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FINITE DIMENSIONAL INVARIANT SUBSPACE PROPERTIES

AND AMENABILITY

ANTHONY TO-MING LAU

In memory of Professor Ky Fan with greatest respect and admiration.

Abstract. The purpose of this paper is to report on some results related to the
Ky Fan Finite Dimensional Invariant Subspace Theorem and related problems.

1. Introduction

In [7] (see also [5] and [6]), Ky Fan established the following remarkable “In-
variant Subspace Theorem”:

Theorem 1.1. Let S be a left amenable semigroup. Then S satisfies the following
property:

If S = {Ts : s ∈ S} is a representation of S as continuous linear operators from
a separated locally convex space E and X ⊆ E containing an n-dimensional subspace
such that Ts(L) is an n-dimensional subspace contained in X whenever L is one and
s ∈ S, and there exists a closed S-invariant subspace H in E of codimension n with
the property that (x +H) ∩X is compact convex for each x ∈ E, then there exists
an n-dimensional subspace L0 contained in X such that Ts(L0) = L0 for all s ∈ S.

The purpose of this paper is to report on some results related to Ky Fan’s
Invariant Subspace Theorem and open problems.

The paper is organized as follows: In Section 2, we present some preliminaries
and notations we shall need; in Section 3, we present results on the relation between
Ky Fan’s finite invariant subspace property and amenability for semigroup of linear
operators; in Section 4, we discuss a similar property in the setting of an F -algebra
i.e. a Banach algebra A which is the predual space of a von Neumann algebra such
that set of positive functionals in A forms a semigroup. This class of Banach algebras
includes the predual algebra of a Holf-von Neumann algebra, and in particular the
group algebra L1(G) of a quantum group G. Two classical examples of L1(G) are
the group algebra L1(G) and the Fourier algebra A(G) of a locally compact group
G.

2. Some preliminaries and notations

Let S be a semitopological semigroup, i.e. S is a semigroup with a Hausdorff
topology such that for each a ∈ S, the mappings s → as and s → sa from S into
S are continuous. Let ℓ∞(S) denote the C∗-algebra of bounded complex-valued
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functions on S with the supremum norm and pointwise multiplication. For each
a ∈ S and f ∈ ℓ∞(S), let ℓaf and raf denote the left and right translate of f by a
respectively, i.e (ℓaf)(s) = f(as) and (raf)(s) = f(sa), s ∈ S. Let X be a closed
subspace of ℓ∞(C) containing constants and invariant under translations. Then a
linear functional m ∈ X∗ is called a mean if ∥m∥ = m(1) = 1; m is called a left
invariant mean, denoted by LIM, if m(ℓaf) = m(f) for all a ∈ S, f ∈ X.

Let C(S) denote the space of all bounded continuous complex-valued functions
on S. Let LUC(S) be the space of left uniformly continuous functions on S, i.e.,
all f ∈ C(S) such that the mappings a → ℓaf from S into C(S) are continuous
when C(S) has the sup norm topology. Then LUC(S) is a C∗-subalgebra of C(S)
invariant under translations and contains the constant functions. S is called left
amenable if LUC(S) has a LIM. Left amenable semitopological semigroups include
all commutative semigroups, all compact groups and all solvable groups. But the
free group (or semigroup) on two generators is not left amenable. Interested read-
ers should consult the fundamental paper of Day [1], the classic of Greenleaf [8],
Paterson [30] or our survey article [23].

Let AP (S) denote the space of all f ∈ C(S) such that LO(f) = {ℓsf ; s ∈ S}
is relatively compact in the norm topology of C(S) and WAP (S) denote the space
of all f ∈ C(S) such that LO(f) is relatively compact in the weak topology of
C(S). Functions in AP (S) (resp. WAP (S)) are called almost periodic (resp. weakly
almost periodic). In general the following inclusions hold:

AP (S) ⊆ LUC(S) ⊆ C(S) and AP (S) ⊆WAP (S) ⊆ C(S).

If S is discrete, then:

AP (S) ⊆WAP (S) ⊆ LUC(S) = ℓ∞(S).

If S is compact then:

AP (S) = LUC(S) ⊆WAP (S) = C(S).

Let G be a locally compact group with fixed left Haar measure λ. Let C(G) be
the space of bounded continuous complex-valued functions on G, and let C0(G) be
the subspace of C(G) consisting of all those functions that vanish at infinity.

The dual space C0(G)
∗ may be identified with M(G), the Banach space of

regular Borel measures of G with total variation norm. M(G) is a Banach algebra
with product

⟨µ ∗ ν, f⟩ =
∫∫

f(xy)dν(y)dµ(x)

for µ, ν ∈M(G), f ∈ C0(G).
(
M(G), ∗

)
is called the measure algebra of G. Further-

more, L1(G), the space of λ-integrable functions on G, may be identified with the
closed ideal in M(G) consisting of all µ which is absolutely continuous with respect
to λ. Then

(
L1(G), ∗

)
is called the group algebra of G.

We define C∗(G), the group C∗-algebra of G, to be the completion of L1(G)
with respect to the norm

∥f∥∗ = sup ∥πf∥,
where the supremum is taken over all nondegenerate ∗-representations π of L1(G)
as an ∗-algebra of bounded operators on a Hilbert space.
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A function ϕ ∈ C(G) is called positive definite if for any λ1, . . . , λn ∈ C and

x1, . . . , xn ∈ G,
n∑

i=1

n∑
j=1

λiλjϕ(x
−1
i xj) ≥ 0.

Denote the set of continuous positive definite functions on G by P (G), and
the set of continuous functions on G with compact support by C00(G). Define the
Fourier-Stieltjes algebra of G, denoted by B(G), to be the linear span of P (G). Then
B(G) may be identified with the dual Banach space of C∗(G) with

⟨ϕ, f⟩ =
∫
ϕ(x)f(x)dλ(x)

for ϕ ∈ B(G) and f ∈ L1(G). B(G) is then a commutative Banach algebra. Let
A(G) denote the closed subalgebra of B(G) generated by functions with compact
support. A(G) is called the Fourier algebra of G. When G is abelian, then B(G) ∼=
M(Ĝ) and A(G) ∼= L1(Ĝ), where Ĝ is the dual group of G. (See [4], [9] and [10] for
details.)

If f ∈ L∞(G) and LO(f) = {ℓgf ; g ∈ G} is relatively weakly compact, then
f ∈ C(G). In particular f ∈ WAP (G) (see [20]). In this case B(G) ⊆ WAP (G) ⊆
LUC(G).

3. Finite dimensional invariant subspace
properties and amenability

Let E be a separated locally convex space. Let S = {Ts; s ∈ S} be a represen-
tation of a semigroup S as linear mappings from E into E. We assume (throughout
this section) that the map ψ : S ×E → E, (s, x) → Ts(x), s ∈ S and x ∈ E is sep-
arately continuous, i.e., ψ is continuous in each of the two variables when the other
is kept fixed. Then S is jointly continuous on a subset K ⊆ E if the map ψ is con-
tinuous on S ×K when S ×K has the product topology; S is quasi-equicontinuous
on K if the closure of S in the product space EK consists of continuous mappings
from K to E; and S is equicontinuous on K if for each y ∈ K, U a neighbourhood
of 0 ∈ E, there exist a neighbourhood V of 0 such that whenever x ∈ K, x− y ∈ V,
then Tsx− Tsy ∈ U for all s ∈ S.

Let S be a semigroup and S = {Ts; s ∈ S} be a representation of S as continu-
ous linear mappings on a separated locally convex space E. Let X be a subset of E,
and Ln(X) denote all n-dimensional subspaces of E. We say that X is n-consistent
if:

(a) Ln(X) is non-empty and S-invariant (i.e. Ts(L) ⊆ L for all s ∈ S); and
(b) there exists a closed S-invariant subspace H of E with codimension n and

(x+H) ∩X is compact convex for each x ∈ E.

Theorem 3.1. Let S be a semitopological semigroup.

(a) If LUC(S) has a LIM, then S satisfies P (n) for each n :
P (n) : Let E be a separated locally convex space and S = {Ts; s ∈ S} is a
continuous representation of S as linear operators from E into E and jointly
continuous on compact convex subsets of E. Let X be an n-consistent subset
of E. Then there exists L0 ∈ Ln(X) such that Ts(L0) = L0 for each s ∈ S.
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(b) If P (n) holds for some n = 1, 2, . . . then LUC(S) has a LIM. In particular
P (m) and P (n) are equivalent for all m,n = 1, 2, . . . .

Remark 3.2. Theorem 3.1(a) was proved by Ky Fan in [5] and by Lau in [17] for
semitopological semigroups (see [22, p.555] for correction). Theorem3.1(b) was
proved in [17].

Consider on S the following finite dimensional invariant subspace property:
P ′(n) : Let E be a separated locally convex space and S = {Ts; s ∈ S} be

a continuous representation of S as linear operators from E into E. Let X be an
n-consistent subset of E. Then there exists L0 ∈ Ln(X) such that Ts(L0) = L0 for
each s ∈ S.

Then clearly P ′(n) =⇒ P (n).

Open problem 1: Does P (n) =⇒ P ′(n)?
Let PA(n) denote the same property as P (n) with joint continuity replaced

by equicontinuity on compact convex subsets and PW (n) denotes P (n) with joint
continuity replaced by quasi-equicontinuity on compact convex subsets K of E (see
[25]).

Proposition 3.3. Let S be a semitopological semigroup. Then for any positive
integer n = 1, 2, 3, . . .

(a) PA(n) implies AP (S) has a LIM
(b) PW (n) implies WAP (S) has a LIM.

Proof. (a) Let H = AP (S)∗ with the weak∗-topology and E = H × IRn with the
product topology. Let M be the set of means on AP (S) i.e. all m ∈ AP (S)∗ such
that ∥m∥ = m(1) = 1. For each m ∈ M, let Vm = span {(m, b); b ∈ B} where
B = {ei} ⊆ IRn, ei = (0, . . . , 0, 1, 0, . . . , 0) (with “1” in the ith place), and identify
H with H × {0}, IRn with {0} × IRn. Then E = H ⊕ Vm for each m ∈ M. Let
X = ∪{Vm; m ∈M}. Consider the continuous representation S = {Ts; s ∈ S} of S
on E defined by Ts(ϕ, t) = (ℓ∗sϕ, t), ϕ ∈ H, t ∈ IRn. Then S is equicontinuous on
compact convex subsets of E. Note that TsVm = Vℓ∗sm for each s ∈ S, m ∈M. Also

for each x = (ϕ, t) ∈ E, ϕ ∈ AP (S)∗, t ∈ IRn, and t =
n∑

i=1
λiei, then

(x+H) ∩X = (t+H) ∩X = t+
( n∑

i=1

λi

)
M

which is compact and convex. By PA(n), we can find L0 ∈ Ln(X) such that Ts(L0) =
L0 for each s ∈ S. Necessarily L0 = Vm for some m ∈ M. Clearly m is a LIM on
AP (S).

(b) Can be proved by similar arguments. �

Open problem 2: (a) Does AP (S) have a LIM imply PA(n) for all n?
(b) Does WAP (S) have a LIM imply PW (n) for all n?
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It follows from [11] (see [27]) if S is a left reversible semigroup i.e. aS ∩ bS ̸= ∅
for all a, b ∈ S, then WAP (S) has a left invariant mean. But the converse is not
true (see [27]).

Open problem 3: Let S be a left reversible semigroup. Does S have the finite in-
variant subspace property PA(n) or PW (n) for each positive integer n? This problem
is not known even when S is a group.

Remark 3.4. We now consider the bicyclic semigroups S2 and S3: S2 is the semigroup
generated by {e, a, b, c} such that e is the unit element and a, b and c satisfies the
relation ab = ac = e; S3 is the semigroup generated by {e, a, b, c, d} such that e is
the unit element in S3 and ac = e, bd = e. Then as shown in [27]:

(a) Both S2 and S3 are not left amenable;
(b) S2 is right amenable, but S3 is not right amenable;
(c) S2 is not left reversible but WAP (S2) has a LIM ;
(d) WAP (S3) does not have a LIM.

Open problem 4:

(a) Does S2 have property PA(n) or PW (n) for each n?
(b) Does the bicyclic semigroup S3 have the property PA(n) for each n?

Note that S3 cannot have property PW (n) for any n by Proposition 3.3.
In a conference on Analysis and Semigroups held in Richmond, Virginia 1984,

Theodore Mitchell [28] (see also [23] and [27]) showed that the bicyclic semigroups
S2 and S3 are not left reversible, but AP (S2) and AP (S3) have a LIM.

Let S be a semitopological semigroup. The existence of LIM on LUC(S),
WAP (S) and AP (S) can be characterized by the following Markov-Kakutani type
fixed point properties.

Theorem 3.5. LUC(S) has a LIM if and only if S has the following fixed point
property:

(F1) Whenever S is a jointly continuous representation of S as affine mappings on
a non-empty compact convex subset X of a separated locally convex space, then X
contains a common fixed point for S.

Theorem 3.6. WAP (S) has a LIM if and only if S has the following fixed point
property:

(F2) Whenever S is weakly continuous representation of S as τ -equicontinuous affine
self-maps on a non-empty weakly compact convex subset X of a separated locally
convex space E with topology τ, then X has a common fixed point for S.

Theorem 3.7. AP (S) has LIM ⇐⇒ S has the following fixed point property:

(F3) Whenever S = {Ts : s ∈ S} is a continuous representation of S as affine
equicontinuous mappings from a non-empty compact convex subset X of a separated
locally convex space into X, then X contains a common fixed point for S.
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Remark 3.8. Theorem 3.5 was due to Day [2] (see also [3]) for discrete semigroup,
and Mitchell [29] for semitopological semigroup. Theorem 3.6 is proved in [15]
and Theorem 3.7 is proved in [14]. See [27] for related fixed point properties for
semigroup of nonexpansive mappings.

4. Algebras of linear operators

By an F -algebra we shall mean a complex Banach algebra A such that A∗

is a C∗-algebra and the identity of A∗, denoted by I (which always exists), is a
multiplicative linear functional on A. Examples of F -algebras include the predual
algebra of a Holf-von Neumann algebra, the group algebra L1(G), Fourier algebra
A(G) and the Fourier Stieltjes algebra B(G) of a locally compact group G. It also
includes the measure algebra M(S) of a locally compact semigroup S.

Let SA denote the set of all positive functionals in A ⊂ A∗∗ with norm one.
Then SA = {µ ∈ A; ∥µ∥ = I(µ) = 1}. Hence, as readily checked, (SA, ∗), where ∗
denotes the multiplication of A, is a semigroup. A is called left amenable if A∗ =M
has a topological left invariant mean (abbreviated as TLIM), i.e. an m ∈M∗ such
that ∥m∥ = 1, m ≥ 0 and m(F · µ) = m(F ) for each µ ∈ SA and F ∈ M, where
F · µ ∈ M is defined by (F · µ, ν) = ⟨F, µ ∗ ν⟩ for all ν ∈ A (see [16] and [18] for
details).

A representation of an F -algebra A as operators in a locally convex space E
is a map T : A × E → E denoted by (µ, x) → Tµ(x) such that (1) Tµ : E → E
is continuous and linear, (2) µ → Tµ(x) is continuous and linear with respect to
the norm topology in A for each x ∈ E and (3) Tµ∗ν = Tµ ◦ Tν ∀µ, ν ∈ A, where ∗
denotes multiplication in A.Also, letX be a subset of E containing an n-dimensional
subspace. We say that Ln(X) is SA-invariant under T if Tµ(L) ∈ Ln(X) for each
L ∈ Ln(X) and µ ∈ SA. A closed subspace H in E is called SA-invariant under T
if Tµ(H) ⊂ H ∀µ ∈ SA (and hence ∀µ ∈ A as well). Denote by q : E → E/H the
natural map such that q(x) = x̃, x ∈ E.

The action of SA on E is called inversely equicontinuous modulo H if given any
neighborhood U in E, there is some neighborhood V in E such that V ⊂ Tµ(U)+H
for any µ ∈ SA.

Theorem 4.1. Let A be an F -algebra.

(a) If A is left amenable, then A satisfies property T (n) for n = 1, 2, . . . where
property T (n) is defined as follows. Let E be a separated locally convex space
and T : A × E → E be a representation of A as linear operators in E. Let
X be a subset of E such that there exists a closed SA-invariant subspace
H of E of codimension n and (x + H) ∩ X is compact convex for each
x ∈ E. If the action of SA on E is inversely equicontinuous modulo H and
Ln(X) is nonempty and SA-invariant, then there exists L0 ∈ Ln(X) such
that Tµ(L0) = L0 ∀µ ∈ SA .

(b) If A satisfies property T (1), then A is left amenable (hence A satisfies T (n)
for every n).
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Corollary 4.2. Let G be a locally compact group. If G is amenable, then the group
algebra L1(G) and the measure algebra M(G) satisfy T (n) for each n = 1, 2, 3, . . . .
Conversely, if either L1(G) or M(G) satisfies T (1), then G is amenable.

Corollary 4.3. Let G be a locally compact group. Then both the Fourier al-
gebra A(G) and the Fourier Stieltjes algebra B(G) have property T (n) for each
n = 1, 2, . . . .

Let G = (M,Γ, φ, ψ) be a von Neumann algebraic locally compact quantum
group in the sense of Kustermans and Vaes ([12], [13]). By definition, (M,Γ) is a
Hopf-von Neumann algebra, φ is a normal semifinite faithful left invariant weight
on (M,Γ), and ψ is a normal semifinite faithful right invariant weight on (M,Γ).
Since the co-multiplication Γ is a normal isometric unital ∗-homomorphism from
M into M⊗̃M, it is well known that its pre-adjoint Γ∗ : M∗⊗̂M∗ → M∗ induces
an associative completely contractive multiplication ∗ on M∗ . Here, ⊗̃ denotes the
von Neumann algebra tensor product, and ⊗̂ denotes the operator space projective
tensor product. In particular M∗ is an F -algebra. Classical examples of quantum
group includes the group algebra L1(G) and the Fourier algebra A(G) of a locally
compact group. In this case, ∗ is the usual convolution and pointwise multiplication
on L1(G) and A(G) respectively.

Given a quantum group G = (M,Γ, φ, ψ) the von Neumann algebra M is
written as L∞(G) and the Banach algebra as L1(G). We say that G is amenable if
L1(G) is left amenable. As a consequence of Theorem 4.1, we have the following of
amenable quantum group:

Theorem 4.4. Let G be a quantum group, and

(a) If G is amenable, then the Banach algebra L1(G) satisfies property T (n) for
n = 1, 2, . . .

(b) If L1(G) satisfies T (1), then G is amenable, and hence L1(G) has properties
T (n) for all n = 1, 2, . . . .

Theorem 4.5. For any locally compact group G, the Fourier algebra A(G) has the
following fixed point property:

(A): For any representation of A(G) on a separated locally convex space E and
any compact P1

(
A(G)

)
-invariant subset S of E, then S contains a common

fixed point for
{
τϕ; ϕ ∈ P1

(
A(G)

)}
.

Remark 4.6. Theorem 4.1 is proved by Lau and Wong in [21] and Theorem 4.5 is
contained in [24, Theorem 3.4].

Open problem 5: Does every quantum group G satisfy a fixed point property of
type (A) above with an appropriate representation as in Theorem 3.6?

Note this is the case for the Fourier algebra A(G), or the group algebra of an
amenable group L1(G) (see [31]). Also note that for any locally compact group G,
WAP (G) has a LIM (see [8]) and hence has fixed point property (F2). See also [26]
for related fixed point property for amenable representations.
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