$
f(x)=\langle x, y\rangle \text { for all } x \in \mathbb{C}^{n}
$$

[^0]Since $x_{0} \neq 0$, we have $y \neq 0$. Denote by W the subspace generated by x_{0}. According to the orthogonal decomposition

$$
\mathbb{C}^{n}=W \oplus W^{\perp}
$$

y can be written as $\alpha x_{0}+z$ for some $\alpha \in \mathbb{C}$ and $z \in W^{\perp}$. Then

$$
1=\left\|\mid x_{0}\right\| \|=f\left(x_{0}\right)=\bar{\alpha}\left\langle x_{0}, x_{0}\right\rangle,
$$

so α is real and

$$
\left\langle x_{0}, x_{0}\right\rangle=\frac{1}{\alpha} .
$$

It follows from $\langle y, y\rangle=f(y) \leq\|| | y\| \|$ and $\left\langle x_{0}, x_{0}\right\rangle \leq\langle x, x\rangle$ for all $\||x|\|=1$ that

$$
\frac{1}{\alpha} \leq\left\langle\frac{y}{\|y\| \|}, \frac{y}{\|y\| \|}\right\rangle \leq \frac{1}{\| \| y\| \|} \leq \frac{1}{\langle y, y\rangle}=\frac{1}{\alpha+\langle z, z\rangle} \leq \frac{1}{\alpha}
$$

From these we conclude that $z=0$. Thus

$$
y=\frac{x_{0}}{\left\langle x_{0}, x_{0}\right\rangle},
$$

and the assertion follows from

$$
\left|\frac{\left\langle x, x_{0}\right\rangle}{\left\langle x_{0}, x_{0}\right\rangle}\right|=|f(x)| \leq \|\left|\left|| | \text { for all } x \in \mathbb{C}^{n}\right.\right. \text {. }
$$

Theorem 2 (Fritz John's Ellipsoid Theorem). Let $|||\cdot|||$ be a norm on \mathbb{C}^{n} and

$$
\mathscr{A}=\left\{A>0 ;\langle A x, x\rangle \leq\|x \mid\|^{2} \text { for all } x \in \mathbb{C}^{n}\right\} .
$$

Then there exists a unique $A_{0} \in \mathscr{A}$ such that

$$
\operatorname{det} A_{0}=\max _{A \in \mathscr{A}} \operatorname{det} A \text {. }
$$

Moreover,

$$
\left\langle n A_{0} x, x\right\rangle \geq\|x\|^{2} \text { for all } x \in \mathbb{C}^{n} \text {. }
$$

Proof. For each $A \in \mathscr{A}$ and $\|x\| \leq 1$, we have

$$
\left\|A^{1 / 2} x\right\|=\langle A x, x\rangle^{1 / 2} \leq\|\mid x\| \|,
$$

so

$$
\|A\| \leq\left\|A^{1 / 2}\right\|^{2} \leq \max _{\|x\| \leq 1}\|x\|^{2} \text { for all } A \in \mathscr{A}
$$

Thus \mathscr{A} is bounded. It follows that there exists an A_{0} in the closure of \mathscr{A} such that

$$
\operatorname{det} A_{0}=\sup _{A \in \mathscr{A}} \operatorname{det} A \text {. }
$$

Since the right part of the above equation is positive, we conclude that A_{0} is in \mathscr{A}. To prove the uniqueness assertion, we apply the following determinantal inequality [3]:
If A and B are $n \times n$ complex matrices with $A>0, B>0$ and $A \neq B$, then

$$
\operatorname{det}((1-t) A+t B)>(\operatorname{det} A)^{1-t}(\operatorname{det} B)^{t} \text { for all } t \in(0,1) .
$$

If $B_{0} \in \mathscr{A}$ is such that $\operatorname{det} B_{0}=\max _{A \in \mathscr{A}} \operatorname{det} A$ and $B_{0} \neq A_{0}$, then $\operatorname{det} \frac{1}{2}\left(A_{0}+B_{0}\right) \in \mathscr{A}$ and

$$
\operatorname{det} \frac{1}{2}\left(A_{0}+B_{0}\right)>\left(\operatorname{det} A_{0}\right)^{1 / 2}\left(\operatorname{det} B_{0}\right)^{1 / 2}=\operatorname{det} A_{0}
$$

contradicting the maximality of $\operatorname{det} A_{0}$, proving the assertion. To prove the "moreover" part, we first consider the case of $A_{0}=I$. Let $\left\|\left|x_{0}\right|\right\|=1$ and

$$
\left\langle x_{0}, x_{0}\right\rangle=\min _{\|x\|=1}\langle x, x\rangle .
$$

We have to prove that $\left\langle n x_{0}, x_{0}\right\rangle \geq 1$. Suppose not, i.e., $\alpha=\left\langle x_{0}, x_{0}\right\rangle<\frac{1}{n}$. Let

$$
u_{1}=\frac{x_{0}}{\left\langle x_{0}, x_{0}\right\rangle^{1 / 2}}
$$

and u_{2}, \ldots, u_{n} be such that $\left\{u_{1}, \ldots, u_{n}\right\}$ forms an orthonormal basis of \mathbb{C}^{n}. Let

$$
B=\operatorname{diag}\left(\frac{1}{n \alpha}, \frac{n-1}{n(1-\alpha)}, \ldots, \frac{n-1}{n(1-\alpha)}\right),
$$

and $B_{0}=P^{*} B P$ where P is the matrix with row vectors $u_{1}^{*}, \ldots, u_{n}^{*}$, i.e.,

$$
P=\left(\begin{array}{c}
u_{1}^{*} \\
\vdots \\
u_{n}^{*}
\end{array}\right) .
$$

We now claim that $B_{0} \in \mathscr{A}$, i.e., $\left\langle B_{0} x, x\right\rangle \leq 1$ for all $\||x|\| \leq 1$. Let $\||x|\| \leq 1$. Using the basis $\left\{x_{0}, u_{2}, \ldots, u_{n}\right\}$ of \mathbb{C}^{n} we obtain

$$
\begin{aligned}
x & =c_{1} x_{0}+c_{2} u_{2}+\cdots+c_{n} u_{n} \\
& =c_{1} \sqrt{\alpha} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}
\end{aligned}
$$

for certain $c_{i} \in \mathbb{C}, i=1, \ldots, n$. According to Theorem 1 , we deduce the inequality

$$
\alpha\left|c_{1}\right|=\left|\left\langle x, x_{0}\right\rangle\right| \leq\left\langle x_{0}, x_{0}\right\rangle=\alpha,
$$

so $\left|c_{1}\right| \leq 1$. It follows from $\langle x, x\rangle=\left\langle A_{0} x, x\right\rangle \leq\left\|\left||x| \|^{2}\right.\right.$ that

$$
\left|c_{2}\right|^{2}+\cdots+\left|c_{n}\right|^{2} \leq 1-\left|c_{1}\right|^{2} \alpha .
$$

Consequently,

$$
\begin{aligned}
\left\langle B_{0} x, x\right\rangle & =\langle B P x, P x\rangle \\
& =\frac{1}{n \alpha}\left|c_{1}\right|^{2} \alpha+\frac{n-1}{n(1-\alpha)}\left(\left|c_{2}\right|^{2}+\cdots+\left|c_{n}\right|^{2}\right) \\
& \leq \frac{1}{n}\left|c_{1}\right|^{2}+\frac{n-1}{n(1-\alpha)}\left(1-\left|c_{1}\right|^{2} \alpha\right) \\
& =\left(\frac{1-n \alpha}{n(1-\alpha)}\right)\left|c_{1}\right|^{2}+\frac{n-1}{n(1-\alpha)} \\
& \leq\left(\frac{1-n \alpha}{n(1-\alpha)}\right)+\frac{n-1}{n(1-\alpha)}=1 .
\end{aligned}
$$

This shows that $B_{0} \in \mathscr{A}$. However, by the arithmetric-geometric means inequality, we have

$$
\begin{aligned}
\frac{1}{\left(\operatorname{det} B_{0}\right)^{1 / n}} & =\left[n \alpha\left(\frac{n(1-\alpha)}{n-1}\right)^{n-1}\right]^{1 / n} \\
& \leq \frac{1}{n}\left(n \alpha+\frac{n(1-\alpha)}{n-1}+\cdots+\frac{n(1-\alpha)}{n-1}\right)=1
\end{aligned}
$$

Here the equality holds if and only if $\alpha=\frac{1}{n}$. Thus $\operatorname{det} B_{0}>1$, in contradiction to the maximality of $\operatorname{det} A_{0}$, proving the case of $A_{0}=I$.

For the general case of A_{0}, there exist a unitary matrix Q and a diagonal matrix D such that

$$
Q^{*} A_{0} Q=D .
$$

Put $U=Q D^{-\frac{1}{2}}$. Consider the set

$$
\mathscr{B}=\left\{B>0 ;\langle B x, x\rangle \leq\| \| U x \|^{2} \text { for all } x \in \mathbb{C}^{n}\right\}
$$

Then $A \in \mathscr{A}$ if and only if $B=U^{*} A U \in \mathscr{B}$. Thus $A_{0} \in \mathscr{A}$ is such that $\operatorname{det} A \leq$ $\operatorname{det} A_{0}$ for all $A \in \mathscr{A}$ if and only if $U^{*} A_{0} U=I \in \mathscr{B}$ and $\operatorname{det} B \leq 1$ for all $B \in \mathscr{B}$. Applying the case of $A_{0}=I \in \mathscr{A}$ to $U^{*} A_{0} U=I \in \mathscr{B}$, we conclude that

$$
\left\langle n A_{0} U x, U x\right\rangle \leq\|U X\| \|^{2} \text { for all } x \in \mathbb{C}^{n}
$$

and the theorem is proved.

References

[1] T. Ando and M.-H. Shih, Simultaneous contractibility, SIAM J. Matrix Anal. Appl. 19 (1998), 487-498.
[2] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
[3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[4] R. Howard, The John ellipsoid theorem, Internet, 1997.
[5] F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays, Interscience, New York, 1948, pp. 184-204; reprinted in Collected Papers, Vol. 2, J. Moser, ed., Birkhäuser, Boston, MA, 1985, pp. 543-560.
[6] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, 1989.
[7] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs Surveys in Pure Appl. Math., 38, John Wiley, New York, 1989.

Manuscript received December 28, 2010 revised February 18, 2011

Sheng-Yi Hsu

Department of Mathematics, National Taiwan Normal University, 88 Sec. 4, Ting Chou Road, Taipei 11677, Taiwan

E-mail address: syhsu@abel.math.ntnu.edu.tw

Mau-Hsiang Shin

Department of Mathematics, National Taiwan Normal University, 88 Sec. 4, Ting Chou Road, Taipei 11677, Taiwan

E-mail address: mhshih@math.ntnu.edu.tw

[^0]: 2010 Mathematics Subject Classification. 15A60, 15A63.
 Key words and phrases. Fritz John ellipsoid theorem, projection.
 ${ }^{*}$ Corresponding author. This work was supported by the National Science Council of the Republic of China.

