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STRONG CONVERGENCE THEOREMS

AND NONLINEAR ANALYTIC METHODS FOR LINEAR

CONTRACTIVE MAPPINGS IN BANACH SPACES

WATARU TAKAHASHI, JEN-CHIH YAO∗, AND TAKASHI HONDA

Dedicated to the memory of Professor Ky Fan

Abstract. In this paper, we study nonlinear analytic methods for linear con-
tractive mappings in Banach spaces. Using these results, we obtain some new
strong convergence theorems for linear contractive operators in Banach spaces.
In theorems, the limit points are characterized by suny generalized nonexpansive
retractions.

1. Introduction

Let E be a real Banach space and let C be a closed convex subset of E. For a
mapping T : C → C, we denoted by F (T ) the set of fixed points of T . A mapping
T : C → C is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥
for all x, y ∈ C. In particular, a nonexpansive mapping T : E → E is called
contractive if it is linear, that is, a linear contactive mapping T : E → E is a
linear operator satisfying ∥T∥ ≤ 1. From [38] and [55] we know a weak convergence
theorem by Mann’s iteration for nonexpansive mappings in a Hilbert space: Let
H be a Hilbert space, let C be a nonempty closed convex subset of H and let
T : C → C be a nonexpansive mapping with F (T ) ̸= ∅. Define a sequence {xn} in
C by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N,

where {αn} is a real sequence in [0, 1] such that

∞∑
n=1

αn(1− αn) = ∞.

Then, {xn} converges weakly to an element z of F (T ), where z = limn→∞ Pxn
and P is the metric projection of H onto F (T ). By Reich [44], such a theorem
was proved in a uniformly convex Banach space with a Fréchet differentiable norm.
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However, we have not known whether the fixed point z is characterized under any
projections in a Banach space. Recently, using nonlinear analytic methods obtained
by [27], [28] and [21], Takahashi and Yao [56] solved such a problem for positively
homogeneous nonexpansive mappings in a Banach space. We also know that there
are many papers which discuss Reich’s theorem for another nonlinear mappings in
a Banach space; see, for instance, Kohsaka and Takahashi [35], Matsushita and
Takahashi [39] and Ibaraki and Takahashi [25]. In 1938, Yosida [59] also proved
the following mean ergodic theorem for linear bounded operators: Let E be a real
Banach space and let T be a linear operator of E into itself such that there exists
a constant C with ∥Tn∥ ≤ C for n ∈ N, and T is weakly completely continuous,
i.e., T maps the closed unit ball of E into a weakly compact subset of E. Then, for
each x ∈ E, the Cesàro means

Snx =
1

n

n∑
k=1

T kx

converge strongly as n → ∞ to a fixed point of T ; see also Kido and Takahashi [34].
In this paper, motivated by these theorems, we study nonlinear analytic methods

for linear contractive mappings in a Banach space and obtain some new strong
convergence theorems for linear contractive operators in a Banach space. One of
them extends Bauschk, Deutsch, Hundal and Park’s theorem [7] from a Hilbert
space to a Banach space.

2. Preliminaries

Throughout this paper, we assume that a Banach space E with the dual space E∗

is real. We denote by N and R the sets of all positive integers and all real numbers,
respectively. We also denote by ⟨x, x∗⟩ the dual pair of x ∈ E and x∗ ∈ E∗. A
Banach space E is said to be strictly convex if ∥x + y∥ < 2 for x, y ∈ E with
∥x∥ ≤ 1, ∥y∥ ≤ 1 and x ̸= y. A Banach space E is said to be smooth provided

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ E with ∥x∥ = ∥y∥ = 1. Let E be a Banach space. With each
x ∈ E, we associate the set

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

The multivalued operator J : E → E∗ is called the normalized duality mapping of
E. From the Hahn-Banach theorem, Jx ̸= ∅ for each x ∈ E. We know that E is
smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-one,
i.e., x ̸= y ⇒ J(x) ∩ J(y) = ∅. If E is reflexive, then J is a mapping of E onto E∗.
So, if E is reflexive, strictly convex and smooth, then J is single-valued, one-to-one
and onto. In this case, the normalized duality mapping J∗ from E∗ into E is the
inverse of J , that is, J∗ = J−1; see [50] and [51] for more details. Let E be a smooth
Banach space and let J be the normalized duality mapping of E. We define the
function ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2
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for all x, y ∈ E. We also define the function ϕ∗ : E
∗ × E∗ → R by

ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨x∗, J−1y∗⟩+ ∥y∗∥2

for all x∗, y∗ ∈ E∗. It is easy to see that (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2 for
all x, y ∈ E. Thus, in particular, ϕ(x, y) ≥ 0 for all x, y ∈ E. We also know the
following:

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩(2.1)

for all x, y, z ∈ E. Further, we have

2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w)(2.2)

for all x, y, z, w ∈ E. It is easy to see that

ϕ(x, y) = ϕ∗(Jy, Jx)(2.3)

for all x, y ∈ E. If E is additionally assumed to be strictly convex, then

ϕ(x, y) = 0 ⇔ x = y.(2.4)

The following lemma due to Kamimura and Takahashi [33] is well-known.

Lemma 2.1 ([33]). Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞ ϕ(xn, yn) = 0, then limn→∞ ∥xn − yn∥ = 0.

Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ϕ(z, x) = min
y∈C

ϕ(y, x)}

is always a singleton. Let us define the mapping ΠC of E onto C by z = ΠCx for
every x ∈ E, i.e.,

ϕ(ΠCx, x) = min
y∈C

ϕ(y, x)

for every x ∈ E. Such ΠC is called the generalized projection of E onto C; see
Alber [1]. The following lemma is due to Alber [1] and Kamimura and Takahashi
[33].

Lemma 2.2 ([1, 33]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let (x, z) ∈ E × C. Then, the following
hold:

(a) z = ΠCx if and only if ⟨y − z, Jx− Jz⟩ ≤ 0 for all y ∈ C;
(b) ϕ(z,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(z, x).

Let D be a nonempty closed subset of a smooth Banach space E, let T be a
mapping from D into itself and let F (T ) be the set of fixed points of T . Then, T is
said to be generalized nonexpansive [24] if F (T ) is nonempty and ϕ(Tx, u) ≤ ϕ(x, u)
for all x ∈ D and u ∈ F (T ). Let C be a nonempty subset of E and let R be a
mapping from E onto C. Then R is said to be a retraction, or a projection if Rx = x
for all x ∈ C. It is known that if a mapping P of E into E satisfies P 2 = P , then
P is a projection of E onto {Px : x ∈ E}. A mapping T : E → E with F (T ) ̸= ∅
is a retraction if and only if F (T ) = R(T ), where R(T ) is the range of T . The
mapping R is also said to be sunny if R(Rx+ t(x−Rx)) = Rx whenever x ∈ E and
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t ≥ 0. A nonempty subset C of a smooth Banach space E is said to be a generalized
nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there
exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction) R from E onto C. The following lemmas were proved by Ibaraki and
Takahashi [24].

Lemma 2.3 ([24]). Let C be a nonempty closed subset of a smooth, strictly convex
and reflexisve Banach space E and let R be a retraction from E onto C. Then, the
following are equivalent:

(a) R is sunny and generalized nonexpansive;
(b) ⟨x−Rx, Jy − JRx⟩ ≤ 0 for all (x, y) ∈ E × C.

Lemma 2.4 ([24]). Let C be a nonempty closed sunny and generalized nonexpansive
retract of a smooth and strictly convex Banach space E. Then, the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.5 ([24]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C and let (x, z) ∈ E × C. Then, the following hold:

(a) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(b) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

The following theorems were proved by Kohsaka and Takahashi [37].

Theorem 2.6 ([37]). Let E be a smooth, strictly convex and reflexive Banach space,
let C∗ be a nonempty closed convex subset of E∗ and let ΠC∗ be the generalized
projection of E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a
sunny generalized nonexpansive retraction of E onto J−1C∗.

Theorem 2.7 ([37]). Let E be a smooth, strictly convex and reflexive Banach space
and let D be a nonempty subset of E. Then, the following are equivalent.

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Let E be a smooth, strictly convex and reflexive Banach space, let J be the
normalized duality mapping from E onto E∗ and let C be a closed subset of E
such that JC is closed and convex. Then, we can define a unique sunny generalized
nonexpansive retraction RC of E onto C as follows:

RC = J−1ΠJCJ,

where ΠJC is the generalized projection from E∗ onto JC.
Let C be a nonempty closed convex subset of a smooth, strictly convex and

reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ∥z − x∥ = min
y∈C

∥y − x∥}

is always a singleton. Let us define the mapping PC of E onto C by z = PCx for
every x ∈ E, i.e.,

∥PCx− x∥ = min
y∈C

∥y − x∥
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for every x ∈ E. Such PC is called the metric projection of E onto C; see [50]. The
following lemma is in [50].

Lemma 2.8 ([50]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let (x, z) ∈ E ×C. Then, z = PCx if and
only if ⟨y − z, J(x− z)⟩ ≤ 0 for all y ∈ C.

An operator A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax ̸= ∅} and range
R(A) = ∪{Ax : x ∈ D(A)} is said to be monotone if ⟨x − y, x∗ − y∗⟩ ≥ 0 for any
(x, x∗), (y, y∗) ∈ A. An operator A is said to be strictly monotone if ⟨x−y, x∗−y∗⟩ >
0 for any (x, x∗), (y, y∗) ∈ A (x ̸= y). Let J be the normalized duality mapping
from E into E∗. Then, J is monotone. If E is strictly convex, then J is one to one
and strictly monotone; for instance, see [50].

Let E be a Banach space and let

δ(ϵ) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x− y∥ = ϵ

}
.

We call the function δ : [0, 2] → [0, 1] the modulus of convexity. A Banach space
E is said to be uniformly convex if δ(ϵ) > 0 for every ϵ > 0. A uniformly convex
Banach space is strictly convex and reflexive. In a uniformly convex Banach space,
we know the following lemma.

Lemma 2.9 ([50]). Let E be a uniformly convex Banach space and let δ be the
modulus of convexity in E. Let ϵ and r be real numbers with 0 < ϵ ≤ 2r. Then,
δ
(
ϵ
r

)
> 0 and

∥λx+ (1− λ)y∥ ≤ r
{
1− 2λ(1− λ)δ

( ϵ
r

)}
for all x, y ∈ E with ∥x∥ ≤ r, ∥y∥ ≤ r and ∥x− y∥ ≥ ϵ > 0 and λ ∈ [0, 1].

3. Homogeneous mappings in Banach spaces

In this section, we discuss some properties for homogeneous generalized nonex-
pansive mappings in a Banach space. Let E be a Banach space and let K be a closed
convex cone of E. Then, T : K → K is called a positively homogeneous mapping
if T (αx) = αTx for all α ≥ 0 and x ∈ K. Let M be a closed linear subspace of E.
Then, S : M → M is called a homogeneous mapping if T (βx) = βTx for all β ∈ R
and x ∈ M .

Remark 3.1. In Lp spaces, 1 ≤ p ≤ ∞, we know examples of nonexpansive and
positively homogeneous mappings; see, for instance, Wittmann [58].

We start with the following theorem.

Theorem 3.2. Let E be a smooth Banach space and let K be a closed convex
cone of E. Then, a positively homogeneous mapping T : K → K is generalized
nonexpansive if and only if for any x ∈ K and u ∈ F (T ),

∥Tx∥ ≤ ∥x∥ and ⟨x− Tx, Ju⟩ ≤ 0.

Furthermore, let M be a closed linear subspace of E. Then, a homogeneous mapping
S : M → M is generalized nonexpansive if and only if for any x ∈ M and v ∈ F (T ),

∥Sx∥ ≤ ∥x∥ and ⟨x− Sx, Jv⟩ = 0.
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Proof. Since T is positively homogeneous, F (T ) must contain the origin. Further,
we have that for any x ∈ K, u ∈ F (T ) and α > 0,

ϕ(T (αx), u) ≤ ϕ(αx, u)

⇔ϕ(αTx, u) ≤ ϕ(αx, u)

⇔∥αTx∥2 − 2⟨αTx, Ju⟩ ≤ ∥αx∥2 − 2⟨αx, Ju⟩
⇔
(
∥x∥2 − ∥Tx∥2

)
α2 − 2α⟨x− Tx, Ju⟩ ≥ 0

⇔
(
∥x∥2 − ∥Tx∥2

)
α− 2⟨x− Tx, Ju⟩ ≥ 0.

Letting α → 0, we obtain ⟨x − Tx, Ju⟩ ≤ 0. From 0 ∈ F (T ), we have also ∥x∥2 −
∥Tx∥2 ≥ 0 and hence ∥Tx∥ ≤ ∥x∥. Conversely, if a positively homogeneous mapping
T : K → K satisfies that for any x ∈ K and u ∈ F (T ),

∥Tx∥ ≤ ∥x∥ and ⟨x− Tx, Ju⟩ ≤ 0,

then we have
∥Tx∥ ≤ ∥x∥ and ⟨x, Ju⟩ ≤ ⟨Tx, Ju⟩.

So, we have

ϕ(Tx, u) = ∥Tx∥2 − 2⟨Tx, Ju⟩+ ∥u∥2

≤ ∥x∥2 − 2⟨x, Ju⟩+ ∥u∥2

= ϕ(x, u).

Then, T is generalized nonexpansive.
Similarly, since S is a homogeneous mapping of M into itself, F (S) must contain

the origin. Further, we have that for any x ∈ M , v ∈ F (S) and β < 0, we have(
∥x∥2 − ∥Sx∥2

)
β − 2⟨x− Sx, Jv⟩ ≤ 0.

Letting β → 0, we obtain ⟨x − Sx, Jv⟩ ≥ 0. Since ⟨x − Sx, Jv⟩ ≤ 0 for β > 0, we
obtain ⟨x− Sx, Jv⟩ = 0. ∥Sx∥ ≤ ∥x∥ is obvious. The reverse is obvious. �

We also know the follwing theorem from Takahashi and Yao [56]; see also Honda,
Takahashi and Yao [21].

Theorem 3.3. Let E be a smooth Banach space and let K be a closed convex cone
in E If T : K → K is a positively homogeneous nonexpansive mapping, then T
is generalized nonexpansive. In particular, if T : E → E is a linear contractive
mapping, then T is generalized nonexpansive.

From Theorems 3.3 and 3.2, we have the following corollary.

Corollary 3.4. Let E be a smooth Banach space and let K be a closed convex cone
of E. If a mapping T : K → K is positively homogeneous nonexpansive, then for
any x ∈ K and u ∈ F (T ),

∥Tx∥ ≤ ∥x∥ and ⟨x− Tx, Ju⟩ ≤ 0.

Furthermore, let M be a closed linear subspace of E. If a mapping S : M → M is
homogeneous nonexpansive, then for any x ∈ M and v ∈ F (T ),

∥Sx∥ ≤ ∥x∥ and ⟨x− Sx, Jv⟩ = 0.
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Let E be a smooth Banach space and let C be a closed subset in E. We call a
mapping T : C → C a firmly generalized nonexpansive type [27] and [28] or firmly
skew-nonspreading [15] if it satisfies

ϕ(Tx, Ty) + ϕ(Ty, Tx) + ϕ(x, Tx) + ϕ(y, Ty) ≤ ϕ(x, Ty) + ϕ(y, Tx)

for all x, y ∈ C. By from (2.2), this inequality is equivalent to

⟨x− Tx, JTx− JTy⟩ ≥ ⟨y − Ty, JTx− JTy⟩
for all x, y ∈ C.

Theorem 3.5. Let E be a smooth Banach space, let K be a closed convex cone of
E and let T : K → K be a positively homogeneous firmly generalized nonexpansive
type mapping. Then, ⟨x− Tx, JTx⟩ ≥ 0 for all x ∈ K.

Proof. From the definition of a firmly generalized nonexpansive type mapping, we
have

⟨x− Tx, JTx− Ju⟩ ≥ 0

for any x ∈ K and u ∈ F (T ). Then we have

⟨x− Tx, JTx⟩ ≥ ⟨x− Tx, Ju⟩.
Fix x ∈ K and u ∈ F (T ). Let a = ⟨x− Tx, JTx⟩ and b = ⟨x− Tx, Ju⟩. From the
assumption of T , we have that for any α > 0,

α2a = ⟨αx− T (αx), JT (αx)⟩,
αb = ⟨αx− T (αx), Ju⟩

and
α2a ≥ αb.

From this, we have a ≥ 1
αb. Letting α → ∞, we have a ≥ 0, i.e., a = ⟨x−Tx, JTx⟩ ≥

0. This completes the proof. �
From Theorem 3.2, we introduce the following concept.

Definition 3.6. Let E be a smooth Banch space, let x ∈ E and let F be a nonempty
subset of E. The Sizihwan region between x and F is the set

R(x;F ) = {z ∈ E : ⟨x− z, Ju⟩ = 0 for all u ∈ F and ∥z∥ ≤ ∥x∥}.

Lemma 3.7. Let E be a strictly convex and smooth Banch space, let x ∈ E and
let F be a nonempty subset of E. Then R(x;F ) is nonempty, closed, convex and
bounded, and F ∩R(x;F ) consists of at most one point.

Proof. For any x ∈ E and F ⊂ E, x is always an element of R(x;F ). Then R(x;F )
is nonempty. From the definition, it is obvious that R(x;F ) is convex and bounded.
We show that R(x;F ) is closed. Let {zn} be a sequence in R(x;F ) and zn → z0.
Then, we have that for all u ∈ F ,

0 = ⟨x− zn, Ju⟩ → 0 = ⟨x− z0, Ju⟩
and ∥z0∥ ≤ ∥x∥. So, z0 ∈ R(x;F ).

Let z1, z2 ∈ F ∩ R(x;F ). Then ⟨x − z1, Jz1⟩ = 0 and ⟨x − z2, Jz1⟩ = 0. So,
we have ⟨z1 − z2, Jz1⟩ = 0. Similarly, we have ⟨z1 − z2, Jz2⟩ = 0. Then we obtain
⟨z1 − z2, Jz1 − Jz2⟩ = 0. Since E is strictly convex, we obtain z1 = z2. �
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Let F be a nonempty subset of a Banach space E and x ∈ E. Then,

dist(x, F ) = inf{∥x− y∥ : y ∈ F}.

Lemma 3.8. Let E be a uniformly convex and smooth Banach space, let x ∈ E and
let F be a nonempty closed subset of E. Suppose {xn} is a sequence in R(x;F ) such
that limn→∞ dist(xn, F ) = 0. Then F ∩ R(x;F ) is nonempty and {xn} converges
strongly to a unique point in F ∩R(x;F ).

Proof. Choose {yn} in F such that ∥xn − yn∥ → 0. By Lemma 3.7, both {xn} and
{yn} are bounded. Then, there exists a positive number M such that

∥yn∥ = ∥Jyn∥ ≤ M

for any n ∈ N. Since {yn} ⊂ F , we have ⟨x − xn, Jym⟩ = 0 for any n,m ∈ N. So,
we have

|⟨x− yn, Jym⟩| = |⟨x− xn, Jym⟩ − ⟨yn − xn, Jym⟩|
= |⟨yn − xn, Jym⟩|
≤ M∥xn − yn∥.

Similarly, we have that |⟨x− yn, Jyn⟩| ≤ M∥xn−yn∥ for any n ∈ N. Then, we have
that for any n,m ∈ N,

|⟨x− yn, Jyn − Jym⟩| ≤ |⟨x− yn, Jyn⟩|+ |⟨x− yn, Jym⟩|
≤ 2M∥xn − yn∥.

Since ∥xn − yn∥ converges to 0 as n → ∞, there exists a positive sequence tn with
tn ↘ 0 such that

⟨yn − x, Jyn − Jym⟩ ≤ tn

for all n,m ∈ N. Similarly, we have

⟨ym − x, Jym − Jyn⟩ ≤ tm

for all n,m ∈ N. Then, we have

ϕ(yn, ym) + ϕ(ym, yn)

2
= ⟨yn − ym, Jyn − Jym⟩ ≤ tn + tm.

Since E is uniformly convex and smooth, from Kamimura and Takahashi [33] there
exists a continuous, strictly increasing and convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that

g(∥yn − ym∥) ≤ ϕ(yn, ym)

and
g(∥yn − ym∥) = g(∥ym − yn∥) ≤ ϕ(ym, yn)

for all n,m ∈ N. Then, we have

g(∥yn − ym∥) ≤ tn + tm

for all n,m ∈ N. Therefore, from the properties of g, {yn} is a Cauchy sequence
in F . So, {xn} is also a Cauchy sequence in R(x;F ). Then both {yn} and {xn}
converge to a same element z ∈ E. Since both F and R(x;F ) are closed, the limit
z belongs to F ∩R(x;F ). �

Using Corollary 3.4, we have the following result.
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Lemma 3.9. Let E be a smooth Banach space, let M be a closed linear subspace
of E and x ∈ M . For any homogeneous nonexpansive mapping T : M → M , Tx is
an element of R(x;F (T )) ∩M , where F (T ) is the set of all fixed points of T .

The finite composition of homogeneous nonexpansive mappings is also a homo-
geneous nonexpansive mapping. Then, using Lemma 3.8 we have the following
theorem.

Theorem 3.10. Let E be a uniformly convex and smooth Banach space, let M be
a closed linear subspace of E and let {Tn : n ∈ N} be a sequence of homogeneous
nonexpansive mappings of M into itself such that ∩n∈NF (Tn) ̸= ∅. Let {xn} be a
sequence of M defined by x ∈ M and

xn = Tn ◦ Tn−1 ◦ · · ·T1x

for all n ∈ N. Then, {xn} converges strongly to an element of ∩m∈NF (Tm) if and
only if limn→∞ dist(xn,∩m∈NF (Tm)) = 0.

Proof. Let x ∈ M and put Sn = Tn ◦ Tn−1 ◦ · · ·T1 for all n ∈ N. Since Sn is a
homogenuous nonexpansive mapping of M into itself, we have that ∥xn∥ ≤ ∥x∥ and
⟨x−xn, Ju⟩ = 0 for all u ∈ F (Sn). So, we have ∥xn∥ ≤ ∥x∥ and ⟨x−xn, Ju⟩ = 0 for
all u ∈ ∩m∈NF (Sm) and n ∈ N. This implies xn ∈ R(x;∩m∈NF (Sm)) for all n ∈ N.
If limn→∞ dist(xn,∩m∈NF (Sm)) = 0, then from Lemma 3.8 we have {xn} converges
strongly to a unique point z of ∩m∈NF (Sm) ∩R(x;∩m∈NF (Sm)).

Conversely, if {xn} converges strongly to an element of ∩m∈NF (Sm), then it is
obvious that limn→∞ dist(xn,∩m∈NF (Sm)) = 0. �

4. Strong convergence theorems

Let Y be a nonempty subset of a Banach space E and let Y ∗ be a nonempty
subset of the dual space E∗. Then, we can define the annihilator Y ∗

⊥ of Y ∗ and the

annihilator Y ⊥ of Y as follows:

Y ∗
⊥ = {x ∈ E : f(x) = 0 for all f ∈ Y ∗}

and
Y ⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ Y }.

We know the following result from Megginson [41].

Lemma 4.1 ([41]). Let A be a nonempty subset of E. Then

(A⊥)⊥ = spanA,

where spanA is the smallest closed linear subspace of E containing A.

Let T : E → E be a bounded linear operator. Then, the adjoint mapping
T ∗ : E∗ → E∗ is defined as follows:

⟨x, T ∗x∗⟩ = ⟨Tx, x∗⟩
for any x ∈ E and x∗ ∈ E∗. We know that T ∗ is also a bounded linear operator
and ∥T∥ = ∥T ∗∥. If S and T are bounded linear operators form E into itself and
α ∈ R, then (S + T )∗ = S∗+T ∗ and (αS)∗ = α (S)∗. Let I be the identity operator
on E. Then, I∗ is the identity operator on E∗. Let T ∗∗ : E∗∗ → E∗∗ be the adjoint
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of T ∗. Then we have T ∗∗(π(E)) ⊂ π(E) and π−1T ∗∗π = T , where π is the natural
embedding from E into its second dual space E∗∗; see [41].

Lemma 4.2. Let E be a strictly convex, smooth and reflexive Banach space, let T
be a linear contractive operator of E into itself, i.e., T : E → E is a linear operator
such that ∥T∥ ≤ 1 and let F (T ) be the set of fixed points of T . Then JF (T ) is
a closed linear subspace in E∗ and JF (T ) = F (T ∗) = {z − Tz : z ∈ E}⊥, where
J : E → E∗ is the normalized duality mapping and T ∗ is the adjoint operator of T .

Proof. From Corollary 3.4, we have

⟨x− Tx, Ju⟩ = 0

for any x ∈ E and u ∈ F (T ). We also have that

⟨x− Tx, Ju⟩ = 0 ⇔ ⟨x, Ju⟩ = ⟨Tx, Ju⟩
⇔ ⟨x, Ju⟩ = ⟨x, T ∗Ju⟩
⇔ ⟨x, (I∗ − T ∗)Ju⟩ = 0,

where I∗ is the identity operator in E∗. Since this equation holds for all x ∈ E, we
have (I∗ − T ∗)Ju = 0. Then, T ∗Ju = Ju and hence JF (T ) ⊂ F (T ∗).

Since ∥T ∗∥ = ∥T∥ ≤ 1, we can get the same fact about T ∗. So, we obtain that

J∗F (T ∗) ⊂ F (T ∗∗),

where J∗ : E∗ → E∗∗ is the duality mapping in E∗. Under assumptions on E, we
know that J∗ = J−1 and T ∗∗ = T . Then, we have

F (T ∗) ⊂ JF (T ∗∗) = JF (T ).

So, we obtain that F (T ∗) = JF (T ) and hence JF (T ) is a closed linear subspace of
E∗.

Finally, we show that F (T ∗) = {z − Tz : z ∈ E}⊥. Let S = I − T , where
I : E → E is the identity operator on E. If x∗ ∈ {z ∈ E∗ : S∗z = 0}, then we have

⟨Sy, x∗⟩ = ⟨y, S∗x∗⟩ = 0

for any y ∈ E. This implies x∗ ∈ {z − Tz : z ∈ E}⊥. We know that S∗ = I∗ − T ∗

and {z ∈ E∗ : S∗z = 0} = F (T ∗). So, we have F (T ∗) ⊂ {z − Tz : z ∈ E}⊥. On
the other hand, if x∗ ∈ {z − Tz : z ∈ E}⊥, then we have ⟨Sy, x∗⟩ = 0 for all y ∈ E.
Since

⟨y, S∗x∗⟩ = ⟨Sy, x∗⟩ = 0

for all y ∈ E, we have S∗x∗ = 0 and hence x∗ ∈ F (T ∗). This implies {z − Tz : z ∈
E}⊥ ⊂ F (T ∗). Then, we have F (T ∗) = {z − Tz : z ∈ E}⊥. This completes the
proof. �
Theorem 4.3. Let E be a strictly convex, smooth and reflexive Banach space, let
T be a linear contractive operator on E and let {Sn : n ∈ N} be a sequence of
contractive linear operators on E such that F (T ) ⊂ F (Sn) for all n ∈ N. Suppose
T ◦ Sn = Sn ◦ T for all n ∈ N. Then, the following are equivalent:

(1) Snx converges to an element of F (T ) for each x ∈ E;
(2) Snx converges to 0 for each x ∈ (JF (T ))⊥;
(3) Snx− T ◦ Snx converges to 0 for each x ∈ E.
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Furthermore, if (1) holds, then Snx converges to RF (T )x ∈ F (T ), where RF (T ) =

J−1ΠJF (T )J and ΠJF (T ) is the generalized projection of E∗ onto JF (T ).

Proof. Suppose (1). Then, for any x ∈ E, Snx ∈ R(x;F (Sn)) ⊂ R(x;F (T )) for all
n ∈ N. We know from Lemma 3.7 that R(x;F (T )) ∩ F (T ) consists of at most one
point. Since R(x;F (T )) is closed and Snx converges strongly to an element z of
F (T ), R(x;F (T )) ∩ F (T ) = {z}. Let Rx be the unique element z of R(x;F (T )) ∩
F (T ). Then, a mapping R : E → F (T ) defined by z = Rx is a retraction of E onto
F (T ). Further, we know from Corollary 3.4 that ⟨x−Snx, Ju⟩ = 0 for all u ∈ F (Sn)
and n ∈ N. So, we have

⟨x−Rx, Ju⟩ = 0(4.1)

From Rx ∈ F (T ), we also have ⟨x−Rx, JRx⟩ = 0 and thus

⟨x−Rx, JRx− Ju⟩ = 0(4.2)

for any u ∈ F (T ). So, from Lemmas 2.3 and 2.4, R is the unique sunny generalized
nonexpansive retraction of E onto F (T ). Therefore, from Theorem 2.6, we have

R = RF (T ) = J−1ΠJF (T )J,

where ΠJF (T ) is the generalized projection of E∗ onto JF (T ). If x ∈ (JF (T ))⊥,
then we have ⟨x, Ju⟩ = 0 for all u ∈ F (T ). From (4.1), we also have ⟨x−Rx, Ju⟩ = 0
for all u ∈ F (T ). So, we get ⟨Rx, Ju⟩ = 0 for all u ∈ F (T ). This implies Rx ∈
(JF (T ))⊥. From Rx ∈ F (T ) ∩ (JF (T ))⊥ and F (T ) ∩ (JF (T ))⊥ = {0}, we have
that Snx → RF (T )x = 0 as n → ∞. Then, we obtain (2).

Suppose (2). From Lemma 4.2, JF (T ) is a closed linear subspace of E∗. Then,
we have from [2, 3, 20, 19] that for any x ∈ E,

x = RF (T )x+ P(JF (T ))⊥x,

where P(JF (T ))⊥ is the metric projection of E onto (JF (T ))⊥. So, we have from (2)
that

Snx = Sn(RF (T )x+ P(JF (T ))⊥x)

= SnRF (T )x+ SnP(JF (T ))⊥x

= RF (T )x+ SnP(JF (T ))⊥x

→ RF (T )x ∈ F (T ),

as n → ∞. Then, we obtain (1). Furthermore, we know from Corollary 3.4 that
x − Tx ∈ (JF (T ))⊥ for all x ∈ E. So, we have from (2) that Sn(x − Tx) → 0 as
n → ∞. So, we have from T ◦ Sn = Sn ◦ T that for any x ∈ E,

Snx− T ◦ Snx = Snx− Sn ◦ Tx
= Sn(x− Tx) → 0,

as n → ∞. Then, we obtain (3).
Suppose (3). We have from (3) and T ◦ Sn = Sn ◦ T that for any x ∈ E,

Sn(x− Tx) = Snx− Sn(Tx)

= Snx− Sn ◦ T (x)
= Snx− T ◦ Sn(x)



558 W. TAKAHASHI, J.-C. YAO, AND T. HONDA

→ 0.

So, we have Sny converges to 0 for any y ∈ {x − Tx : x ∈ E}. From Lemmas 4.2
and 4.1, we have

(JF (T ))⊥ = ({z − Tz : z ∈ E}⊥)⊥ = span{x− Tx : x ∈ E}.
Take x ∈ (JF (T ))⊥. Then, for any ϵ > 0, there exists an element y ∈ {x−Tx : x ∈
E} such that ∥x− y∥ < ϵ. So, we have

∥Snx∥ = ∥Sny + (Snx− Sny)∥
≤ ∥Sny∥+ ∥Snx− Sny∥
≤ ∥Sny∥+ ∥x− y∥
≤ ∥Sny∥+ ϵ

and hence
lim sup
n→∞

∥Snx∥ ≤ lim sup
n→∞

(∥Sny∥+ ϵ) = ϵ.

Since ϵ > 0 is arbitrary, we have that for any x ∈ (JF (T ))⊥, Snx converges to 0.
Then, we obtain (2).

Furthermore, if (1) holds, then we have from the proof of (1) that for any x ∈ E,
Snx converges strongly to RF (T )x ∈ F (T ). �

Using Theorem 4.3, we have the following useful result.

Theorem 4.4. Let E be a strictly convex, smooth and reflexive Banach space, let
T be a linear contactive operator on E, let {Ti : i ∈ N} be a sequence of linear
contractive operators on E such that F (T ) ⊂ F (Ti) for all i ∈ N. Let Sn = Tn ◦
Tn−1 ◦ · · · ◦ T1 for all n ∈ N and suppose that T ◦ Sn = Sn ◦ T for all n ∈ N. Then,
the following are equivalent:

(1) Snx converges to an element of F (T ) for each x ∈ E;
(2) Snx converges to 0 for each x ∈ (JF (T ))⊥;
(3) Snx− T ◦ Snx → 0 for each x ∈ E;

Furthermore, if (1) holds, then Snx converges to RF (T )x ∈ F (T ), where RF (T ) =

J−1ΠJF (T )J and ΠJF (T ) is the generalized projection of E∗ onto JF (T ).

Proof. For any n ∈ N, Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 is a linear contractive operator on
E and F (T ) ⊂ F (Sn). for all i ∈ N. Further, from the assumption, T ◦Sn = Sn ◦ T
for all n ∈ N. So, we have the desired result from Theorem 4.3 �

5. Applications

In this section, using Theorems 4.3 and 4.4, we obtain some strong convergence
theorems for linear contractive mappings in a Banach space.

In 2003, Bauschk, Deutsch, Hundal and Park showed the following theorem [7].

Theorem 5.1. Let T be a contractive linear operator on a Hilbert space H; i.e.
∥T∥ ≤ 1, and let M be a closed linear subspace of H. Consider the following
statements;

(1) limn→∞ ∥Tnx− PMx∥ = 0 for each x ∈ H;
(2) M = F (T ) and Tnx converges to 0 for each x ∈ M⊥;
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(3) M = F (T ) and Tnx− Tn+1x → 0 for each x ∈ E.

Then, all statements are equivalent.

Using Theorem 4.3, we can obtain an extension of the above theorem to a Banach
space.

Theorem 5.2. Let E be a strictly convex, smooth and reflexive Banach space,
let M be a closed linear subspace of E such that there exists a sunny generalized
nonexpansive retraction R of E onto M and let T be a contractive linear operator
on E. Then the following are equivalent:

(1) Tnx converges to the element Rx of M for each x ∈ E;
(2) M = F (T ) and Tnx converges to 0 for each x ∈ (JM)⊥;
(3) M = F (T ) and Tnx− Tn+1x → 0 for each x ∈ E.

Furthermore, if (1) holds, then R = RF (T ) = J−1ΠJF (T )J, where ΠJF (T ) is the
generalized projection of E∗ onto JF (T ).

Proof. If (1) holds, then it is obvious that F (T ) ⊂ M . Conversely, take z ∈ M .
Then we have Rz = z. Since Tnz converges to the element Rz = z and T is
continuous, we have Tn+1z converges to the element Tz. On the other hand, Tn+1z
converges to the element z. So, we have Tz = z. This implies M ⊂ F (T ). Then we
get M = F (T ). Define Sn = Tn for all n ∈ N. Then, we have F (T ) ⊂ F (Ti) and
T ◦Sn = Sn ◦T for all n ∈ N. So, we have the desired result from Theorem 4.3. �
Remark 5.3. If M is a closed linear subspace of a Hilbert space H, then there exists
the metric projection P of H onto M . In a Hilbert space, the metric projection P
of H onto M is coincident with the sunny generalized nonexpansive retraction RM

of H onto M .

Applying Theorem 4.4, we obtain a strong convergence theorem of Mann type
for contractive linear mappings in a Banach space.

Theorem 5.4. Let E be a smooth and uniformly convex Banach space and let T
be a contractive linear operator on E. Let {αn} be a sequence of real numbers such
that 0 ≤ αn ≤ 1 and

∑∞
n=1 αn(1 − αn) = ∞. Then a sequence {xn} generated by

x1 = x ∈ E and

xn+1 = αnxn + (1− αn)Txn, n = 1, 2, 3, . . . ,

converges strongly to the element Rx of F (T ), where R = RF (T ) = J−1ΠJF (T )J
and ΠJF (T ) is the generalized projection of E∗ onto JF (T ).

Proof. Let Ti = αiI + (1 − αi)T for all i ∈ N, where I is the identity operator on
E and let Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 for all n ∈ N. Then, we have that xn+1 = Snx.
Since T is a linear cotractive operator, F (T ) is a closed linear subspace of E. For
any i ∈ N, we have ∥Ti∥ ≤ 1 and F (T ) = F (Ti). Indeed, we have

∥Ti∥ = ∥αiI + (1− αi)T∥ ≤ αi∥I∥+ (1− αi)∥T∥ ≤ 1.

We show F (T ) = F (Ti). If x ∈ F (T ), then Tix = αi−1Ix + (1 − αi−1)Tx = x and
hence F (T ) ⊂ F (Ti). Conversely, if x ∈ F (Ti), then since 1− αi−1 > 0, we have

x = Tix ⇒ x = αiIx+ (1− αi)Tx
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⇒ (1− αi)x = (1− αi)Tx

⇒ x = Tx.

Then, we have F (Ti) ⊂ F (T ). Using these results, we obtain that ∥Sn∥ ≤ 1 and
F (T ) ⊂ F (Sn) for any n ∈ N.

Next, we shall show that T ◦ Sn = Sn ◦ T . When n = 1, we have

T ◦ S1 = T ◦ T1

= T (α1I + (1− α1)T )

= α1T + (1− α1)T
2

= T1 ◦ T = S1 ◦ T.
Suppose that for some k ∈ N, T ◦ Sk = Sk ◦ T . Then, we have

T ◦ Sk+1 = T ◦ Tk+1 ◦ Sk

= T (αkSk + (1− αk)T ◦ Sk)

= αkT ◦ Sk + (1− αk)T
2 ◦ Sk

= αkSk ◦ T + (1− αk)T ◦ Sk ◦ T
= Tk+1 ◦ Sk ◦ T = Sk+1 ◦ T.

Then, by induction, we have that T ◦ Sn = Sn ◦ T for any n ∈ N.
By Theorem 4.4, it is sufficient to show that

∥xn − Txn∥ → 0 as n → ∞
for any x0 = x ∈ E. Let u ∈ M . Then, for fixed x0 = x ∈ E, we have

∥xn+1 − u∥ = ∥αnxn + (1− αn)Txn − u∥
≤ α∥xn − u∥+ (1− αn)∥Txn − u∥
≤ α∥xn − u∥+ (1− αn)∥xn − u∥
= ∥xn − u∥.

So, lim→∞ ∥xn − u∥ exists. Putting lim→∞ ∥xn − u∥ = c, without loss of generality,
we can assume that c ̸= 0.

Using Lemma 2.9, we have that

∥xn+1 − u∥ = ∥αxn + (1− αn)Txn − u∥
= ∥α(xn − u) + (1− αn)(Txn − u)∥

≤ ∥xn − u∥
{
1− 2αn(1− αn)δ

(
∥Txn − xn∥
∥xn − u∥

)}
.

Then, we obtain

2
∞∑
n=1

αn(1− αn)δ

(
∥Txn − xn∥
∥xn − u∥

)
≤ ∥x1 − u∥ − c < +∞.

From the assumpusions of {αn}, we have lim infn→∞ δ
(
∥Txn−xn∥
∥xn−u∥

)
= 0. Then we

have
lim inf
n→∞

∥Txn − xn∥ = 0.
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On the other hand, we have

∥Txn+1 − xn+1∥ ≤ αn∥Txn+1 − xn∥+ (1− αn)∥Txn+1 − Txn∥
≤ αn∥Txn+1 − xn+1∥+ ∥xn+1 − xn∥
≤ αn∥Txn+1 − xn+1∥+ (1− αn)∥Txn − xn∥.

Then, we have ∥Txn+1 − xn+1∥ ≤ ∥Txn − xn∥. So, we obtain that

lim
n→∞

∥Txn − xn∥ = lim inf
n→∞

∥Txn − xn∥ = 0.

By Theorem 4.4, {xn} converges strongly to the element Rx of F (T ), where R =
RF (T ) = J−1ΠJF (T )J and ΠJF (T ) is the generalized projection of E∗ onto JF (T ).
This completes the proof. �

From Theorem 4.3, we can show a mean strong convergence theorem for contrac-
tive linear operators in a Banach space; see Yosida [59].

Theorem 5.5. Let E be a smooth, strictly convex and reflexive Banach space and
let T be a contractive linear operator on E. Then, for each x ∈ E, the Cesàro means

Snx =
1

n

n∑
k=1

T kx

converge strongly to the element Rx of F (T ), where R = RF (T ) = J−1ΠJF (T )J and
ΠJF (T ) is the generalized projection of E∗ onto JF (T ).

Proof. For any n ∈ N, the operator Sn : E → E is a contractive linear operator.
Further, we have F (T ) ⊂ F (Sn) and T ◦ Sn = Sn ◦ T for any n ∈ N. In fact, for
any x ∈ E and n ∈ N, we have

TSnx =
1

n

n∑
k=1

T k+1x =
1

n

n∑
k=1

T kTx = SnTx.

To complete the proof, it is sufficient to show that Snx − T ◦ Snx → 0 for each
x ∈ E. We have

Snx− T ◦ Snx =
1

n

n∑
k=1

T kx− T

(
1

n

n∑
k=1

T kx

)

=
1

n

n∑
k=1

T kx− 1

n

n+1∑
k=2

T kx

=
1

n

(
Tx− Tn+1x

)
.

Then, for any n ∈ N, we have

∥Snx− T ◦ Snx∥ =
1

n
∥Tx− Tn+1x∥ ≤ 1

n
(∥Tx∥+ ∥Tn+1x∥) = 2

n
∥Tx∥.

So, we obtain that Snx− T ◦ Snx → 0 for each x ∈ E. Using Theorem 4.3, {Snx}
converges strongly to the element Rx of F (T ), where R = RJF (T ) = J−1ΠJF (T )J
and ΠJF (T ) is the generalized projection of E∗ onto JF (T ). This completes the
proof. �
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Remark 5.6. In Theorem 5.5, note that the point z = limn→∞ Snx is characterlized
by the sunny generalized nonexpansive retraction R = RF (T ) = J−1ΠJF (T )J of E
onto F (T ). Such a result is still new even if the operator T is linear.

In [10], Bruck introduced and discussed a firmly nonexpansive mapping in a
Banach space. All norm one linear projections, all sunny nonexpansive retractions,
and all resolvents of an accretive operator are firmly nonexpansive; see also [4]. Let
E be a Banach space and let C be a nonempty closed convex subset of E. Then a
mapping T : C → E is said to be firmly nonexpansive [10] if

∥t(x− y) + (1− t)(Tx− Ty)∥ ≥ ∥Tx− Ty∥

for all x, y ∈ C and t ≥ 0. It E is smooth, it is not hard to check that a mapping
T : C → E is firmly nonexpansive if and only if

⟨x− Tx− (y − Ty), J(Tx− Ty)⟩ ≥ 0

for all x, y ∈ C, where J is the duality mapping on E. In a smooth Banach space,
a linear operator T : E → E is firmly nonexpansive if it satisfies

∥Tx∥2 ≤ ⟨x, JTx⟩

for any x ∈ E. For any nonexpansive mappings S on a Hilbert space, the mapping
T = 1

2(I + S) is firmly nonexpansive, where I is the identity mapping; see [17].
From Theorem 3.5, we have the following result.

Theorem 5.7. Let E be a smooth Banach space and let T be a linear operator on
E. If T is a firmly generalized nonexpansive type, then T is firmly nonexpansive.

Finally, we prove strong convergence theorems for firmly nonexpansive linear
operators in a Banach space.

Theorem 5.8. Let E be a strictly convex, smooth and reflexive Banach space, let T
be a linar firmly nonexpansive operator on E, let F (T ) be the set of all fixed points
of T . Then, for any x ∈ E, limn→∞ Tnx = RF (T )x, where RF (T ) is the sunny
generalized nonexpansive retraction of E onto RF (T ).

Proof. From Ibaraki and Takahashi [27] and [28], we can define the sunny general-
ized nonexpansive retraction RF (T ) of E onto F (T ). We also know from Reich and
Shafrir [47] that if T is firmly nonexpansive, then for all x ∈ E and k ∈ N,

lim
n→∞

∥Tn+1x− Tnx∥ = lim
n→∞

∥Tn+kx− Tnx∥
k

= lim
n→∞

∥∥∥∥Tnx

n

∥∥∥∥ .
Since {Tnx} is bounded for any x ∈ E, we have

lim
n→∞

∥Tn+1x− Tnx∥ = lim
n→∞

∥∥∥∥Tnx

n

∥∥∥∥ = 0.

Then, by Theorem 5.2, we obtain limn→∞ Tnx = RF (T )x for any x ∈ E. �

From Theorem 3.10, we also obtain the following theorem.
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Theorem 5.9. Let E be a strictly convex, smooth and reflexive Banach space, let
M be a closed hyperplane of E such that for some z∗ ∈ E∗ \ {0}

M = {z ∈ E : ⟨z, z∗⟩ = 0}
and let {Tn : n ∈ N} be a sequence of homogeneous nonexpansive mappings of E
into itself with F (Tn) = M , n ∈ N. For x ∈ E, define a sequence {xn} in E by

xn = Tn ◦ Tn−1 ◦ · · ·T1x.

Then {xn} converges strongly to an element y ∈ M if and only if it converges weakly
to y ∈ M .

Proof. It is sufficient to show that if {xn} converges weakly to y ∈ M , then it
converges to y ∈ M strongly. Let PM be the metric projection of E onto M .
Suppose xn ⇀ y ∈ M . If xm ∈ M for some m ∈ N, then xn = xm for any n ≥ m.
So, we have xn → y ∈ M . If {xn} ⊂ E \M , then we have from [49] that

PMxn = xn − 1

∥z∗∥2
⟨xn, z∗⟩J−1z∗.

So, we have

∥xn − PMxn∥ =
1

∥z∗∥
|⟨xn, z∗⟩|.

Since xn ⇀ y ∈ M = {z ∈ E : ⟨z, z∗⟩ = 0}, we have ∥xn − PMxn∥ → 0. From
Theorem 3.10, {xn} converges to an element of M strongly. Then, we have xn → y.

�
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