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EXISTENCE RESULTS FOR SYSTEMS OF GENERALIZED

VECTOR VARIATIONAL INEQUALITIES WITH SET-VALUED

SEMI-MONOTONE MAPPINGS IN REFLEXIVE BANACH

SPACES

SOMYOT PLUBTIENG∗ AND WANNA SRIPRAD

Abstract. In this paper, we introduce and study a new type of the system of
generalized vector variational inequalities with set-valued semi-monotone map-
pings in reflexive Banach spaces. Under certain condition, some existence results
for system of generalized vector variational inequalities with set-valued semi-
monotone mappings are obtained by Kakutani-Fan-Glicksberg fixed point theo-
rem.

1. Introduction

The vector variational inequality is a generalized of a variational inequality, hav-
ing applications in different areas of optimization, optimal control, operations re-
search, economics equilibrium and free boundary value problems. Giannessi [8]
firstly introduced vector variational inequality (VVI) in a finite-dimensional Eu-
clidean space. In 1987, Chen and Cheng [4] proposed the vector variational inequal-
ity in infinite-dimensional space and it was applied to some optimization problems.
Recently, Huang and Fang [11] obtained some results for solutions of vector varia-
tional inequalities in reflexive Banach space. Since then, this problem has been a
powerful tool in the study of vector optimization and traffic equilibrium problems;
see [3, 4, 11, 16]. Due to its wide applications, and many existence results and
algorithms for vector variational inequality problems have been established under
various conditions (see, e.g. [1, 17] and the references therein).

It is well known that the monotonicity of a nonlinear mapping is one of the most
frequently used hypotheses in the theory of the variational inequality. There are
many kinds of generalized of monotone mappings in the literature of recent years,
such as pseudo-monotone mappings, quasi-monotone mappings, etc. In 1999, Chen
[5] introduced the concept of semi- monotonicity for a single-valued mapping, which
occurred in the study of nonlinear partial differential equations of divergence type.
Four years latter, a generalization of semi-monotonicity, the so called relaxed η−α-
semi-monotonicity was introduced by Fang and Huang [7] and a variational-like
inequality problem related to it was studied. Recently, Fang [6] generalize the semi-
monotonicity for a single-valued mapping to the case of a vector set-valued mapping,
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and investigate a generalized vector variational inequality problem related to this
kind of vector set-valued mapping.

On the other hand, some interesting and important problems related to varia-
tional inequalities and complementarity problems were considered in recent papers.
In 2003, Huang and Fang [10] introduced systems of order complementarity prob-
lems and established some existence results by fixed point theory. Kassay and
Kolumbn [12] were introduced systems of variational inequalities and proved an
existence theorem by used the Ky Fan lemma. Recently, Kassay et al. [13], intro-
duced and studied Minty and Stampacchia variational inequality systems by the
Kakutani-Fan-Glicksberg fixed point theorem. Very recently, in [20], Zhao and Xia
introduced and studied systems of vector variational-like inequalities by the same
fixed point theorem.

Motivated and inspired by these works, in this paper, we introduce and study
a new type of systems of generalized vector variational inequalities with set-valued
semi-monotone mappings in Banach spaces. By also using the Kakutani-Fan-
Glicksberg fixed point theorem, we prove some existence results for system of gen-
eralized vector variational inequalities in Banach spaces.

2. Preliminaries

Let X and Y be two real Banach spaces, L(X,Y ) be the family of all linear
bounded operators from X to Y , and K be a nonempty closed and convex subset
of X. Recall that a subset C of Y is said to be a closed convex cone if C is closed
and C+C ⊂ C, λC ⊂ C for λ > 0. In addition, if C ̸= Y , then C is called a proper
closed convex cone. A closed convex cone is pointed if C ∩ (−C) = {0}. A mapping
C : K −→ 2Y is said to be a cone mapping if C(x) is a proper closed convex pointed
cone and int C(x) ̸= ∅ for each x ∈ K.

Next, we will introduce the concept of monotonicity and semi-monotonicity for
set-valued mappings.

Definition 2.1 ([15]). Let T : K −→ 2L(X,Y ) is said to be monotone on K if for
any x, y ∈ K, it holds that

⟨ξ − η, y − x⟩ ∈ C−, ∀ ξ ∈ T (x), η ∈ T (y),

where C− =
∩

x∈K C(x).

Definition 2.2 ([6]). A vector set-valued mapping T : K ×K −→ 2L(X,Y ) is said
to be a vector set-valued semi-monotone mapping on K if it satisfies the following
conditions:

(1) for each u ∈ K, the mapping T (u, ·) : K −→ 2L(X,Y ) is a vector set-valued
monotone mapping in the sense of Definition 2.1;

(2) for each v ∈ K, the mapping T (·, v) : K −→ 2L(X,Y ) is lower semi-continuous
onK, whereK is equipped with the weak topology, and L(X,Y ) is equipped
with the uniform convergence topology of operators.

For more details see, for instances, [6].

Let S, T : K ×K −→ 2L(X,Y ) be two set-valued semi-monotone mappings on K.
In this paper, we investigate the following system of generalized vector variational
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inequality problem (for short, the (SGVVIP). Find (x0, y0) ∈ K ×K such that for
each z ∈ K there exist ξ ∈ S(y0, x0) and ζ ∈ T (x0, y0) satisfying

(2.1)

{
⟨ξ, z − x0⟩ /∈ -int C(x0)

⟨ζ, z − y0⟩ /∈ -int C(y0).

If T (x, y) ≡ S(y, y), then problem (2.1) reduces to the generalized vector variational
inequality problem (for short, the (GVVIP)); Find y0 ∈ K such that for each z ∈ K
there exist ζ ∈ S(y0, y0) satisfying

(2.2) ⟨ζ, z − y0⟩ /∈ -int C(y0).

Problem (2.2) was introduced by Fang [6].
If S, T : K × K −→ L(X,Y ), then problem (2.1) reduces to finding x0 ∈ K such
that for each z ∈ K,

(2.3)

{
⟨S(y0, x0), z − x0⟩ /∈ -int C(x0)

⟨T (x0, y0), z − y0⟩ /∈ -int C(y0).

If S, T : K × K −→ L(X,Y ), S ≡ T and x0 = y0, then problem (2.1) reduces to
finding x0 ∈ K such that for each z ∈ K,

(2.4) ⟨S(x0, x0), z − x0⟩ /∈ -int C(x0).

Problem (2.4) was introduced by Zheng [19].

Definition 2.3 ([14]). A mapping T : K −→ 2(X,Y ) is said to be u-hemi-continuous
on K if the set-valued mapping F : [0, 1] −→ 2Y defined by

F (t) = ⟨T (z + t(y − z)), y − z⟩ = {⟨ξ, y − z⟩ : ξ ∈ T (z + t(y − z)}

is upper semi-comtinuous at 0+ for each y, z ∈ K.

Lemma 2.4 ([14]). Let X, Y be Banach spaces, K a nonempty weakly compact
convex subset of X. Let C : K −→ 2Y be such that for each x ∈ K, C(x) is
a proper closed convex cone with intC(x) ̸= ∅ and W : K −→ 2Y be defined by
W (x) = Y \ − int C(x)such that the graph of W is weakly closed in X × Y . If T :

K −→ 2L(X,Y ) is a vector set-valued monotone mapping and is u-hemi-continuous
on K with nonempty values, then there exists x0 ∈ K such that for each y ∈ K
there exists ξ ∈ T (x0) satisfying

⟨ξ, y − x0⟩ /∈ −int C(x0).

Lemma 2.5 ([14]). Suppose that T : K −→ 2L(X,Y ) is a vector set-valued monotone
mapping. If it is u-hemi-continuous on K, then the following two statements are
equivalent:
(i) x0 ∈ K such that, for each y ∈ K, there exists ξ ∈ T (x0) such that

⟨ξ, y − x0⟩ /∈ −int C(x0);
(ii) x0 ∈ K such that, for each y ∈ K and for each ξ ∈ T (y), it holds that

⟨ξ, y − x0⟩ /∈ −int C(x0).
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Lemma 2.6 ([18, Kakutani-Fan-Glicksberg]). Suppose that X is a Hausdorff locally
convex space and K is a nonempty convex compact subset of X. If T : K −→ 2K

is an upper semi-continuous mapping with nonempty convex closed values, then T
has a fixed point in K, i.e., there exists x0 ∈ K such that x0 ∈ T (x0).

The next lemma is the property for an upper semi-continuous mapping.

Lemma 2.7 ([6]). Let X, Y be two Banach spaces, K ⊂ X. Suppose that the set-
valued mapping T : K −→ 2Y is upper semi-continuous at x0 with T (x0) compact.
If xn ∈ K, n = 1, 2, ... with xn → x0, and yn ∈ T (xn), then there exists y0 ∈ T (x0)
and a subsequence {ynk

} of {yn} such that ynk
→ y0.

3. Existence results for systems of generalized vector variational
inequalities

In this section, we will prove two existence theorems for system of generalized
vector variational inequalities in Banach spaces.

Theorem 3.1. Let X be a real reflexive Banach space, Y a Banach space, K a
nonempty bounded closed convex subset of X. Suppose that the mapping C : K → 2Y

is a cone mapping and the mapping W : K → 2Y defined by W (x) = F\− int C(x)
is weakly closed and satisfies λW (x) + (1 − λ)W (y) ⊂ W (λx + (1 − λ)y). Let

S, T : K × K −→ 2L(X,Y ) with nonempty convex compact values satisfies the
following conditions:

(1) S, T are set valued semi-monotone mapping on K;

(2) for each u ∈ K, the mappings S(u, ·) : K −→ 2L(X,Y ) and T (u, ·) : K −→
2L(X,Y ) are continuous on each finite dimensional subspace of X.

Then the (SGVVI) has a solution in K.

Proof. Let F be a finite dimentional subspace of X such that KF = K ∩F ̸= ∅. For
any (x, y) ∈ K×K, consider the auxiliary problem: (AP )F Find (x0, y0) ∈ KF×KF

such that for each z ∈ KF there exist ξ0 ∈ S(y, x0) and ζ0 ∈ T (x, y0) satisfying

(3.1)

{
⟨ξ0, z − x0⟩ /∈ -int C(x0)

⟨ζ0, z − y0⟩ /∈ -int C(y0).

By condition (1) and (2), we know that S(y, ·) and T (x, ·) satisfy the condition of
Lemma 2.4. It follows from of Lemma 2.4 that the problem (AP )F is solvable.
Define a multi-valued mapping G : KF ×KF −→ 2KF×KF by

G(x, y) = {(x0, y0) ∈ KF×KF : (x0, y0) solve problem (AP )F }, ∀(x, y) ∈ KF×KF .

Next, we will show that this mapping has at least one fixed point in KF .
Step 1. It is clear that G(x, y) is nonempty and bounded for each (x, y) ∈ KF×KF .
Step 2. Show that G(x, y) is convex for each (x, y) ∈ KF ×KF .
Let (x1, y1), (x2, y2) ∈ G(x, y). Then by the definition of G(x, y), we note for each
z ∈ KF there exist ξi ∈ S(y, xi), i = 1, 2 and ζj ∈ T (x, yj), j = 1, 2 satisfying{

⟨ξi, z − xi⟩ /∈ -int C(xi), i = 1, 2

⟨ζj , z − yj⟩ /∈ -int C(yj), j = 1, 2,
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for all z ∈ KF . By lemma 2.5, we have{
⟨ξ, z − xi⟩ /∈ -int C(xi), i = 1, 2

⟨ζ, z − yj⟩ /∈ -int C(yj), j = 1, 2,

for each ξ ∈ S(y, z) and ζ ∈ T (x, z). Thus, for each λ ∈ [0, 1], we obtain

⟨ξ, z − (λx1 + (1− λ)x2)⟩ = λ⟨ξ, z − x1⟩+ (1− λ)⟨ξ, z − x2⟩
∈ λW (x1) + (1− λ)W (x2)

⊂ W (λx1 + (1− λ)x2)

= Y \ − int C(λx1 + (1− λ)x2)

and

⟨ζ, z − (λy1 + (1− λ)y2)⟩ = λ⟨ζ, z − y1⟩+ (1− λ)⟨ζ, z − y2⟩
∈ λW (y1) + (1− λ)W (y2)

⊂ W (λy1 + (1− λ)y2)

= Y \ − int C(λy1 + (1− λ)y2)

By using Lemma 2.5 again, we note for each z ∈ KF that there exist ξ̄ ∈ S(y, λx1+
(1− λ)x2) and ζ̄ ∈ T (x, λy1 + (1− λ)y2) such that{

⟨ξ̄, z − (λx1 + (1− λ)x2)⟩ /∈ -int C(λx1 + (1− λ)x2)

⟨ζ̄, z − (λy1 + (1− λ)y2)⟩ /∈ -int C(λy1 + (1− λ)y2).

This mean that λ(x1, y1) + (1− λ)(x2, y2) ∈ G(x, y). Thus, we note that G(x, y) is
convex.
Step 3. Show that G(x, y) is closed for each (x, y) ∈ KF ×KF .
Let {(xn, yn)} be a sequence in G(x, y) such that (xn, yn) −→ (x0, y0). Then it
follows from the definition of G(x, y) that for each z ∈ KF there exist ξn ∈ S(y, xn)
and ζn ∈ T (x, yn) such that{

⟨ξn, z − xn⟩ /∈ -int C(xn)

⟨ξn, z − yn⟩ /∈ -int C(yn),

for all n ∈ N. According to Lemma 2.7, there exist ξ0 ∈ S(y, x0), ζ0 ∈ T (x, y0) and
subsequences {ξnk

} of {ξn}, {ζnj} of {ζn} such that ξnk
−→ ξ0 and ζnj −→ ζ0.

Thus, letting k −→ ∞ and j −→ ∞, we get ⟨ξ0, z − x0⟩ /∈ -int C(x0) and
⟨ζ0, z − y0⟩ /∈ -int C(y0) since W is weakly closed. Hence (x0, y0) ∈ G(x, y) and
therefore G(x, y) is closed.
Step 4. Show that the mapping G : KF × KF :−→ 2KF×KF is upper semi-
continuous. Since KF × KF is compact, we only need to show that the map-
ping G : KF × KF :−→ 2KF×KF is closed. Suppose that (xn, yn) ∈ KF × KF

for all n = 1, 2, 3, . . . with (xn, yn) −→ (x0, y0) and (un, vn) ∈ G(xn, yn) with
(un, vn) −→ (u0, v0). We will show that (u0, v0) ∈ G(x0, y0). It is clear from the def-
inition of G(x, y) that for each z ∈ KF there exist ξn ∈ S(yn, un) and ζn ∈ T (xn, vn)
such that {

⟨ξn, z − un⟩ /∈ -int C(un)

⟨ξn, z − vn⟩ /∈ -int C(vn),
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for all n = 1, 2, 3, . . . . Thus for all φn ∈ S(yn, z) and ϕn ∈ T (xn, z), we have{
⟨φn, z − un⟩ /∈ -int C(un)

⟨ϕn, z − vn⟩ /∈ -int C(vn),

for all n = 1, 2, 3, . . . . Since S(·, z) and T (·, z) are lower semi-continuous, for each
φ ∈ S(y0, z) and ϕ ∈ T (x0, z), there exist φn ∈ S(yn, z) and ϕn ∈ T (xn, z) such
that φn −→ φ and ϕn −→ ϕ. Hence, letting n −→ ∞, it follows by the closedness
of W that {

⟨φ, z − u0⟩ /∈ -int C(u0)

⟨ϕ, z − v0⟩ /∈ -int C(v0).

By Lemma 2.5, there exist ξ0 ∈ S(y0, u0) and ζ0 ∈ T (x0, v0) such that{
⟨ξ0, z − u0⟩ /∈ -int C(u0)

⟨ζ0, z − v0⟩ /∈ -int C(v0).

Thus (u0, v0) ∈ G(x0, y0). Therefore G is upper semi-continuous. By the Kakutani-
Fan-Glicksberg fixed point theorem, there exist (x0, y0) ∈ KF × KF such that
(x0, y0) ∈ G(x0, y0). That is for each z ∈ KF there exist ξ ∈ S(y0, x0) and ζ ∈
T (x0, y0) such that {

⟨ξ, z − x0⟩ /∈ -int C(x0)

⟨ζ, z − y0⟩ /∈ -int C(y0).

Now, we generalize this result to the whole space.
Let Φ = {M : M is a finite dimennsional subspace of X with KM = K ∩M ̸= ∅}
and SM be the solution set of the following problem: Find (x̄, ȳ) ∈ K×K such that
for each z ∈ KM there exist ξ ∈ S(ȳ, x̄) and ζ ∈ T (x̄, ȳ) such that{

⟨ξ, z − x̄⟩ /∈ -int C(x̄)

⟨ζ, z − ȳ⟩ /∈ -int C(ȳ).

From the previous discussion, we know that SM is nonempty and bounded for all
M ∈ Φ. Let S

w
M denote the weak closure of SM . Obviously, we have

S∪n
i=1 Mi

⊂
n∩

i=1

SMi ⊂
n∩

i=1

S
w
Mi

.

Since X is reflexive, we have S
w
M is weakly compact for all M ∈ Φ. Thus {Sw

M :

M ∈ Φ} has the finite intersection property. It implies that
∩

M∈Φ S
w
M ̸= ϕ. Let

(x0, y0) ∈
∩

M∈Φ S
w
M . Then for each z ∈ KM , there exist ξ ∈ S(y0, x0) and ζ ∈

T (x0, y0) such that {
⟨ξ, z − x0⟩ /∈ -int C(x0)

⟨ζ, z − y0⟩ /∈ -int C(y0).

Next, for any given z ∈ K, choose M ∈ Φ such that z, x0, y0 ∈ KM . Since
(x0, y0) ∈ S

w
M , there exists (xn, yn) ∈ SM such that (xn, yn) converse weakly to
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(x0, y0). Therefore for each z ∈ KM and for all ξn ∈ S(yn, z), ζ ∈ T (xn, z), we have{
⟨ξn, z − xn⟩ /∈ -int C(xn)

⟨ζn, z − yn⟩ /∈ -int C(yn).

Since S(·, z) and T (·, z) are lower semi-continuous, for each ξ ∈ S(x0, z) and ζ ∈
T (y0, z) there exist ξn ∈ S(yn, z) and ζn ∈ T (xn, z) such that ξn −→ ξ and ζn −→ ζ.
Letting n −→ ∞ and as w is weakly closed, we have{

⟨ξ, z − x0⟩ /∈ -int C(x0)

⟨ζ, z − y0⟩ /∈ -int C(y0).

By Lemma 2.5, there exist ξ0 ∈ S(y0, x0) and ζ0 ∈ T (x0, y0) such that{
⟨ξ0, z − x0⟩ /∈ -int C(x0)

⟨ζ0, z − y0⟩ /∈ -int C(y0).

This complete the proof. �

If S and T are single value mappings, then we get the following corollary.

Corollary 3.2. Let X be a real reflexive Banach space, Y a Banach space, K a
nonempty bounded closed convex subset of X. Suppose that the mapping C : K → 2Y

is a cone mapping and the mapping W : K → 2Y defined by W (x) = F\− int C(x)
is weakly closed and satisfies λW (x) + (1 − λ)W (y) ⊂ W (λx + (1 − λ)y). Let
S, T : K ×K −→ L(X,Y ) satisfies the following conditions:

(1) S, T are semi-monotone mapping on K;

(2) for each u ∈ K, the mappings S(u, ·) : K −→ 2L(X,Y ) and T (u, ·) : K −→
2L(X,Y ) are continuous on each finite dimensional subspace of X.

Then the (SGVVI) has a solution in K.

Next, we consider the system of generalized vector variational inequality problem
in which K is an unbounded. We have the following result.

Theorem 3.3. Let X be a real reflexive Banach space, Y a Banach space, K a
nonempty unbounded closed convex subset of E. Suppose that the mapping C :
K −→ 2Y is cone mapping and the mapping W : K −→ 2Y defined by W (x) =
F \ −intC(x) is weakly closed and λW (x) + (1 − λ)W (y) ⊂ W (λx + (1 − λ)y).

Let S, T : K × K −→ 2L(X,Y ) with nonempty convex compact values satisfies the
following conditions:

(1) S, T are set valued semi-monotone mapping on K;

(2) for each u ∈ K, the mappings S(u, ·) : K −→ 2L(X,Y ) and T (u, ·) : K −→
2L(X,Y ) are continuous on each finite dimensional subspace of X;

(3) there exists u0 ∈ K such that if (xn, yn) ∈ K × K with (xn, yn) −→ ∞ as
n −→ ∞, then for each n large enough it holds that ∃ξn ∈ S(yn, u0) and
ζn ∈ T (xn, u0) satisfying{

⟨ξn, u0 − xn⟩ ∈ -int C(xn)

⟨ζn, u0 − yn⟩ ∈ -int C(yn)
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Then the (SGVVI) has a solution in K.

Proof. For each n ∈ N, let Kn = K ∩ B(θ, n), where B(θ, n) is the closed ball
with center at θ and radius n. Hence, from Theorem 3.1, we note that there exists
(xn, yn) ∈ Kn × Kn such that for each z ∈ Kn there exists ξn ∈ S(yn, xn) and
ζn ∈ T (xn, yn) satisfying {

⟨ξn, z − xn⟩ /∈ -int C(xn)

⟨ζn, z − yn⟩ /∈ -int C(yn).

By Lemma 2.5, for all φn ∈ S(yn, z) and ϕn ∈ T (xn, z), we have{
⟨φn, z − xn⟩ /∈ -int C(xn)

⟨ϕn, z − yn⟩ /∈ -int C(yn).

By conditin (iii), we know that {(xn, yn)} is bounded. If not, without loss of gen-
erality, we assume that (xn, yn) −→ ∞. Thus for z = u0, φn ∈ S(yn, u0) and
ϕn ∈ T (xn, u0), we have {

⟨φn, u0 − xn⟩ /∈ -int C(xn)

⟨ϕn, u0 − yn⟩ /∈ -int C(yn).

This is a contradiction according to condition (iii). Thus {(xn, yn)} is bounded.
Without loss of generality, we assume that (xn, yn) −→w (x0, y0). We shall show
that (x0, y0) is the solution of the (SGVVI). Consider, for each z ∈ K and each
ξ ∈ S(y0, z) and ζn ∈ T (x0, z), it follow from the lower semi-continuity of S(·, z)
and T (·, z) that there exist ξn ∈ S(yn, z) and ζ ∈ T (xn, z) such that ξn −→ ξ and
ζn −→ ζ satisfying {

⟨ξn, z − xn⟩ /∈ -int C(xn)

⟨ζn, z − yn⟩ /∈ -int C(yn).

Now, letting n −→ ∞, we have

⟨ξn, z − xn⟩ −→w ⟨ξ, z − x0⟩

and

⟨ζn, z − yn⟩ −→w ⟨ζ, z − y0⟩.
By the weak closedness of W , we obtain

⟨ξ, z − x0⟩ /∈ -int C(x0)

and

⟨ζ, z − y0⟩ /∈ -int C(y0).

Using Lemma 2.5 again, we note that, for each z ∈ K, there exist ξ0 ∈ S(y0, x0)
and ζ0 ∈ T (x0, y0) satisfying{

⟨ξ0, z − x0⟩ /∈ -int C(x0)

⟨ζ0, z − y0⟩ /∈ -int C(y0).

This complete the proof. �
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Corollary 3.4. Let X be a real reflexive Banach space, Y a Banach space, K a
nonempty unbounded closed convex subset of E. Suppose that the mapping C :
K −→ 2Y is cone mapping and the mapping W : K −→ 2Y defined by W (x) =
F \ −intC(x) is weakly closed and λW (x) + (1− λ)W (y) ⊂ W (λx+ (1− λ)y). Let
S, T : K ×K −→ L(X,Y ) satisfies the following conditions:

(1) S, T are semi-monotone mapping on K;

(2) for each u ∈ K, the mappings S(u, ·) : K −→ 2L(X,Y ) and T (u, ·) : K −→
2L(X,Y ) are continuous on each finite dimensional subspace of X;

(3) there exists u0 ∈ K such that if (xn, yn) ∈ K × K with (xn, yn) −→ ∞ as
n −→ ∞, then for each n large enough it holds that ∃ξn ∈ S(yn, u0) and
ζn ∈ T (xn, u0) satisfying{

⟨ξn, u0 − xn⟩ ∈ -int C(xn)

⟨ζn, u0 − yn⟩ ∈ -int C(yn)

Then the (SGVVI) has a solution in K.
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