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WEAK AND STRONG CONVERGENCE THEOREMS

FOR GENERALIZED HYBRID NONSELF-MAPPINGS IN

HILBERT SPACES

WATARU TAKAHASHI, JEN-CHIH YAO∗, AND PAVEL KOCOUREK

Abstract. In this paper, we first obtain fundamental results for a broad class
of nonlinear mappings containing the classes of nonexpansive mappings, non-
spreading mappings, and hybrid mappings in a Hilbert space. Then, we prove
weak convergence theorems of Mann’s type for the broad class of mappings in a
Hilbert space. Furthermore, we prove two strong convergence theorems by hybrid
methods for the class of the mappings in a Hilbert space.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H and let T be a mapping of C into H. Then, we denote by F (T ) the set of fixed
points of T . A mapping T : C → H is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C. A mapping T : C → H is called quasi-nonexpansive if F (T ) ̸= ∅
and

∥Tx− y∥ ≤ ∥x− y∥
for all x ∈ C and y ∈ F (T ). A mapping T : C → H is called nonspreading [13] if

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2

for all x, y ∈ C. Further, a mapping T : C → H is called hybrid [21] if

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2

for all x, y ∈ C. These mappings are deduced from a firmly nonexpansive mapping
in a Hilbert space. A mapping F : C → H is said to be firmly nonexpansive if

∥Fx− Fy∥2 ≤ ⟨x− y, Fx− Fy⟩

for all x, y ∈ C; see, for instance, Browder [4] and Goebel and Kirk [6]. We also know
that a firmly nonexpansive mapping F can be deduced from an equilibrium problem
in a Hilbert space; see, for instance, [3] and [5]. From Baillon [2], and Takahashi
and Yao [25], we know the following nonlinear ergodic theorem in a Hilbert space.
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Theorem 1.1. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a mapping of C into itself such that F (T ) is nonempty. Suppose
that T satisfies one of the following:

(i) T is nonexpansive;
(ii) T is nonspreading;
(iii) T is hybrid;
(iv) 2∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2, ∀x, y ∈ C.

Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).

Aoyama, Iemoto, Kohsaka and Takahashi [1] introduced a class of mappings called
λ-hybrid containing the classes of nonexpansive mappings, nonspreading mappings,
and hybrid mappings in a Hilbert space. Very recently, Kocourek, Takahashi and
Yao [11] introduced a more broad class of nonlinear mappings than the class of
λ-hybrid mappings: A mapping T : C → H is called generalized hybrid if there are
α, β ∈ R such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Then, they proved a nonlinear ergodic theorem which general-
izes cases of (i), (ii), (iii) and (iv), simultaneously. Further, they defined a class
of nonlinear mappings called super hybrid containing the class of generalized hy-
brid mappings. We know that a super hybrid mapping is not quasi-nonexpansive
generally.

In this paper, we deal with fundamental properties for generalized hybrid map-
pings and super hybrid mappings in a Hilbert space. Then, we prove weak conver-
gence theorems of Mann’s type [14] for super hybrid mappings in a Hilbert space.
Further, we obtain strong convergence theorems for super hybrid mappings by using
hybrid methods which were introduced by Nakajo and Takahashi [16], and Taka-
hashi, Takeuchi and Kubota [23].

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product ⟨·, · ⟩ and
norm ∥ · ∥. We denote the strong convergence and the weak convergence of {xn} to
x ∈ H by xn → x and xn ⇀ x, respectively. From [20], we know the following basic
equality. For x, y ∈ H and λ ∈ R, we have

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
We also know that for x, y, u, v ∈ H,

(2.2) 2 ⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
From (2.2), we have the following equality:

(2.3) ∥x− y + u− v∥2 = ∥x− y∥2 + ∥u− v∥2 + 2 ⟨x− y, u− v⟩
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= ∥x− y∥2 + ∥u− v∥2 + ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

The following theorem is due to Opial [17].

Theorem 2.1. Let H be a Hilbert space and let {xn} be a sequence of H such that
xn ⇀ x. Then, for any z ∈ H with x ̸= z,

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − z∥.

Let C be a nonempty closed convex subset of H. It is well-known that the set
F (T ) of fixed points of a quasi-nonexpansive mapping T : C → H is closed and
convex; see Ito and Takahashi [10]. Let C be a nonempty closed convex subset of
H and x ∈ H. Then, we know that there exists a unique nearest point z ∈ C such
that ∥x− z∥ = infy∈C ∥x− y∥. We denote such a correspondence by z = PCx. PC

is called the metric projection of H onto C. It is known that PC is nonexpansive
and

⟨x− PCx, PCx− u⟩ ≥ 0

for all x ∈ H and u ∈ C; see [20] for more details. Let C be a nonempty closed
convex subset of H and let f : C × C → R be a bifunction satisfying the following
conditions:

(A1) f(x, x) = 0, ∀x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;
(A3) limt↓0 f(tz + (1− t)x, y) ≤ f(x, y), ∀x, y, z ∈ C;
(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

We know the following lemma; see, for instance, [3] and [5].

Lemma 2.2. Let C be a nonempty closed convex subset of H and let f be a bifunc-
tion from C ×C into R satisfying (A1), (A2), (A3) and (A4). Then, for any r > 0
and x ∈ H, there exists a unique z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

Further, if

Trx = {z ∈ C : f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C}, ∀x ∈ H, r ∈ R,

then the following hold:

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e.,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩, ∀x, y ∈ H.

Using (2) in Lemma 2.2 and (2.2), we have

2∥Trx− Try∥2 ≤ 2⟨Trx− Try, x− y⟩
= ∥Trx− y∥2 + ∥Try − x∥2 − ∥Trx− x∥2 − ∥Try − y∥2.

So, for y ∈ F (Tr) and x ∈ H, we have

(2.4) ∥Trx− y∥2 ≤ ∥y − x∥2 − ∥Trx− x∥2.
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If f(x, y) = 0, then we have Tr = PC , i.e.,

(2.5) ∥PCx− y∥2 ≤ ∥y − x∥2 − ∥PCx− x∥2

for all y ∈ C and x ∈ H, where PC is the metric projection of H onto C.
For a sequence {Cn} of nonempty closed convex subsets of a Hilbert space H,

define s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there exists
{xn} ⊂ H such that {xn} converges strongly to x and that xn ∈ Cn for all n ∈ N.
Similarly, y ∈w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and
a sequence {yi} ⊂ H such that {yi} converges weakly to y and that yi ∈ Cni for all
i ∈ N. If C0 satisfies that

(2.6) C0 =s-LinCn =w-LsnCn,

it is said that {Cn} converges to C0 in the sense of Mosco [15] and we write C0 =M-
limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclusion,
then {Cn} converges to ∩∞

n=1Cn in the sense of Mosco. For more details, see [15].
We know the following theorem [26].

Theorem 2.3. Let H be a Hilbert space. Let {Cn} be a sequence of nonempty
closed convex subsets of H. If C0 =M-limn→∞Cn exists and is nonempty, then for
each x ∈ H, {PCnx} converges strongly to PC0x, where PCn and PC0 are the mertic
projections of H onto Cn and C0, respectively.

3. Nonlinear operators

In this section, we first start with defining a wide class of nonlinear mappings con-
taining the classes of nonexpansive mappings, nonspreading mappings, and hybrid
mappings in a Hilbert space. Let H be a Hilbert space and let C be a nonempty
subset of H. Then, a mapping T : C → H is called generalized hybrid [11] if there
are α, β ∈ R such that

(3.1) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping.
Notice that the mapping above covers several well-known mappings. For example,
an (α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0, non-
spreading for α = 2 and β = 1, and hybrid for α = 3

2 and β = 1
2 . We can also show

that if x = Tx, then for any y ∈ C,

α∥x− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥x− y∥2 + (1− β)∥x− y∥2

and hence ∥x − Ty∥ ≤ ∥x − y∥. This means that an (α, β)-generalized hybrid
mapping with a fixed point is quasi-nonexpansive. Next, let us define a more general
class of mappings than the class of generalized hybrid mappings in a Hilbert space.
Let C be a nonempty subset of a Hilbert space H. A mapping S : C → H is called
super hybrid [11] if there are α, β, γ ∈ R such that

(3.2) α∥Sx− Sy∥2 + (1− α+ γ)∥x− Sy∥2

≤
(
β + (β − α)γ

)
∥Sx− y∥2 +

(
1− β − (β − α− 1)γ

)
∥x− y∥2

+ (α− β)γ∥x− Sx∥2 + γ∥y − Sy∥2
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for all x, y ∈ C. We call such a mapping an (α, β, γ)-super hybrid mapping. We
notice that an (α, β, 0)-super hybrid mapping is (α, β)-generalized hybrid. So, the
class of super hybrid mappings contains the class of generalized hybrid mappings.
A super hybrid mapping is not quasi-nonexpansive generally. In fact, let us consider
a super hybrid mapping S with α = 1, β = 0 and γ = 1. Then, we have

∥Sx− Sy∥2 + ∥x− Sy∥2 ≤ −∥Sx− y∥2 + 3∥x− y∥2 + ∥x− Sx∥2 + ∥y − Sy∥2

for all x, y ∈ C. This is equivalent to

∥Sx− Sy∥2 + 2⟨x− y, Sx− Sy⟩ ≤ 3∥x− y∥2

for all x, y ∈ C. In the case of H = R, consider Sx = 2− 2x for all x ∈ R. Then,
|Sx− Sy|2 + 2⟨x−y, Sx− Sy⟩ = | − 2x+ 2y|2 + 2⟨x− y,−2x+ 2y⟩

= 4|x− y|2 + 4⟨x− y, y − x⟩
= 0 ≤ 3|x− y|2

and hence S is super hybrid. However, S is not quasi-nonexpansive. Further, we
have that

Tx =
1

2
Sx+

1

2
x =

1

2
(2− 2x) +

1

2
x = 1− 1

2
x

and hence T is nonexpansive. In general, we have the following theorem.

Theorem 3.1. Let C be a nonempty subset of a Hilbert space H and let α, β
and γ be real numbers with γ ̸= −1. Let S and T be mappings of C into H such
that T = 1

1+γS + γ
1+γ I. Then, S is (α, β, γ)-super hybrid if and only if T is (α,

β)-generalized hybrid. In this case, F (S) = F (T ).

Proof. Put λ = 1
1+γ ̸= 0. Then, T = λS + (1− λ)I. We have that for any x, y ∈ C,

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

⇐⇒ α∥λ(Sx− Sy) + (1− λ)(x− y)∥2 + (1− α)∥λ(x− Sy) + (1− λ)(x− y)∥2

≤ β∥λ(Sx− y) + (1− λ)(x− y)∥2 + (1− β)∥x− y∥2.
From (2.1), this inequalty is equivalent to

α(λ∥Sx− Sy∥2 + (1− λ)∥x− y∥2 − λ(1− λ)∥Sx− Sy − x+ y∥2)
+ (1− α)(λ∥x− Sy∥2 + (1− λ)∥x− y∥2 − λ(1− λ)∥y − Sy∥2)

≤ β(λ∥Sx− y∥2 + (1− λ)∥x− y∥2 − λ(1− λ)∥x− Sx∥2) + (1− β)∥x− y∥2

⇐⇒ α(λ∥Sx− Sy∥2 − λ∥x− y∥2 − λ(1− λ)∥Sx− Sy − x+ y∥2)
+ (1− α)(λ∥x− Sy∥2 − λ∥x− y∥2 − λ(1− λ)∥y − Sy∥2)

≤ β(λ∥Sx− y∥2 − λ∥x− y∥2 − λ(1− λ)∥x− Sx∥2)
⇐⇒ αλ∥Sx− Sy∥2 + (1− α)λ∥x− Sy∥2

≤ βλ∥Sx− y∥2 + (1− β)λ∥x− y∥2 − βλ(1− λ)∥x− Sx∥2

+ (1− α)λ(1− λ)∥y − Sy∥2 + αλ(1− λ)∥Sx− Sy − x+ y∥2.

Dividing by λ2, we have from λ−1 = γ + 1 that
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α(γ + 1)∥Sx− Sy∥2 + (1− α)(γ + 1)∥x− Sy∥2

≤ β(γ + 1)∥Sx− y∥2 + (γ + 1)(1− β)∥x− y∥2 − βγ∥x− Sx∥2

+ (1− α)γ∥y − Sy∥2 + αγ∥Sx− Sy − x+ y∥2.
We know from (2.3) that

∥Sx− Sy − x+ y∥2 = ∥Sx− Sy∥2 − ∥x− Sy∥2 − ∥Sx− y∥2

+ ∥x− y∥2 + ∥Sx− x∥2 + ∥Sy − y∥2.
So, we obtain

α∥Sx− Sy∥2 + {(1− α) + γ}∥x− Sy∥2

≤ {β + (β − α)γ}∥Sx− y∥2 + {1− β − γ(β − α− 1)}∥x− y∥2

+ (α− β)γ∥x− Sx∥2 + γ∥y − Sy∥2.
Then, S is (α, β, γ)-super hybrid if and only if T is (α, β)-generalized hybrid. From
T = λS + (1− λ)I, we also have F (S) = F (T ). This completes the proof. �

From [11], we know the following fixed point theorem for generalized hybrid
mappings in a Hilbert space.

Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert space H and
let T : C → C be a generalized hybrid mapping. Then T has a fixed point in C if
and only if {Tnz} is bounded for some z ∈ C.

As a direct consequence of Theorem 3.2, we have the following result.

Theorem 3.3. Let C be nonempty bounded closed convex subset of a Hilbert space
H and let T be a generalized hybrid mapping from C to itself. Then T has a fixed
point.

Using Theorems 3.1 and 3.3, we have the following fixed point theorem [11] for
super hybrid mappings in a Hilbert space.

Theorem 3.4. Let C be a nonempty bounded closed convex subset of a Hilbert space
H and let α, β and γ be real numbers with γ ≥ 0. Let S : C → C be an (α, β,
γ)-super hybrid mapping. Then, S has a fixed point in C.

4. Weak convergence theorem

In this section, we first prove a weak convergence theorem of Mann’s type for
super hybrid nonself-mappings in a Hilbert space. Before proving it, we need the
following lemma for generalized hybrid nonself-mappings in a Hilbert space.

Lemma 4.1. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let T : C → H be a generalized hybrid mapping. Suppose that there exists
{xn} ⊂ C such that xn ⇀ z and xn − Txn → 0. Then, z ∈ F (T ).

Proof. Since T : C → H is a generalized hybrid mapping, there are α, β ∈ R such
that

(4.1) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2
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for all x, y ∈ C. Putting T = I −A, we have

α∥x−Ax− (y −Ay)∥2+(1− α)∥x− (y −Ay)∥2

≤ β∥x−Ax− y∥2 + (1− β)∥x− y∥2

and hence

α
{
∥x− y∥2 − 2⟨x− y,Ax−Ay⟩+ ∥Ax−Ay∥2

}
+ (1− α)

{
∥x− y∥2 + 2⟨x− y,Ay⟩+ ∥Ay∥2

}
≤ β

{
∥x− y∥2 − 2⟨x− y,Ax⟩+ ∥Ax∥2

}
+ (1− β)∥x− y∥2.

So, we have

α
{
− 2⟨x− y,Ax−Ay⟩+ ∥Ax∥2 − 2⟨Ax,Ay⟩+ ∥Ay∥2

}
+ (1− α)

{
2⟨x− y,Ay⟩+ ∥Ay∥2

}
≤ β

{
− 2⟨x− y,Ax⟩+ ∥Ax∥2

}
.

Then, we have

(α− β)∥Ax∥2 + ∥Ay∥2 ≤ 2α⟨Ax,Ay⟩+ 2⟨x− y, (α− β)Ax−Ay⟩.

From A = I − T , we have

(α− β)∥x− Tx∥2 + ∥y − Ty∥2

≤ 2α⟨x− Tx, y − Ty⟩+ 2(α− β)⟨x− y, x− Tx⟩ − 2⟨x− y, y − Ty⟩.

Suppose xn ⇀ z and xn − Txn → 0. Let us consider

(α− β)∥xn − Txn∥2 + ∥z − Tz∥2

≤ 2α⟨xn − Txn, z − Tz⟩+ 2(α− β)⟨xn − z, xn − Txn⟩
− 2⟨xn − z, z − Tz⟩.

Letting n → ∞, we have ∥z − Tz∥2 ≤ 0. Then Tz = z. �

Using Lemma 4.1, we prove a weak convergence theorem of Mann’s type [14]
for super hybrid mappings in a Hilbert space. The proof is due to the technique
developed by Ibaraki and Takahashi [7] and [8].

Theorem 4.2. Let H be a Hilbert space, let C be a closed convex subset of H
and let PC be the metric projection of H onto C. Let α, β and γ be real numbers
with γ ̸= −1 and let S : C → H be an (α, β, γ)-super hybrid mapping with
F (S) ̸= ∅. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = PC

(
αnxn + (1− αn)(

1

1 + γ
Sxn +

γ

1 + γ
xn)

)
, n = 1, 2, . . . .

Then, the sequence {xn} converges weakly to an element v of F (S), where v =
limn→∞ PF (S)xn and PF (S) is the metric projection of H onto F (S).
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Proof. Put T = 1
1+γS + γ

1+γ I. Then, we have from Theorem 3.1 that T is an

(α, β)-generalized hybrid mapping and F (S) = F (T ). Let z ∈ F (T ). Since T is
quasi-nonexpansive, we have

∥xn+1 − z∥2 = ∥PC(αnxn + (1− αn)Txn)− z∥2

≤ ∥αnxn + (1− αn)Txn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥Txn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2

= ∥xn − z∥2

for all n ∈ N. Hence, limn→∞ ∥xn − z∥2 exists. So, we have that {xn} is bounded.
We also have from (2.1) that

∥xn+1 − z∥2 = ∥PC(αnxn + (1− αn)Txn)− z∥2

≤ αn∥xn − z∥2 + (1− αn)∥Txn − z∥2 − αn(1− αn)∥Txn − xn∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2 − αn(1− αn)∥Txn − xn∥2

= ∥xn − z∥2 − αn(1− αn)∥Txn − xn∥2.

So, we have

αn(1− αn)∥Txn − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2.

Since limn→∞ ∥xn − z∥2 exists and lim infn→∞ αn(1 − αn) > 0, we have ∥Txn −
xn∥2 → 0. Since {xn} is bounded, there exists a subsequence {xni} of {xn} such
that xni ⇀ v. By Lemma 4.1, we obtain v ∈ F (T ). Let {xni} and {xnj} be two
subsequences of {xn} such that xni ⇀ v1 and xnj ⇀ v2. To complete the proof,

we show v1 = v2. We know that v1, v2 ∈ F (T ) and hence limn→∞ ∥xn − v1∥2 and
limn→∞ ∥xn − v2∥2 exist. Put

a = lim
n→∞

(∥xn − v1∥2 − ∥xn − v2∥2).

Note that for n = 1, 2, . . . ,

∥xn − v1∥2 − ∥xn − v2∥2 = 2⟨xn, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2.

From xni ⇀ v1 and xnj ⇀ v2, we have

(4.2) a = lim
i→∞

(∥xni − v1∥2 − ∥xni − v2∥2) = 2⟨v1, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2

and

(4.3) a = lim
j→∞

(∥xnj − v1∥2 − ∥xnj − v2∥2) = 2⟨v2, v2 − v1⟩+ ∥v1∥2 − ∥v2∥2.

Combining (4.2) and (4.3), we obtain 0 = 2⟨v2−v1, v2−v1⟩ and hence ∥v2−v1∥2 = 0.
So, we obtain v2 = v1. This implies that {xn} converges weakly to an element v of
F (T ). Since ∥xn+1 − z∥ ≤ ∥xn − z∥ for all z ∈ F (T ) and n ∈ N, we obtain from
Takahashi and Toyoda [24] that {PF (T )xn} converges strongly to an element p of
F (T ). On the other hand, we have from the property of PF (T ) that

⟨xn − PF (T )xn, PF (T )xn − u⟩ ≥ 0
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for all u ∈ F (T ) and n ∈ N. Since xn ⇀ v and PF (T )xn → p, we obtain

⟨v − p, p− u⟩ ≥ 0

for all u ∈ F (T ). Putting u = v, we obtain p = v. This means v = limn→∞ PF (T )xn.
This completes the proof. �

As direct consequences of Theorem 4.2, we obtain the following results.

Corollary 4.3. Let H be a Hilbert space, let C be a closed convex subset of H and
let PC be the metric projection of H onto C. Let γ be a real number with γ ̸= −1
and let S : C → H be an (2, 1, γ)-super hybrid mapping, i.e.,

2∥Sx− Sy∥2 + 2γ⟨x− y, Sx− Sy⟩ ≤ ∥x− Sy∥2 + ∥Sx− y∥2 + 2γ∥x− y∥2

for all x, y ∈ C. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = PC

(
αnxn + (1− αn)(

1

1 + γ
Sxn +

γ

1 + γ
xn)

)
, n = 1, 2, . . . .

If F (S) ̸= ∅, then the sequence {xn} converges weakly to an element v of F (S),
where v = limn→∞ PF (S)xn and PF (S) is the metric projection of H onto F (S).

Corollary 4.4. Let H be a Hilbert space, let C be a closed convex subset of H and
let PC be the metric projection of H onto C. Let γ be a real number with γ ̸= −1
and let S : C → H be an (32 ,

1
2 , γ)-super hybrid mapping, i.e.,

3∥Sx− Sy∥2 + 4γ⟨x− y, Sx− Sy⟩ ≤ ∥x− Sy∥2 + ∥Sx− y∥2 + (1 + 4γ)∥x− y∥2

for all x, y ∈ C. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = PC

(
αnxn + (1− αn)(

1

1 + γ
Sxn +

γ

1 + γ
xn)

)
, n = 1, 2, . . . .

If F (S) ̸= ∅, then the sequence {xn} converges weakly to an element v of F (S),
where v = limn→∞ PF (S)xn and PF (S) is the metric projection of H onto F (S).

Next, we prove a weak convergence theorem of Mann’s type for a class of mappings
containing the class of nonexpansive mappings in a Hilbert space. Before proving
it, we state the following lemma [20].

Lemma 4.5. Let {αn} ⊂ [0,∞) and {βn} ⊂ [0,∞) be sequences of real numbers
such that

∑∞
n=1 αn = ∞ and

∑∞
n=1 αnβn < ∞. Then lim infn→∞ αn = 0.

Theorem 4.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let γ be a real number with γ ̸= −1 and let S : C → H be a mapping
such that

∥Sx− Sy∥2 + 2γ⟨x− y, Sx− Sy⟩ ≤ (1 + 2γ)∥x− y∥2

for all x, y ∈ C. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and∑∞
n=1 αn(1− αn) = ∞. Suppose {xn} is a sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)PC

( 1

1 + γ
Sxn +

γ

1 + γ
xn

)
, n = 1, 2, . . . .
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If F (S) ̸= ∅, then the sequence {xn} converges weakly to an element v of F (S),
where v = limn→∞ PF (S)xn and PF (S) is the metric projection of H onto F (S).

Proof. We have that for any x, y ∈ C,

∥Sx− Sy∥2 + 2γ⟨x− y, Sx− Sy⟩ ≤ (1 + 2γ)∥x− y∥2

⇐⇒ ∥Sx− Sy∥2 + γ(∥x− Sy∥2 + ∥Sx− y∥2 − ∥Sx− x∥2 − ∥y − Sy∥2)
≤ (1 + 2γ)∥x− y∥2

⇐⇒ ∥Sx− Sy∥2 + γ∥x− Sy∥2

≤ −γ∥Sx− y∥2 + (1 + 2γ)∥x− y∥2 + γ∥Sx− x∥2 + γ∥y − Sy∥2.

So, S is a (1, 0, γ)-super hybrid mapping of C into H. Put T = 1
1+γS+ γ

1+γ I. Then,

we have from Theorem 3.1 that T is a (1, 0)-generalized hybrid mapping of C into
H, i.e., T is a nonexpansive mapping of C into H. Further, we have F (S) = F (T ).
Let z ∈ F (T ). Since T is quasi-nonexpansive, we have

∥xn+1 − z∥2 = ∥αnxn + (1− αn)PCTxn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥PCTxn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2

= ∥xn − z∥2

for all n ∈ N. Hence, limn→∞ ∥xn − z∥2 exists. So, we have that {xn} is bounded.
We also have from (2.1) that

∥xn+1 − z∥2 = ∥αnxn + (1− αn)PCTxn − z∥2

= αn∥xn − z∥2 + (1− αn)∥PCTxn − z∥2

− αn(1− αn)∥PCTxn − xn∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2 − αn(1− αn)∥PCTxn − xn∥2

= ∥xn − z∥2 − αn(1− αn)∥PCTxn − xn∥2.

So, we have

αn(1− αn)∥PCTxn − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2.

Summing up these inequalities with respect to n = 1, 2, . . . , N , we have

N∑
n=1

αn(1− αn)∥PCTxn − xn∥2 ≤ ∥x1 − z∥2 − ∥xN+1 − z∥2.

Putting c = limn→∞ ∥xn − z∥2 and letting N → ∞, we obtain

∞∑
n=1

αn(1− αn)∥PCTxn − xn∥2 ≤ ∥x1 − z∥2 − c < ∞.

From the assumptions of {αn} and Lemma 4.5, we have

lim inf
n→∞

∥PCTxn − xn∥2 = 0.
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On the other hand, we have from xn+1 − xn = (1− αn)∥PCTxn − xn∥ that

∥PCTxn+1 − xn+1∥
= αn∥PCTxn+1 − xn∥+ (1− αn)∥PCTxn+1 − PCTxn∥
≤ αn(∥PCTxn+1 − xn+1∥+ ∥xn+1 − xn∥)
+ (1− αn)∥PCTxn+1 − PCTxn∥

≤ αn∥PCTxn+1 − xn+1∥+ αn∥xn+1 − xn∥+ (1− αn)∥xn+1 − xn∥
= αn∥PCTxn+1 − xn+1∥+ ∥xn+1 − xn∥
= αn∥PCTxn+1 − xn+1∥+ (1− αn)∥PCTxn − xn∥.

So, we have (1− αn)∥PCTxn+1 − xn+1∥ ≤ (1− αn)∥PCTxn − xn∥. Then, we have
∥PCTxn+1 − xn+1∥ ≤ ∥PCTxn − xn∥. So, limn→∞ ∥PCTxn − xn∥2 exists. Then, we
obtain that

lim
n→∞

∥PCTxn − xn∥2 = lim inf
n→∞

∥PCTxn − xn∥2 = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ v
for some v ∈ C. Since limn→∞ ∥PCTxn − xn∥ = 0 and PCT is nonexpansive, we
have from Theorem 4.1 that v is a fixed point of PCT , i.e., PCTv = v. We have
from (2.5) that for u ∈ F (T ),

2∥v − u∥2 = 2∥PCTv − u∥2

≤ 2⟨Tv − u, PCTv − u⟩
= ∥Tv − u∥2 + ∥PCTv − u∥2 − ∥Tv − PCTv∥2

and hence

2∥v − u∥2 ≤ ∥v − u∥2 + ∥v − u∥2 − ∥Tv − v∥2.
So, we have 0 ≤ −∥Tv − v∥2. and hence Tv = v.

Let {xni} and {xnj} be two subsequences of {xn} such that xni ⇀ v1 and xnj ⇀
v2. To complete the proof, we show v1 = v2. We know v1, v2 ∈ F (T ) and hence
limn→∞ ∥xn − v1∥ and limn→∞ ∥xn − v2∥ exist. Assume v1 ̸= v2. Then, we have
from Theorem 2.1 that

lim
n→∞

∥xn − v1∥ = lim
i→∞

∥xni − v1∥

< lim
i→∞

∥xni − v2∥

= lim
n→∞

∥xn − v2∥

= lim
j→∞

∥xnj − v2∥

< lim
j→∞

∥xnj − v1∥

= lim
n→∞

∥xn − v1∥.

This is a contradiction. So, we obtain v2 = v1. This implies that {xn} converges
weakly to an element v of F (T ). Since ∥xn+1 − z∥ ≤ ∥xn − z∥ for all z ∈ F (T )
and n ∈ N, we obtain from Takahashi and Toyoda [24] that {PF (T )xn} converges
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strongly to an element p of F (T ). On the other hand, we have from the property
of PF (T ) that

⟨xn − PF (T )xn, PF (T )xn − u⟩ ≥ 0

for all u ∈ F (T ) and n ∈ N. Since xn ⇀ v and PF (T )xn → p, we obtain

⟨v − p, p− u⟩ ≥ 0

for all u ∈ F (T ). Putting u = v, we obtain p = v. This means v = limn→∞ PF (T )xn.
This completes the proof. �

5. Strong convergence theorems

In this section, using the hybrid method by Nakajo and Takahashi [16], we first
prove a strong convergence theorem for super hybrid mappings with an equilibrium
problem in a Hilbert space.

Theorem 5.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let f : C × C → R be a bifunction satisfying (A1), (A2), (A3) and
(A4). Let α, β and γ be real numbers with γ ̸= −1 and let S : C → H be an (α, β,
γ)-super hybrid mapping such that EP (f)∩F (S) ̸= ∅. Let {xn} ⊂ C be a sequence
generated by x1 = x ∈ C and

f(zn, y) +
1
λn

⟨zn − xn, y − zn⟩ ≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)(
1

1+γSzn + γ
1+γ zn),

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn ∩ Qn, and {αn} ⊂ [0, 1] and
{λn} ⊂ [0,∞) satisfy

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn

for some a, b ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩EP (f)x, where
PF (S)∩EP (f) is the metric projection of H onto F (S) ∩ EP (f).

Proof. Put T = 1
1+γS + γ

1+γ I. Then, we have from Theorem 3.1 that T is an

(α, β)-generalized hybrid mapping of C into H and F (S) = F (T ). Since F (T ) is
closed and convex, F (S) ∩ EP (f) is closed and convex. So, there exists the mertic
projection oh H onto F (S) ∩ EP (f). Further, we have

yn = αnxn + (1− αn)Tzn

for all n ∈ N. From
∥yn − z∥2 ≤ ∥xn − z∥2

⇐⇒∥yn∥2 − ∥xn∥2 − 2⟨yn − xn, z⟩ ≤ 0,

we have that Cn, Qn and Cn ∩ Qn are closed and convex for all n ∈ N. We next
show that Cn ∩Qn is nonempty. Let z ∈ F (T ) ∩ EP (f). Put zn = Tλnxn for each
n ∈ N. From z = Tλnz and Lemma 2.2, we have that for any n ∈ N,
(5.1) ∥zn − z∥2 = ∥Tλnxn − z∥2 ≤ ∥xn − z∥2.
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Since T is quasi-nonexpansive, we have from (5.1) that

∥yn − z∥2 = ∥αnxn + (1− αn)Tzn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥zn − z∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2

= ∥xn − z∥2.
So, we have z ∈ Cn and hence F (T )∩EP (f) ⊂ Cn for all n ∈ N. Next, we show by
induction that F (T ) ∩EP (f) ⊂ Cn ∩Qn for all n ∈ N. From F (T ) ∩EP (f) ⊂ Q1,
it follows that F (T ) ∩ EP (f) ⊂ C1 ∩ Q1. Suppose that F (T ) ∩ EP (f) ⊂ Ck ∩ Qk

for some k. From xk+1 = PCk∩Qk
x, we have

⟨xk+1 − z, x− xk+1⟩ ≥ 0, ∀z ∈ Ck ∩Qk.

Since F (T ) ∩ EP (f) ⊂ Ck ∩Qk, we also have

⟨xk+1 − z, x− xk+1⟩ ≥ 0, ∀z ∈ F (T ) ∩ EP (f).

This implies F (T ) ∩ EP (f) ⊂ Qk+1. So, we have F (T ) ∩ EP (f) ⊂ Ck+1 ∩ Qk+1.
By induction, we have F (T ) ∩ EP (f) ⊂ Cn ∩ Qn for all n ∈ N. This means that
{xn} and {zn} are well-defined. Since xn = PQnx and xn+1 = PCn∩Qnx ⊂ Qn, we
have from (2.2) that

0 ≤ 2⟨x− xn, xn − xn+1⟩
= ∥x− xn+1∥2 − ∥x− xn∥2 − ∥xn − xn+1∥2

≤ ∥x− xn+1∥2 − ∥x− xn∥2.
So, we get that

∥x− xn∥2 ≤ ∥x− xn+1∥2.(5.2)

Further, since xn = PQnx and z ∈ F (T ) ∩ EP (f) ⊂ Qn, we have

∥x− xn∥2 ≤ ∥x− z∥2.(5.3)

So, we have that limn→∞ ∥x − xn∥2 exists. This implies that {xn} is bounded.
Hence, {yn}, {zn} and {Tzn} are also bounded. From (2.5), we have

∥xn − xn+1∥2 = ∥PQnx− xn+1∥2

≤ ∥x− xn+1∥2 − ∥x− PQnx∥2

= ∥x− xn+1∥2 − ∥x− xn∥2 → 0.

So, we have that

∥xn − xn+1∥ → 0.(5.4)

From xn+1 ∈ Cn, we have that ∥yn−xn+1∥ ≤ ∥xn−xn+1∥. So, we get ∥yn−xn+1∥ →
0. We also have

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0.(5.5)

From ∥xn − yn∥ = ∥xn −αnxn − (1−αn)Tzn∥ = (1−αn)∥xn − Tzn∥ and 0 ≤ αn ≤
a < 1, we have that

∥Tzn − xn∥ → 0.(5.6)
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Let z ∈ F (T ) ∩ EP (f). Using zn = Tλnxn and Lemma 2.4, we have that

∥xn − z∥2 ≥ ∥xn − Tλnxn∥2 + ∥Tλnxn − z∥2

= ∥xn − zn∥2 + ∥zn − z∥2

and hence

∥xn − zn∥2 ≤ ∥xn − z∥2 − ∥zn − z∥2.

From ∥yn − z∥2 ≤ αn∥xn − z∥2 + (1− αn)∥zn − z∥2 and hence

∥zn − z∥2 ≥ ∥yn − z∥2 − αn∥xn − z∥2

1− αn
,

we have

∥xn − zn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2 − αn∥xn − z∥2

1− αn

=
∥xn − z∥2 − ∥yn − z∥2

1− αn
.

We also have

∥xn − z∥2 − ∥yn − z∥2 = ∥xn∥2 − 2⟨xn, z⟩+ ∥z∥2 − ∥yn∥2 + 2⟨yn, z⟩ − ∥z∥2

= ∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, z⟩
≤ |∥xn∥2 − ∥yn∥2|+ 2|⟨xn − yn, z⟩|
≤ ∥xn − yn∥(∥xn∥+ ∥yn∥) + 2∥xn − yn∥∥z∥.

Since ∥xn − z∥2 − ∥yn − z∥2 ≥ 0 and limn→∞ ∥xn − yn∥ = 0, we have

lim
n→∞

(∥xn − z∥2 − ∥yn − z)∥2 = 0.(5.7)

Since 0 ≤ αn ≤ a < 1, from (5.7) we have limn→∞ ∥xn − zn∥2 = 0. So, we have

(5.8) ∥xn − zn∥ → 0.

Since yn = αnxn + (1− αn)Tzn, we have yn − Tzn = αn(xn − Tzn). So, from (5.6)
we have

(5.9) ∥yn − Tzn∥ = αn∥xn − Tzn∥ → 0.

Since
∥zn − Tzn∥ ≤ ∥zn − xn∥+ ∥xn − yn∥+ ∥yn − Tzn∥,

from (5.5), (5.8) and (5.9) we have

(5.10) ∥zn − Tzn∥ → 0.

Since {xn} is bounded, there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ z∗.
We have from (5.8) and xni ⇀ z∗ that zni ⇀ z∗. From (5.10), we have z∗ ∈ F (T ).
Next, let us show z∗ ∈ EP (f). Since zn = Tλnxn, we have that for any y ∈ C,

f(zn, y) +
1

λn
⟨y − zn, zn − xn⟩ ≥ 0.

From (A2), we have
1

λn
⟨y − zn, zn − xn⟩ ≥ f(y, zn).
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From 0 < b ≤ λn and (5.8), we have

lim
n→∞

zn − xn
λn

= 0.

So, from (A4) we have

(5.11) 0 ≥ f(y, z∗).

Put z∗t = ty + (1 − t)z∗ for all t ∈ (0, 1] and y ∈ C. Since C is convex, we have
z∗t ∈ C. From (A1), (A4) and (5.11), we have

0 = f(z∗t , z
∗
t ) ≤ tf(z∗t , y) + (1− t)f(z∗t , z

∗)

≤ tf(z∗t , y)

and hence
0 ≤ f(z∗t , y).

Letting t → 0, from (A3) we have that for each y ∈ C,

(5.12) 0 ≤ f(z∗, y).

This implies z∗ ∈ EP (f). So, we have z∗ ∈ F (T )∩EP (f). Put z0 = PF (T )∩EP (f)x.
Since z0 = PF (T )∩EP (f)x ⊂ Cn ∩Qn and xn+1 = PCn∩Qnx, we have that

(5.13) ∥x− xn+1∥2 ≤ ∥x− z0∥2.
Since ∥ · ∥2 is weakly lower semicontinuous, from xni ⇀ z∗ we have that

∥x− z∗∥2 = ∥x∥2 − 2⟨x, z∗⟩+ ∥z∗∥2

≤ lim inf
i→∞

(∥x∥2 − 2⟨x, xni⟩+ ∥xni∥2)

= lim inf
i→∞

∥x− xni∥2

≤ ∥x− z0∥2.
From the definition of z0, we obtain z∗ = z0. So, we obtain xn ⇀ z0. We finally
show that xn → z0. We have

∥z0 − xn∥2 = ∥z0 − x∥2 + ∥x− xn∥2 + 2⟨z0 − x, x− xn⟩, ∀n ∈ N.
Since xn = PQnx and z0 ∈ F (T ) ∩ EP (f) ⊂ Qn, we have

(5.14) ∥x− xn∥2 ≤ ∥x− z0∥2

and hence

lim sup
n→∞

∥z0 − xn∥2 = lim sup
n→∞

(∥z0 − x∥2 + ∥x− xn∥2 + 2⟨z0 − x, x− xn⟩)

≤ lim sup
n→∞

(∥z0 − x∥2 + ∥x− z0∥2 + 2⟨z0 − x, x− xn⟩)

= ∥z0 − x∥2 + ∥x− z0∥2 + 2⟨z0 − x, x− z0⟩
= ∥z0 − z0∥2 = 0.

So, we obtain limn→∞ ∥z0 − xn∥ = 0. Hence, {xn} converges strongly to z0. This
completes the proof. �

Next, we prove a strong convergence theorem by the shrinking projection method
[23].
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Theorem 5.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let f : C × C → R be a bifunction satisfying (A1), (A2), (A3) and
(A4). Let α, β and γ be real numbers with γ ̸= −1 and let S : C → H be an
(α, β, γ)-super hybrid mapping such that EP (f) ∩ F (S) ̸= ∅. Let C1 = C and let
{xn} ⊂ C be a sequence generated by x1 = x ∈ C and

f(zn, y) +
1
λn

⟨zn − xn, y − zn⟩ ≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)(
1

1+γSzn + γ
1+γ zn),

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, ∀n ∈ N,

where PCn+1 is the metric projection of H onto Cn+1, and {αn} ⊂ [0, 1] and {λn} ⊂
[0,∞) are sequences such that

lim inf
n→∞

αn < 1 and 0 < b ≤ λn

for some a, b ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩EP (f)x, where
PF (S)∩EP (f) is the metric projection of H onto F (S) ∩ EP (f).

Proof. Put T = 1
1+γS + γ

1+γ I. Then, we have from Theorem 3.1 that T is an (α,

β)-generalized hybrid mapping of C into H and F (S) = F (T ). Since F (T ) is closed
and convex, so is F (S). Then, F (S)∩EP (f) is closed and convex. So, there exists
the mertic projection of H onto F (S) ∩ EP (f). Further, we have

yn = αnxn + (1− αn)Tzn

for all n ∈ N. Put zn = Tλnxn for each n ∈ N and take z ∈ F (T ) ∩ EP (f). From
z = Tλnz and Lemma 2.2, we have that for any n ∈ N,

(5.15) ∥zn − z∥ = ∥Tλnxn − z∥ ≤ ∥xn − z∥.

We shall show that Cn are closed and convex, and F (T ) ∩ EP (f) ⊂ Cn for all
n ∈ N. It is obvious from the assumption that C1 = C is closed and convex, and
F (T )∩EP (f) ⊂ C1. Suppose that Ck is closed and convex, and F (T )∩EP (f) ⊂ Ck.
From Nakajo and Takahashi [16], we know that for z ∈ Ck,

∥yk − z∥2 ≤ ∥xk − z∥2

⇐⇒∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, z⟩ ≤ 0.

So, Ck+1 is closed and convex. If z ∈ F (T )∩EP (f) ⊂ Ck, then we have from (5.15)
that

∥yn − z∥ = ∥αnxn + (1− αn)Tzn − z∥
≤ αn∥xn − z∥+ (1− αn)∥zn − z∥
≤ αn∥xn − z∥+ (1− αn)∥xn − z∥
= ∥xn − z∥.

Hence, we have z ∈ Ck+1. By induction, we have that Cn are closed and convex,
and F (T ) ∩ EP (f) ⊂ Cn for all n ∈ N. Since Cn is closed and convex, there exists
the metric projection PCn of H onto Cn. Thus, {xn} is well-defined.
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Since {Cn} is a nonincreasing sequence of nonempty closed convex subsets of H
with respect to inclusion, it follows that

(5.16) ∅ ̸= F (T ) ∩ EP (f) ⊂ M- lim
n→∞

Cn =

∞∩
n=1

Cn.

Put C0 =
∩∞

n=1Cn. Then, by Theorem 2.3 we have that {PCnx} converges strongly
to x0 = PC0x, i.e.,

xn = PCnx → x0.

To complete the proof, it is sufficient to show that x0 = PF (T )∩EP (f)x. Since
xn = PCnx and xn+1 = PCn+1x ∈ Cn+1 ⊂ Cn, we have (2.2) that

0 ≤ 2⟨x− xn, xn − xn+1⟩
= ∥x− xn+1∥2 − ∥x− xn∥2 − ∥xn − xn+1∥2

≤ ∥x− xn+1∥2 − ∥x− xn∥2.
So, we get that

∥x− xn∥2 ≤ ∥x− xn+1∥2.(5.17)

Further, since xn = PCnx and z ∈ F (T ) ∩ EP (f) ⊂ Cn, we have

∥x− xn∥2 ≤ ∥x− z∥2.(5.18)

So, we have that limn→∞ ∥x − xn∥2 exists. This implies that {xn} is bounded.
Hence, {yn}, {zn} and {Tzn} are also bounded. From Lemma 2.5, we have

∥xn − xn+1∥2 = ∥PCnx− xn+1∥2

≤ ∥x− xn+1∥2 − ∥x− PCnx∥2

= ∥x− xn+1∥2 − ∥x− xn∥2 → 0.

So, we have that

∥xn − xn+1∥2 → 0.(5.19)

From xn+1 ∈ Cn+1, we also have that ∥yn − xn+1∥ ≤ ∥xn − xn+1∥. So, we get that
∥yn − xn+1∥ → 0. Using this, we have

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0.(5.20)

From lim infn→∞ αn < 1, there exist a subsequence {αni} of {αn} and α0 with
0 ≤ α0 < 1 such that αni → α0. Since ∥xn − yn∥ = ∥xn − αnxn − (1− αn)Tzn∥ =
(1− αn)∥xn − Tzn∥, we also have that

∥Tzni − xni∥ → 0.(5.21)

Let z ∈ F (T ) ∩ EP (f). Using zn = Tλnxn and Lemma 2.4, we have that

∥xn − z∥2 ≥ ∥xn − Tλnxn∥2 + ∥Tλnxn − z∥2

= ∥xn − zn∥2 + ∥zn − z∥2

and hence

∥xn − zn∥2 ≤ ∥xn − z∥2 − ∥zn − z∥2.



584 W. TAKAHASHI, J.-C. YAO, AND P. KOCOUREK

We also have ∥yn − z∥2 ≤ αn∥xn − z∥2 + (1− αn)∥zn − z∥2 and hence

∥zni − z∥2 ≥ ∥yni − z∥2 − αni∥xni − z∥2

1− αni

.

Therefore, we have

∥xni − zni∥2 ≤ ∥xni − z∥2 − ∥yni − z∥2 − αni∥xni − z∥2

1− αni

=
∥xni − z∥2 − ∥yni − z∥2

1− αni

.

We also have

∥xn − z∥2 − ∥yn − z∥2 = ∥xn∥2 − 2⟨xn, z⟩+ ∥z∥2 − ∥yn∥2 + 2⟨yn, z⟩ − ∥z∥2

= ∥xn∥2 − ∥yn∥2 − 2⟨xn − yn, z⟩
≤ |∥xn∥2 − ∥yn∥2|+ 2|⟨xn − yn, z⟩|
≤ ∥xn − yn∥(∥xn∥+ ∥yn∥) + 2∥xn − yn∥∥z∥.

Since 0 ≤ ∥xn − z∥2 − ∥yn − z∥2, from (5.20) we have

lim
n→∞

(∥xn − z∥2 − ∥yn − z)∥2 = 0.(5.22)

Since αni → α0 and 0 ≤ α0 < 1, we have

∥xni − zni∥ → 0.(5.23)

From yn = αnxn +(1−αn)Tzn, we have yn −Tzn = αn(xn −Tzn). So, from (5.21)
we have

(5.24) ∥yni − Tzni∥ = αni∥xni − Tzni∥ → 0.

Since
∥zni − Tzni∥ ≤ ∥zni − xni∥+ ∥xni − yni∥+ ∥yni − Tzni∥,

from (5.20), (5.23) and (5.24) we have

(5.25) ∥zni − Tzni∥ → 0.

Since xni = PCni
x → x0, we have zni → x0. So, from (5.25) and Lemma 4.1 we

have x0 ∈ F (T ). Next, let us show x0 ∈ EP (f). We know zni → x0. We have from
zn = Tλnxn that for any y ∈ C,

f(zn, y) +
1

λn
⟨y − zn, zn − xn⟩ ≥ 0.

From (A2), we have
1

λn
⟨y − zn, zn − xn⟩ ≥ f(y, zn).

From 0 < b ≤ λn and (5.23), we know

lim
n→∞

zni − xni

λni

= 0.

So, we have

(5.26) 0 ≥ f(y, x0).
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Put zt = ty + (1 − t)x0 for all t ∈ (0, 1] and y ∈ C. Since C is convex, we have
zt ∈ C. From (A1), (A4) and (5.26), we have

0 = f(zt, zt) ≤ tf(zt, y) + (1− t)f(zt, x0)

≤ tf(zt, y)

and hence
0 ≤ f(zt, y).

Letting t → 0, we have from (A3) that for each y ∈ C,

(5.27) 0 ≤ f(x0, y).

This implies x0 ∈ EP (f). So, we have that x0 ∈ F (T ) ∩ EP (f). Put z0 =
PF (T )∩EP (f)x. Since z0 = PF (T )∩EP (f)x ⊂ Cn+1 and xn+1 = PCn+1x, we have that

(5.28) ∥x− xn+1∥2 ≤ ∥x− z0∥2.
So, we have that

∥x− x0∥2 = lim
n→∞

∥x− xn∥2 ≤ ∥x− z0∥2.

So, we get z0 = x0. Hence, {xn} converges strongly to z0. This completes the
proof. �
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