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Abstract. We present a simple proof of Fritz John’s ellipsoid theorem using a
projection theorem proved by the Hahn-Banach theorem.

Fritz John showed in 1948 that any symmetric convex body in Rn lies between two
concentric homothetic ellipsoids of ratio 1/

√
n, and the parameter 1/

√
n is optimal

[5]. This basic result in convex geometry is of great impact on geometry of Banach
spaces [6, 7], complexity of algorithms [2], and a classification of the existence of
Liapunov quadratic form for switched linear system [1].

John’s proof was based on Lagrange’s multiplier rule where the subsidiary con-
ditions are inequalities [5]. A proof based on differential equations is seen in [4].
Functional-theoretic proofs of the complex version of John’s ellipsoid theorem may
be found in [1, 6, 7]. Here we present a simple proof of this result based on a
projection theorem proved by the Hahn-Banach theorem.

Let Cn be the n-dimensional Hilbert space equipped with the inner product

〈x, y〉 =
n∑

k=1

xkyk

and the associated norm
‖x‖ = 〈x, x〉1/2.

For a Hermitian matrix A, A > 0 denotes that A is positive definite.
We shall establish the following:

Theorem 1. Let ||| · ||| be a norm on Cn and x0 ∈ Cn such that |||x0||| = 1 and
〈x0, x0〉 = min

|||x|||=1
〈x, x〉. Then

|〈x, x0〉| ≤ 〈x0, x0〉 for all |||x||| ≤ 1.

Proof. By the Hahn-Banach theorem, there is a linear functional f on Cn such that

f(x0) = |||x0||| and |f(x)| ≤ |||x||| for all x ∈ Cn.

By the Riesz representation theorem, there is a y ∈ Cn such that

f(x) = 〈x, y〉 for all x ∈ Cn.
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Since x0 6= 0, we have y 6= 0. Denote by W the subspace generated by x0. According
to the orthogonal decomposition

Cn = W ⊕W⊥,

y can be written as αx0 + z for some α ∈ C and z ∈ W⊥. Then

1 = |||x0||| = f(x0) = ᾱ〈x0, x0〉,
so α is real and

〈x0, x0〉 =
1
α

.

It follows from 〈y, y〉 = f(y) ≤ |||y||| and 〈x0, x0〉 ≤ 〈x, x〉 for all |||x||| = 1 that

1
α
≤ 〈 y

|||y||| ,
y

|||y||| 〉 ≤
1

|||y||| ≤
1

〈y, y〉 =
1

α + 〈z, z〉 ≤
1
α

.

From these we conclude that z = 0. Thus

y =
x0

〈x0, x0〉 ,

and the assertion follows from∣∣∣∣
〈x, x0〉
〈x0, x0〉

∣∣∣∣ = |f(x)| ≤ |||x||| for all x ∈ Cn.

¤

Theorem 2 (Fritz John’s Ellipsoid Theorem). Let ||| · ||| be a norm on Cn and

A = {A > 0 ; 〈Ax, x〉 ≤ |||x|||2 for all x ∈ Cn}.
Then there exists a unique A0 ∈ A such that

det A0 = max
A∈A

det A.

Moreover,
〈nA0x, x〉 ≥ |||x|||2 for all x ∈ Cn.

Proof. For each A ∈ A and ‖x‖ ≤ 1, we have

‖A1/2x‖ = 〈Ax, x〉1/2 ≤ |||x|||,
so

‖A‖ ≤ ‖A1/2‖2 ≤ max
‖x‖≤1

|||x|||2 for all A ∈ A .

Thus A is bounded. It follows that there exists an A0 in the closure of A such that

det A0 = sup
A∈A

det A.

Since the right part of the above equation is positive, we conclude that A0 is in A .
To prove the uniqueness assertion, we apply the following determinantal inequality
[3]:
If A and B are n× n complex matrices with A > 0, B > 0 and A 6= B, then

det((1− t)A + tB) > (detA)1−t(detB)t for all t ∈ (0, 1).
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If B0 ∈ A is such that detB0 = max
A∈A

det A and B0 6= A0, then det 1
2(A0 +B0) ∈ A

and

det
1
2
(A0 + B0) > (detA0)1/2(detB0)1/2 = det A0,

contradicting the maximality of detA0, proving the assertion. To prove the “more-
over” part, we first consider the case of A0 = I. Let |||x0||| = 1 and

〈x0, x0〉 = min
|||x|||=1

〈x, x〉.

We have to prove that 〈nx0, x0〉 ≥ 1. Suppose not, i.e., α = 〈x0, x0〉 < 1
n . Let

u1 =
x0

〈x0, x0〉1/2

and u2, . . . , un be such that {u1, . . . , un} forms an orthonormal basis of Cn. Let

B = diag
(

1
nα

,
n− 1

n(1− α)
, . . . ,

n− 1
n(1− α)

)
,

and B0 = P ∗BP where P is the matrix with row vectors u∗1, . . . , u
∗
n, i.e.,

P =




u∗1
...

u∗n


 .

We now claim that B0 ∈ A , i.e., 〈B0x, x〉 ≤ 1 for all |||x||| ≤ 1. Let |||x||| ≤ 1.
Using the basis {x0, u2, . . . , un} of Cn we obtain

x = c1x0 + c2u2 + · · ·+ cnun

= c1

√
αu1 + c2u2 + · · ·+ cnun

for certain ci ∈ C, i = 1, . . . , n. According to Theorem 1, we deduce the inequality

α|c1| = |〈x, x0〉| ≤ 〈x0, x0〉 = α,

so |c1| ≤ 1. It follows from 〈x, x〉 = 〈A0x, x〉 ≤ |||x|||2 that

|c2|2 + · · ·+ |cn|2 ≤ 1− |c1|2α.

Consequently,

〈B0x, x〉 = 〈BPx, Px〉
=

1
nα
|c1|2α +

n− 1
n(1− α)

(|c2|2 + · · ·+ |cn|2)

≤ 1
n
|c1|2 +

n− 1
n(1− α)

(1− |c1|2α)

=
(

1− nα

n(1− α)

)
|c1|2 +

n− 1
n(1− α)

≤
(

1− nα

n(1− α)

)
+

n− 1
n(1− α)

= 1.
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This shows that B0 ∈ A . However, by the arithmetric-geometric means inequality,
we have

1
(detB0)1/n

=

[
nα

(
n(1− α)

n− 1

)n−1
]1/n

≤ 1
n

(
nα +

n(1− α)
n− 1

+ · · ·+ n(1− α)
n− 1

)
= 1.

Here the equality holds if and only if α = 1
n . Thus detB0 > 1, in contradiction to

the maximality of detA0, proving the case of A0 = I.
For the general case of A0, there exist a unitary matrix Q and a diagonal matrix

D such that
Q∗A0Q = D.

Put U = QD− 1
2 . Consider the set

B = {B > 0 ; 〈Bx, x〉 ≤ |||Ux|||2 for all x ∈ Cn}.
Then A ∈ A if and only if B = U∗AU ∈ B. Thus A0 ∈ A is such that det A ≤
det A0 for all A ∈ A if and only if U∗A0U = I ∈ B and detB ≤ 1 for all B ∈ B.
Applying the case of A0 = I ∈ A to U∗A0U = I ∈ B, we conclude that

〈nA0Ux, Ux〉 ≤ |||Ux|||2 for all x ∈ Cn,

and the theorem is proved. ¤
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