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SCHUADER’S CONJECTURE ON CONVEX METRIC SPACES

T. BUTSAN, S. DHOMPONGSA∗, AND W. FUPINWONG

Abstract. We first prove that the Schauder’s conjecture holds for convex metric
spaces, thus compact convex subsets of a CAT(0) space have the fixed point
property for continuous mappings. We then obtain a continuous selection of a
lower semi-continuous mapping with compact convex values defined on a compact
convex subset of a convex metric space. Consequently, the Kakutani fixed point
theorem is extended to a convex metric space.

1. Introduction

In this paper we mainly work on continuous selections, fixed points of single
valued and multi-valued continuous mappings in metric spaces. One of the most
famous results on selections known as Michael selection [11] states that:

Michael selection Let X be a Banach space and E a paracompact topological
space. If T : E → 2X\∅ is a lower semi-continuous mapping with closed convex
values. Then T has a continuous selection, i.e. there exists a continuous mapping
t : E → X such that tx ∈ Tx, for each x ∈ E.

Various attempts had been made to modify or generalize this theorem. Examples
of such results can be found in Park [14, 15] and referrences theirin. We want to
point out one interesting observation from Yost [21] in which it had been shown
that Lipschitz version of Michael selection was not possible, except for some finite
dimensional cases.

One of the most resistant open problems in the theory of nonlocally convex linear
metric spaces is:

Schauder’s Conjecture Let E be a compact convex subset in a topological vector
space. Then a continuous mapping f : E → E has a fixed point.

In [13] Nhu and Tri had shown that all Roberts spaces have fixed point property.
We say that a metric space has the fixed point property for continuous mappings on
compact convex sets if every continuous mapping from its compact convex subset
into itself has a fixed point. In [12], Nhu continued his research toward the problem
by introducing the notion of weak admissibility and proved that weakly admissible
convex compact subsets have the fixed point property. Chen [3] solved this problem
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for convex continuous mappings. The problem was still open until 2001 when R.
Cauty [2] finally gave to it an affirmative answer:

Theorem 1.1 ([2]). Let E be an arbitrary convex subset of a topological vector
space, every continuous mapping f : E → E such that f(E) is contained in a
compact subset of E (i.e. every relatively compact mapping f : E → E) has the
fixed point property.

For multi-valued mappings, we have:

Kakutani Fixed Point Theorem Let E be a nonempty compact convex subset
of Rn, and T : E → 2E\∅ be an upper semi-continuous mapping with compact
convex values. Then T has a fixed point, i.e., a point x such that x ∈ Tx.

This theorem has been generalized to locally convex spaces by many authors to
various types of mappings. See, e.g., Tychonoff [20], Brower [1], Fan [6], Glicksberg
[7], Himelberg [8], Riech [16], [17].

Observe that the condition on the compactness of the domains of continuous
mappings in the Schauder fixed point theorem can not be dropped. Indeed, this
is the case even we consider only for Lipschitz mappings as shown in the following
results (see also [4]):

Theorem 1.2 ([10] ). A convex set in a Banach space has the fixed point property
for Lipschitz mappings if and only if it is compact.

In this paper, we extend the Schauder fixed point theorem and the Kakutani
fixed point theorem to the metric space setting.

2. Preliminaries and definitions

Let X be a topological space, E be a nonempty subset of X. A multi-valued
mapping T : E → 2X\∅ is said to be upper semi-continuous at x0 ∈ E if for each
neighborhood U of T (x0), there exists a neighborhood V of x0 such that T (x) ⊂ U
for each x ∈ V, lower semi-continuous at x0 ∈ E if for each open set U such that
U ∩ T (x0) ̸= ∅, there exists a neighborhood V of x0 such that U ∩ T (x) ̸= ∅ for
each x ∈ V. T is continuous at x0 ∈ E if T is upper and lower semi-continuous at
x0. And T is upper semi-continuous, lower semi-continuous, and continuous on E
if T is upper semi-continuous, lower semi-continuous, and continuous at each point
of E, respectively. A mapping t : E → X is called a selection of the mapping T if
tx ∈ Tx, for each x ∈ E. And a selection t is said to be a continuous selection if it
is continuous.

An equivalence statement of being upper semi-continuous of a mapping T is that
the mapping has a closed graph, i.e., for each sequence {xn} converging to x, for
each yn ∈ Txn with yn → y, one has y ∈ Tx.

If E is a nonempty subset of a metric space (X, d), x ∈ X, we shall denote
by d(x,E) = infa∈E d(x, a) the distance from the point x to the subset E, and
diam(E) = supa,b∈E d(a, b) the diameter of E. If E is the closure of E, we can see

that d(x,E) = d(x,E), and diam(E) = diam(E). Moreover, if E is compact, then
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there exists a ∈ E such that d(x, a) = d(x,E). Write B(x, ϵ) for the closed ball
centered at x with radius ϵ.

Following Kirk [9], we suppose (X, d) is a metric space containing a family L of
metric segments such that (a) each two points x,y in X are endpoints of exactly one
member [x, y] of L and (b) if p, x, y ∈ X and if m ∈ [x, y] satisfies d(x,m) = αd(x, y)
for α ∈ [0, 1], then

(2.1) d(p,m) ≤ (1− α)d(p, x) + αd(p, y).

Spaces of this type are said to be of hyperbolic type. Takahashi [19] called these
spaces convex metric spaces, and for convenience, we shall follow his terminology
throughout the rest of this paper. CAT(0) spaces as well as normed linear spaces
and hyperconvex metric spaces are convex metric spaces. A subset of X is said to
be convex if every segment in L joining two points in the set entirely lies in the set.

3. Main results

3.1. Schauder’s conjecture for convex metric spaces. In this section we ob-
tain the fixed point property for continuous mappings on compact convex subsets
of a convex metric space. We introduce some more terminologies.

If α+β = 1, α, β ∈ [0, 1], and x, y ∈ X, we shall denote by αx⊕βy the element m
in [x, y] ∈ L such that d(x,m) = βd(x, y) and d(y,m) = αd(x, y). Let {a1, . . . , aq}
be a subset of X. For 2 ≤ n ≤ q, if

∑n
i=1 αin = 1, αin ∈ [0, 1], we write

⊕n
i=1αinai = (1− αnn)

( α1n

1− αnn
a1 ⊕

α2n

1− αnn
a2 ⊕ · · · ⊕

α(n−1)n

1− αnn
an−1

)
⊕ αnnan

=: (1− αnn)k
n
n ⊕ αnnan(3.1)

as long as αnn ̸= 1.
Thus, for examples,

α12a1 ⊕ α22a2 is a point in the segment [a1, a2] and

α13a1 ⊕ α23a2 ⊕ α33a3 = (α13 + α23)
( α13

(α13 + α23)
a1 ⊕

α23

(α13 + α23)
a2

)
⊕ α33a3.

The defition of ⊕ in (3.1) is an ordered one in the sense that it depends on the order
of points a1, . . . , aq. We can see that if A is a convex subset of X and ai ∈ A, for
each i ∈ {1, 2, . . . , n}, then ⊕n

i=1αiai ∈ A. Moreover, from relation (2.1), we have

(3.2) d(⊕n
i=1αiai, x) ≤

n∑
i=1

αid(ai, x),

for each x ∈ X.
We need the operation ⊕ to satisfy the following condition:

(3.3)
If {αn} is a sequence in [0, 1] and {xn} is a sequence in X such that αn → α,
xn → x, for some α ∈ [0, 1] and x ∈ X, then αnxn⊕(1−αn)y → αx⊕(1−α)y,
for each y ∈ X.
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From its definition in terms of comparison triangles, we can see that the operation
⊕ on CAT(0) spaces satisfies condition(3.3).

For any metric space (X, d), there defines a natural embedding i : X → l∞(X) by
i(x) = (d(x, y)− d(x0, y))y∈X , where x0 ∈ X is fixed. Thus X can be isometrically
embedded into the space l∞(X) under supremum norm ∥·∥∞. For each finite subset
{v1, . . . , vi} of X, write

co⟨v1, . . . , vi⟩ =
{
⊕i

j=1 αjvj : {α1, α2, . . . , αi} ⊂ [0, 1],
i∑

j=1

αj = 1
}

as a subset of X, and

co(v1, . . . , vi) =
{ i∑

j=1

αjvj : {α1, α2, . . . , αi} ⊂ [0, 1],

i∑
j=1

αj = 1
}

as a subset of l∞(X).
Define a mapping

β : co(v1, . . . , vi) → co⟨v1, . . . , vi⟩
by

(3.4) β
( i∑

j=1

αjvj

)
= ⊕i

j=1αjvj .

By condition(3.3), it can be shown that β is continuous.

Theorem 3.1. Let E be a compact convex subset of a convex metric space X. Then
E has the fixed point property for continuous mappings.

Proof. Since E and i(E) are isometric, it suffices to prove that i(E) has the fixed
point property for continuous mappings. Let t : i(E) → i(E) be continuous and
let λ > 0. Since i(E) is compact, there exists a finite subset {a1, a2, . . . , ap} of
i(E) such that i(E) ⊂

∪p
i=1B(ai, λ/8). Consider the convexhull co(a1, . . . , ap). At

each point ai (latter will be called a vertex), draw a ball centered at ai with ra-
dius λ/4. Color each of these balls in red. Draw segments (later will be called
edges) of the form [ai, aj ] whenever d(ai, aj) ≤ λ/2, and color these edges in red.
Moreover, if the convexhull co(ai1, . . . , aij) (later called a red subface) for some
aik ∈ {a1, a2, . . . , ap}, k = 1, . . . , j, has all edges colored in red, we color the con-
vexhull in red as well. Denote such the maximal convexhull by C(A), where A
is some set of vertices, and call it a component generated by A. Clearly, its di-
ameter is at most λ/4 + λ/2 + λ/4 = λ. Let {C(A1), . . . , C(Aq)} be all distinct
components where Ai ⊂ {a1, . . . , ap} for each i = 1, . . . , q. Denote the set of points

of intersection of edges and faces of C(Ai) and C(Aj) by {b1ij , . . . , b
kij
ij } if it ex-

ists. Thus {b1ij , . . . , b
kij
ij } is exactly the points of intersection of edges and faces of

co(Ai) and co(Aj). On each co(Ai) = co(v1, . . . , vm), each point of intersection bij
lies on the boundary (with respect to the topological subspace co(a1, . . . , ap)) of
co(Ai). We can define a continuous function α from co(a1, ..., ap) onto itself such
that the restriction on

∪q
i=1C(Ai) is a retraction onto the union

∪q
i=1 co(Ai). So
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α sends each ball B(ai, λ/4) into itself. For examples, an isolated ball B(ai, λ/4)
(i.e., B(ai, λ/4) ∩ B(aj , λ/4) = ∅ for all j ̸= i) is sent to its center, and an isolated
component C(Ai) (i.e., C(Ai)∩C(Aj) = ∅ for all j ̸= i) is sent to co(Ai). Thus, we
observe that

(3.5) d(x, αx) ≤ λ/4 for each point x in the red region.

This follows from the fact that each point x in the ball B(a, λ/4) satisfies d(x, a) ≤
λ/4. We are going to map each point x in set co(A) to βx in i(E) so that d(x, βx)
is sufficiently small. Triangulate

∪q
i=1 co(Ai) by induction on i using all vertices

{a1, . . . , ap}. Then extend this set of simplices to obtain a complete triangulation
{△1, . . . ,△r} of co(a1, . . . , ap). Order the vertices of co(A1), . . . , co(Aq) in such a
the way that the order of the vertices of faces of △j common to the ones of △i for
j < i are unchanged. This can be easily done by induction. If bij =

∑
αkvik lies in

a face co(vi1 , . . . , vim) of △i, put bij = ⊕αkvik . Thus ai = ai for each i. Note by

(3.2) that d(vk0 , bij) ≤ λ/2 for each k0 ∈ {i1, . . . , im}. Therefore, for bij and bik in
a face of △i, we have

(3.6) d(bij , bik) ≤ d(bij , vk0) + d(vk0 , bik) ≤ λ/2 + λ/2 = λ,

where vk0 is a vertex of △i.
Refine the triangulation {△1, . . . ,△r} of co(a1, . . . , aq) by using intersection points
bij ’s appearing in each simplex in {△1, . . . ,△r}. Let {△1, . . . ,△s} be a complete
triangulation of co(a1, . . . , aq) using all vertices {a1, . . . , aq} and all bij ’s.

Define a mapping β on co(a1, . . . , ap) so that the restriction of β over △i =
co(vi1, . . . , vini) is the mapping defined by

(3.7) β
( ni∑

j=1

αjvij

)
= ⊕ni

j=1αjvij .

As above, we can show that β is continuous. Moreover,

(3.8) d(x, βx) ≤ 3λ/2 for each x that lies in

q∪
i=1

co(Ai).

To verify (3.8), we let x ∈ △j ⊂ co(Ai) for some i and j. Let x =
∑
αkuik , where

for each k, uik is a vertex in Ai = {vi1, . . . , vini} or a point of intersection bij lying
in a face △j . Thus (3.6) implies that

d(x, βx) ≤ d(x, uik0 ) +
∑
k

αkd(uik0 , uik)

≤ λ/2 + λ = 3λ/2.

Let π : i(E) → co(a1, . . . , ap) be the mapping defined by π(x) = co({y ∈
co(a1, . . . , ap) ∩ i(E) : d(x, y) = d(x, co(a1, . . . , ap) ∩ i(E))}). Note by the com-
pactness of co(a1, . . . , ap) ∩i(E) that π(x) ̸= ∅. Note also that d(x, y) ≤ λ/8
for all y ∈ π(x). Clearly, π(x) is compact and convex and π(x) = {x} for x ∈
co(a1, . . . , ap) ∩ i(E). Using the fact that each neighborhood of π(x) contains a
neighborhood of the form Nϵ(π(x)) :=

∪
y∈π(x)B(y, ϵ), it is straightforward to

show that π is upper semi-continuous. For each x ∈ i(E), π(x) lies in the red
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region. For suppose x ∈ B(ai, λ/8) for some i and for each y ∈ π(x), we have
d(x, y) ≤ d(x, ai) ≤ λ/8 and hence d(ai, y) ≤ d(ai, x) + d(x, y) ≤ λ/8 + λ/8 = λ/4.
Therefore π(x) ⊂ B(ai, λ/4) which is a part of the red region.

Now the mapping πtβα is upper semi-continuous on co(a1, . . . , ap) and has com-
pact convex values. Kakutani fixed point theorem then guarantees that x ∈ πtβαx
for some x. Since tβαx ∈ i(E), so πtβαx lies in the red region and hence x lies in
the red region.

Now, by (3.5) and (3.8), d(tβαx, βαx) ≤ d(tβαx, x) + d(x, αx) + d(αx, βαx) ≤
λ/8+λ/4+3λ/2 = 15λ/8. Finally, as λ is arbitary and E is compact, t has a fixed
point. �

For R-trees, and for nonexpansive mappings, the domain of a continuous mapping
can only assume to be closed and convex. For example, Espinola and Kirk [5] had
shown that:

Theorem 3.2 ([5]). Let (X, d) be a complete R-tree, and suppose E is a closed
convex subset of X which does not contain a geodesic ray. Then every commuting
family ℑ of nonexpansive mappings of E → E has a nonempty common fixed point
set.

This result was extended by Shahzad [18] by proving that:

Theorem 3.3 ([18]). Let X be a nonempty geodesically bounded closed convex subset
of a complete R-tree. ℑ a commuting family of nonexpansive self-mappings of X,
and T : X → 2X almost lower semi-continuous, where for any x ∈ X, Tx is
nonempty closed bounded and convex. If ℑ and T commute weakly, then there
exists an element z ∈ X such that z = t(z) ∈ T (z) for all t ∈ ℑ.

As a corollary of Theorem 3.1 we autometically have the following result:

Corollary 3.4. Compact convex subsets of a CAT(0) space have the fixed point
property for continuous mappings.

3.2. Continuous selections. The following known result plays a major role in the
proof of our main result in this section:

Lemma 3.5. Let X be a metric space and ψ : X → R be an upper semi-continuous
mapping. Then there exits a decreasing sequence of continuous mappings {ϕn}
conveinges pointwise to ψ.

Remark 3.6. It is easy to see that if |ψ| < M on a compact subset of X, then
|ϕn| < M on that set for all large n.

We now present a continuous selection theorem for mappings which are lower
semi-continuous:

Theorem 3.7. Let E be a nonempty compact convex subset of a convex metric
space (X, d), and T : E → 2E\∅ be a lower semi-continuous mapping with compact
convex values. Then there exists a continuous function t : E → E such that tx ∈ Tx,
for each x ∈ E.
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Proof. Given ε > 0. Since E is compact, so there exists a finite subset {z1, z2, . . . , zN}
of E such that

(3.9) E ⊂ ∪N
i=1B(zi, ε/4).

Define ψ1i(x) = d(zi, Tx) for x ∈ E and for i = 1, . . . , N . Since T is lower
semi-continuous, it is easy to see that ψ1i is an upper semi-continuous mapping.

Observe that the set E1i := {x ∈ E : ψ1i(x) < ε} is open, and it is seen by
(3.9) that E = ∪N

i=1E1i. Writing E1i as a union of open balls in E we see by the
compactness of E that E ⊂ ∪M

j=1B(w1j , r1j) = ∪∞
n=1 ∪M

j=1 B(w1j , r1j − 1/n). Again

by compactness, E ⊂ ∪M
j=1B(w1j , r1j − 1/n0) = ∪N

i=1F1i , for some n0, where F1i is
closed in X and F1i∩E ⊂ E1i. Remark 3.6 provides us the existence of a continuous
mapping φ1 satisfying φ1 ≥ ψ11 and φ1 < ε on F11 ∩ E.

Define S1x = B(z1, φ1(x) + ε) ∩ Tx. Notice that S1x is compact and convex for
each x. We now show that S1 is lower semi-continuous.

Let {xn} be a sequence in E converging to some x ∈ E. Let y ∈ S1x and choose
ωn ∈ Txn such that d(y, Txn) = d(y, ωn) for each n. Since Tx is convex, we
may assume that d(z1, y) < φ1(x) + ε. Since T is lower semi-continuous, and since
ωn −→ y, we have d(z1, ωn) ≤ φ1(x) + ε for all large n. Consequencely ωn ∈ S1xn
for all large n. Thus for those n, d(y, S1xn) ≤ d(y, ωn), and d(y, S1xn) −→ 0 as
desired.

Consider a closed set E2 := {x ∈ E : φ1(x) ≥ ε}. Note that

(3.10) E2 ⊂ ∪N
i=2{x ∈ E : ψ1i(x) < ε}.

The validity of (3.10) follows from the observation that E1i = ∪N
j=1(F1j∩E1i). Define

upper semi-continuous mappings ψ2i(x) = d(zi, S1x) for x ∈ E and for i = 2, . . . , N .
The sets E2i := {x ∈ E : ψ2i(x) < ε} is open for each i = 2, . . . , N. Moreover,
E2 = ∪N

i=2E2i. To see this, let x ∈ E2. By (3.10) we see that ψ1i(x) < ε, for some
i = 2, . . . , N. If for this i, ψ2i(x) ≥ ε, then B(zi, ε) ∩ Tx ∩ B(z1, φ1(x) + ε)c ̸= ∅.
Therefore by (3.9) and by convexity of Tx there must be some j ̸= i such that
ψ2j(x) < ε, i.e., x ∈ E2j . Since E2 is compact, the above argument garuantees that
E2 ⊂ ∪N

i=2F2i , where F2i is closed in X and F2i ∩ E ⊂ E2i. Choose a continuous
mapping φ2 such that φ2 ≥ ψ22 and φ2 < ϵ on F22 ∩ E.

Then define S2x = B(z2, φ2(x) + ϵ) ∩ S1x. Observe that S2x is compact and
convex for each x and S2 is lower semi-continuous.

By induction, we can define mappings Si, i = 1, . . . , N, such that

Tx =: S0x ⊃ S1x ⊃ S2x ⊃ · · · ⊃ SNx,

for each x ∈ E.
Write Tε = SN . Since for each x ∈ E, if φi(x) < ε, then Tεx ⊂ Six ⊂ B(zi, φi(x)+

ε) ⊂ B(zi, 2ε). Therefore diam(Tεx) ≤ 4ε, for each x ∈ E.
Taking ε = 1/n and write Tn for T1/n so that Tnx ⊂ Tn−1x for all n and x. Since

diam(Tnx) ≤ 4/n, ∩nTnx = {tx} is a singleton for each x.
Define t : E → 2E\∅ by x 7→ tx. Clearly tx ∈ Tx for each x ∈ E. It remains to

show that t is continuous. Let ε > 0 and let {xn} be a sequence in E with xn → x0
for some x0 ∈ E. Choose n0 ∈ N so that 8/n < ε. Since tx0 ∈ Tn0x0 and Tn0 is
lower semi-continuous, there exists n1 ∈ N such that d(tx0, Tn0xn) < ε/2, for each
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n ≥ n1. Let {an} be in X such that an ∈ Tn0xn, and

d(tx0, an) = d(tx0, Tn0xn),

for each n ∈ N. Hence
d(tx0, txn) ≤ d(tx0, an) + d(an, txn)

≤ d(tx0, Tn0xn) + diam(Tn0xn)

< ε/2 + ε/2 = ε,

for each n ≥ n1. Thus txn → tx0. So we conclude that t is continuous. �
It is a common argument showing that an upper semi-continuous mapping can

be approximated by lower semi-continuous mappings. Theorem 3.7 and Theorem
3.1 combine give us the Kakutani fixed point theorem on CAT(0) spaces:

Corollary 3.8. Let E be a nonempty compact convex subset of a CAT(0) space
X. Let T : E → 2X\∅ be an upper semi-continuous mapping with compact convex
values. Then T has a fixed point.
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