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Abstract. In the paper, we investigate some properties of nonlinear scalarizing
functions for sets introduced by Kuwano, Tanaka, Yamada (2009) and prove four
kinds of set-valued Ky Fan minimax inequality.

1. Introduction

Ky Fan minimax inequality in [1] is one of the important results in convex analysis
as well as nonlinear analysis and it has many applications in those area. Recently,
Georgiev and Tanaka [2, 3] generalize an equivalent form of scalar Ky Fan minimax
inequality into set-valued four cases by using two types of nonlinear scalarizing
functions for sets which are extensions of sublinear scalarizing functions for vectors
used in [4]. The aim of this paper is to prove four kinds of set-valued Ky Fan
minimax inequality as close to original as possible by using recent scalarizing method
for sets.

In [14], Nishizawa, Tanaka and Georgiev introduce four types of nonlinear scalar-
izing functions for sets containing the above two scalarizing functions for sets, and
observe sevaral properties of those scalarizing functions. Moreover, in [16], Shimizu,
Nishizawa, and Tanaka obtain several optimality conditions for set-valued optimiza-
tion problems via these four types of nonlinear scalarizing functions. On the other
hand, Hamel and Löhne [7] define different types of scalarizing functions for sets,
which evaluate a nonempty set as a real number or ±∞ by a certain comparison
with a given reference set along a given direction based on set-relations introduced
in [10]. By using these functions, they show generalized results on Ekeland’s vari-
ational principle in an abstract space like topological vector space without such
strong assumption as convexity. Moreover, a modified scalarizing function proposed
in [17] gives a similar result to a minimal element theorem in [7] under different as-
sumptions. Hernández and Maŕın [8] show two existence theorems of solutions for
set-valued optimization problems by using these scalarizing functions.

Based on the approach of Hamel and Löhne, and on six kinds of set-relation
introduced in [10], we propose twelve types of scalarizing functions for sets in [11].
These functions can be regarded as extensions of the four functions in [14] and Hamel
and Löhne type functions in [7], and so we call them unified types of scalarizing
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functions for sets. In addition, in [11, 12], we propose the concavity of set-valued
maps and characterize unified types of scalarizing functions. In this paper, we show
several properties of those functions, which are used in order to apply the scalar Ky
Fan minimax inequality in Section 4.

The organization of the paper is as follows. In Section 2, we introduce some basic
concepts in set-relations. Also, we introduce definitions of convexity and continuity
for set-valued maps. In Section 3, we introduce the definitions of unified types of
scalarizing functions for sets, and investigate some properties of them. In Section 4,
we show four kinds of set-valued Ky Fan minimax inequality.

2. Mathematical preliminaries

Throughout the paper, X and Y are a real topological vector space and a Eu-
clidean space, that is, a finite dimensional real topological vector space, respectively.
We assume that C is a proper closed convex cone in Y (that is, C 6= Y , C + C = C
and λC ⊂ C for all λ ≥ 0) with nonempty topological interior. We define a partial
ordering ≤C on Y as follows:

x ≤C y if y − x ∈ C for x, y ∈ Y.

Let F be a set-valued map from S ⊂ X into 2Y where S := {x ∈ X|F (x) 6= ∅} and
assume that S is a convex set. For A ∈ 2Y \ {∅}, we denote the topological interior,
topological closure, complement of A by intA, clA, Ac, respectively. Also, we denote
the algebraic sum, algebraic difference of A and B in Y by A + B := {a + b|a ∈
A, b ∈ B}, A−B := {a− b|a ∈ A, b ∈ B}, respectively. In addition, we denote the
composite function of two functions f and g by g◦f . When x ≤C y for x, y ∈ Y , we
define the order interval between x and y by [x, y] := {z ∈ Y |x ≤C z and z ≤C y}.
When we choose k ∈ intC, we can construct an order interval [−k, k] as an open
neighborhood of the origin θ (the zero vector) of Y , but it is not always an absorbing
set in an infinite dimensional space. This is one of the reasons why the dimension
of Y is finite.

At first, we review some basic concepts of set-relation.

Definition 2.1 ([10]). For any A,B ∈ 2Y \ {∅} and convex cone C in Y , we write

A ≤(1)
C B by A ⊂ ⋂

b∈B(b− C), equivalently B ⊂ ⋂
a∈A(a + C),

A ≤(2)
C B by A ∩ (⋂

b∈B(b− C)
) 6= ∅,

A ≤(3)
C B by B ⊂ (A + C),

A ≤(4)
C B by

(⋂
a∈A(a + C)

) ∩B 6= ∅,
A ≤(5)

C B by A ⊂ (B − C),
A ≤(6)

C B by A ∩ (B − C) 6= ∅, equivalently (A + C) ∩B 6= ∅.
Proposition 2.2 ([10]). For any A,B ∈ 2Y \ {∅}, the following statements hold:

A ≤(1)
C B implies A ≤(2)

C B, A ≤(1)
C B implies A ≤(4)

C B,

A ≤(2)
C B implies A ≤(3)

C B, A ≤(4)
C B implies A ≤(5)

C B,

A ≤(3)
C B implies A ≤(6)

C B, A ≤(5)
C B implies A ≤(6)

C B.
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Proposition 2.3 ([11]). For any A,B ∈ 2Y \ {∅}, the following statements hold:

(1) For each j = 1, . . . , 6,
A ≤(j)

C B implies (A + y) ≤(j)
C (B + y) for y ∈ Y , and

A ≤(j)
C B implies αA ≤(j)

C αB for α ≥ 0.
(2) For each j = 1, . . . , 5, ≤(j)

C is transitive.
(3) For each j = 3, 5, 6, ≤(j)

C is reflexive.

Let us recall some definitions of C-notions ([13]). A subset A of Y is said to be
C-convex (resp., C-closed) if A+C is convex (resp., closed); C-proper if A+C 6= Y .
Moreover, A is called C-bounded if for each neighborhood U of the zero vector in Y
there exists t ≥ 0 such that A ⊂ tU + C. Furthermore, we say that F is C-notion
on S if F (x) has the property C-notion for every x ∈ S.

Next, we introduce several definitions of cone-convexity and cone-continuity for
set-valued maps. These notions are used in Sections 3 and 4.

Definition 2.4 ([11]). For each j = 1, . . . , 5,

(1) F is called a type (j) naturally quasi C-convex function if for each x, y ∈ S
and λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

F (λx + (1− λ)y) ≤(j)
C µF (x) + (1− µ)F (y).

(2) F is called a type (j) naturally quasi C-concave function if for each x, y ∈ S
and λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

µF (x) + (1− µ)F (y) ≤(j)
C F (λx + (1− λ)y).

Definition 2.5 ([11]). For each j = 1, . . . , 5,

(1) F is called a type (j) properly quasi C-convex function if for each x, y ∈ S
and λ ∈ (0, 1),

F (λx + (1− λ)y) ≤(j)
C F (x) or F (λx + (1− λ)y) ≤(j)

C F (y).

(2) F is called a type (j) properly quasi C-concave function if for each x, y ∈ S
and λ ∈ (0, 1),

F (x) ≤(j)
C F (λx + (1− λ)y) or F (y) ≤(j)

C F (λx + (1− λ)y).

Definition 2.6 ([13]). Let x ∈ S. Then,

(1) F is called C-lower continuous at x if for every open set V with F (x)∩V 6= ∅,
there exists an open neighborhood U of x such that F (y)∩ (V + C) 6= ∅ for
all y ∈ U . We shall say that F is C-lower continuous on S if it is C-lower
continuous at every point x ∈ S,

(2) F is called C-upper continuous at x if for every open set V with F (x) ⊂ V ,
there exists an open neighborhood U of x such that F (y) ⊂ V + C for all
y ∈ U . We shall say that F is C-upper continuous on S if it is C-upper
continuous at every point x ∈ S.
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3. Unified scalarization for sets

In [11], we propose the following nonlinear scalarizing functions for sets. Let
V, V ′ ∈ 2Y \ {∅} and direction k ∈ intC. For each j = 1, . . . , 6, I

(j)
k,V ′ : 2Y \ {∅} →

R ∪ {±∞} and S
(j)
k,V ′ : 2Y \ {∅} → R ∪ {±∞} are defined by

I
(j)
k,V ′(V ) := inf

{
t ∈ R

∣∣∣ V ≤(j)
C (tk + V ′)

}
,

S
(j)
k,V ′(V ) := sup

{
t ∈ R

∣∣∣ (tk + V ′) ≤(j)
C V

}
,

respectively. They are regarded as extensions of scalarizing functions for vectors
and for sets. The original idea on the sublinear scalarization for vectors was dealt
by Krasnosel’skij [9] in 1962 and by Rubinov [15] in 1977, and then it was applied to
vector optimization with its concrete definition by Tammer (Gerstewitz) [5] in 1983,
and to separation theorems for not necessary convex sets by Tammer (Gerstewitz)
and Iwanow [6] in 1985. In recent years, several scalarization ideas for sets are
proposed in [14, 7, 17], and all of them are special cases of unified types of scalarizing
functions above.

Proposition 3.1 ([11]). Let A,B, V, V ′ ∈ 2Y \ {∅} and k ∈ intC. Then, the
following statements hold:

(1) For each j = 1, . . . , 6,

V ≤(j)
C (tk + V ′) implies V ≤(j)

C (sk + V ′) for any s ≥ t,

(tk + V ′) ≤(j)
C V implies (sk + V ′) ≤(j)

C V for any s ≤ t.

(2) For each j = 1, . . . , 6 and α ∈ R,

I
(j)
k,V ′(V + αk) = I

(j)
k,V ′(V ) + α,

S
(j)
k,V ′(V + αk) = S

(j)
k,V ′(V ) + α.

(3) For each j = 1, . . . , 5,

A ≤(j)
C B implies I

(j)
k,V ′(A) ≤ I

(j)
k,V ′(B) and S

(j)
k,V ′(A) ≤ S

(j)
k,V ′(B).

Proposition 3.2. Let A ∈ 2Y \ {∅}. Then, the following statements hold:
(1) For any k ∈ intC and V ′ ∈ 2Y \ {∅},

I
(6)
k,V ′(A) ≤ I

(3)
k,V ′(A) ≤ I

(2)
k,V ′(A) ≤ I

(1)
k,V ′(A),

(2) For any k ∈ intC and V ′ ∈ 2Y \ {∅},
I

(6)
k,V ′(A) ≤ I

(5)
k,V ′(A) ≤ I

(4)
k,V ′(A) ≤ I

(1)
k,V ′(A).

Proof. Let t1 := I
(1)
k,V ′(A) and assume that t1 < I

(2)
k,V ′(A). Then, there exists ε > 0

such that
t1 < t1 + ε < I

(2)
k,V ′(A) and A ≤(1)

C (t1 + ε)k + V ′.
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By Proposition 2.2, we obtain A ≤(2)
C (t1 + ε)k+V ′ and then I

(2)
k,V ′(A) ≤ t1 + ε. This

is a contradiction. Hence, we obtain I
(2)
k,V ′(A) ≤ I

(1)
k,V ′(A). Similarly, we can prove

I
(3)
k,V ′(A) ≤ I

(2)
k,V ′(A). Thus, we have

I
(3)
k,V ′(A) ≤ I

(2)
k,V ′(A) ≤ I

(1)
k,V ′(A).

Statement (2) can be proved in the same way. ¤
Proposition 3.3. Let A ∈ 2Y \ {∅}. Then, the following statements hold:

(1) For any k ∈ intC and V ′ ∈ 2Y \ {∅},
S

(1)
k,V ′(A) ≤ S

(2)
k,V ′(A) ≤ S

(3)
k,V ′(A) ≤ S

(6)
k,V ′(A),

(2) For any k ∈ intC and V ′ ∈ 2Y \ {∅},
S

(1)
k,V ′(A) ≤ S

(4)
k,V ′(A) ≤ S

(5)
k,V ′(A) ≤ S

(6)
k,V ′(A).

Proof. We can prove the statements in a similar way to the proof of Proposition 3.2.
¤

Proposition 3.4. Let A, V ′ ∈ 2Y \ {∅} and k ∈ intC. Then, the following state-
ments hold:

(1) If A is (−C)-bounded and V ′ is C-bounded then I
(1)
k,V ′(A) ∈ R.

(2) For each j = 2, 3, if A is C-proper and V ′ is C-bounded then I
(j)
k,V ′(A) ∈ R.

(3) For each j = 4, 5, if A is (−C)-bounded and V ′ is (−C)-proper then I
(j)
k,V ′(A) ∈

R.
(4) If A is C-proper and V ′ is (−C)-bounded then I

(6)
k,V ′(A) ∈ R.

Proof. At first, we prove (1). Assume that A is (−C)-bounded and V ′ is C-bounded.
Then, by the definition of C-boundedness, it is easy to check that there exist ā, v̄ ∈ Y
such that

A ⊂ ā− C and V ′ ⊂ v̄ + C.

Now, we consider the set [−k, k]. Since k ∈ intC, we obtain int([−k, k]) 6= ∅ and
int([−k, k]) contains the zero vector. As a result, int([−k, k]) is absorbing. Let
U := int([−k, k]). Then, there exists t̄ ≥ 0 such that

ā− v̄ ∈ t̄U ⊂ t̄k − C.

Moreover, by the definition of ≤(1)
C and (1) of Proposition 2.3,

A ≤(1)
C {ā} ≤(1)

C {t̄k + v̄} ≤(1)
C t̄k + V ′.

Thus, from (2) of Proposition 2.3 and the definition of I
(1)
k,V ′ , we have

I
(1)
k,V ′(A) ≤ t̄ < ∞.

On the other hand, for any a ∈ A− C, there exists ta ≥ 0 such that

a− v̄ ∈ taU ⊂ −tak + C.

Hence, by (3) of Proposition 3.1 we obtain

(3.1) I
(1)
k,V ′({−tak + v̄}) ≤ I

(1)
k,V ′({a}).
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Furthermore, since U is absorbing, for any v ∈ V ′ there exists tv̄ ≥ 0 such that

v − v̄ ∈ tv̄U ⊂ tv̄k − C.

Therefore, we have v − tv̄k ∈ v̄ − C and so

−tv̄ = I
(3)
k,V ′(−tv̄k + V ′) ≤ I

(3)
k,V ′({−tv̄k + v}) ≤ I

(3)
k,V ′({v̄}).

From (1) of Proposition 3.2, we obtain

(3.2) −tv̄ ≤ I
(3)
k,V ′({v̄}) ≤ I

(1)
k,V ′({v̄}).

By (3.1), (3.2) and (2) of Proposition 3.1,

(3.3) −∞ < −tv̄ − ta ≤ −ta + I
(1)
k,V ′({v̄}) ≤ I

(1)
k,V ′({a}).

Moreover, since a ∈ A− C and C is a convex cone, I
(1)
k,V ′({a}) ≤ I

(1)
k,V ′(A). For this

result and (3.3), we obtain −∞ < I
(1)
k,V ′(A). Consequently, I

(1)
k,V ′(A) ∈ R.

Next, we prove (2). We consider the case of j = 3. Assume that A is C-proper and
V ′ is C-bounded. Since A is C-proper, there exists ā ∈ Y such that ā 6∈ A + C. It
follows from the C-boundedness of V ′ that there exists v̄ ∈ Y such that V ′ ⊂ v̄ +C.
Let U := int([−k, k]). Then, U is an absorbing neighborhood of the zero vector of
Y , and so for any a ∈ A, there exists ta ≥ 0 such that

a− v̄ ∈ taU − C ⊂ tak − C.

Thus, we obtain

tak + V ′ ⊂ tak + v̄ + C ⊂ a + C ⊂ A + C,

and hence I
(3)
k,V ′(A) ≤ ta < ∞. Next, we prove −∞ < I

(3)
k,V ′(A). Since U is absorbing,

for any v ∈ V ′, there exists t̂ ≥ 0 such that

v − ā ∈ t̂U ⊂ t̂k − C.

Thus, we obtain −t̂k + v ∈ ā− C and so
(−t̂k + V ′) ∩ (ā− C) 6= ∅.

For this result and ā 6∈ A+C, it is easy to check that −t̂k +V ′ 6⊂ A+C. Therefore,
we have

−∞ < −t̂ ≤ I
(3)
k,V ′(A).

Consequently, I
(3)
k,V ′(A) ∈ R. The remainder cases of j = 2, (3), and (4) can be

proved similarly. ¤
Proposition 3.5. Let A, V ′ ∈ 2Y \ {∅} and k ∈ intC. Then, the following state-
ments hold:

(1) If A is C-bounded and V ′ is (−C)-bounded then S
(1)
k,V ′(A) ∈ R.

(2) For each j = 2, 3, if A is C-bounded and V ′ is C-proper then S
(j)
k,V ′(A) ∈ R.

(3) For each j = 4, 5, if A is (−C)-proper and V ′ is (−C)-bounded then S
(j)
k,V ′(A) ∈

R.
(4) If A is (−C)-proper and V ′ is C-bounded then S

(6)
k,V ′(A) ∈ R.



UNIFIED SCALARIZATION FOR SETS AND KY FAN’S MINIMAX INEQUALITY 519

Proof. We can prove the statements in a similar way to the proof of Proposition 3.4.
¤

Proposition 3.6. Let A,B, V ′ ∈ 2Y \ {∅}, θ the zero vector of Y , and k ∈ intC.
Then, the following statements hold:

(1) If A and B are C-proper and there is an open neighborhood G of θ such that
A ≤(3)

C B + G then

I
(3)
k,{θ}(A) < I

(3)
k,{θ}(B) and

(2) If A and B are C-bounded and there is an open neighborhood G of θ such
that A ≤(3)

C B + G then

S
(3)
k,{θ}(A) < S

(3)
k,{θ}(B).

(3) If A and B are (−C)-bounded and there is an open neighborhood G of θ

such that A + G ≤(5)
C B then

I
(5)
k,{θ}(A) < I

(5)
k,{θ}(B) and

(4) If A and B are (−C)-proper and there is an open neighborhood G of θ such
that A + G ≤(5)

C B then

S
(5)
k,{θ}(A) < S

(5)
k,{θ}(B).

Proof. We prove statements (1) and (2); the others can be proved in each similar
way. Let tA := I

(3)
k,{θ}(A) and tB := I

(3)
k,{θ}(B). By (2) of Proposition 3.4 and the

definition of tB, for any ε > 0 there exists t(ε) ∈ R such that

tB < t(ε) < tB + ε and B ≤(3)
C t(ε)k,

that is, t(ε)k ∈ B + C. From G is absorbing, there exists t0 > 0 such that −t0k ∈ G
and so we obtain

(t(ε)− t0)k ∈ B + C + G ⊂ A + C,

that is, A ≤(3)
C ((t(ε)− t0) k + {θ}). By the definition of tA, we get tA ≤ t(ε) − t0,

and hence tA < tB + ε− t0. Since ε is an arbitrary positive real number, we obtain
tA ≤ tB − t0 < tB. Consequently, I

(j)
k,{θ}(A) < I

(j)
k,{θ}(B).

Next, let sA := S
(3)
k,{θ}(A) and sB := S

(3)
k,{θ}(B). By (2) of Proposition 3.5 and the

definition of sA, for any ε > 0 there exists s(ε) ∈ R such that

sA − ε < s(ε) ≤ sA and s(ε)k ≤(3)
C A,

that is, A ⊂ s(ε)k+C. From G is absorbing, there exists s0 > 0 such that −s0k ∈ G
and so we obtain

B − s0k ⊂ B + G ⊂ A + C,

Thus we have
B ⊂ A + s0k + C ⊂ (s(ε) + s0) k + C,
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that is, ((s(ε) + s0) k + {θ}) ≤(3)
C B. By the definition of sB, we get s(ε) + s0 ≤ sB,

and hence sA− ε + s0 < sB. Since ε is an arbitrary positive real number, we obtain
sA < sA + s0 ≤ sB. Consequently, S

(3)
k,{θ}(A) < S

(3)
k,{θ}(B). ¤

Next, we introduce inherited properties on cone-convexity and cone-continuity of
set-valued maps. At first, we remark that the unified types of scalarizing functions
have an important merit on the inheritance properties in contrast with the approach
of [14].

Let V ′ ∈ 2Y \ {∅} and direction k ∈ intC. For any set-valued map F : S → 2Y

and for each j = 1, . . . , 6, we consider the following composite functions:

(I(j)
k,V ′ ◦ F )(x) := I

(j)
k,V ′(F (x)), x ∈ S,

(S(j)
k,V ′ ◦ F )(x) := S

(j)
k,V ′(F (x)), x ∈ S.

Then, we can directly discuss inherited properties on cone-convexity and cone-
continuity of parent set-valued map F to I

(j)
k,V ′ ◦ F and S

(j)
k,V ′ ◦ F in an analogous

fashion to linear scalarizing function like linear functional.

Theorem 3.7 ([11]). Let F : S → 2Y , V ′ ∈ 2Y \ {∅}, and k ∈ intC. Then, the
following statements hold:

(1) For each j = 1, 2, 3, if F is type (j) naturally quasi C-convex, then I
(j)
k,V ′ ◦F

is quasi convex.
(2) For each j = 4, 5, if F is type (j) naturally quasi C-convex and V ′ is (−C)-

convex, then I
(j)
k,V ′ ◦ F is quasi convex.

Theorem 3.8 ([11]). Let F : S → 2Y , V ′ ∈ 2Y \ {∅}, and k ∈ intC. Then, the
following statements hold:

(1) For each j = 1, 4, 5, if F is type (j) naturally quasi C-concave, then S
(j)
k,V ′ ◦F

is quasi concave.
(2) For each j = 2, 3, if F is type (j) naturally quasi C-concave and V ′ is

C-convex, then S
(j)
k,V ′ ◦ F is quasi concave.

Theorem 3.9. Let F : S → 2Y , V ′ ∈ 2Y \ {∅}, and k ∈ intC. Then, the following
statements hold:

(1) For each j = 1, . . . , 5, if F is type (j) properly quasi C-convex, then I
(j)
k,V ′ ◦F

and S
(j)
k,V ′ ◦ F are quasi convex.

(2) For each j = 1, . . . , 5, if F is type (j) properly quasi C-concave, then I
(j)
k,V ′◦F

and S
(j)
k,V ′ ◦ F are quasi concave.

Proof. We prove statement (2) only. Assume that F is type (j) properly quasi
C-concave, that is, for every x, y ∈ X and λ ∈ (0, 1),

F (x) ≤(j)
C F (λx + (1− λ)y) or F (y) ≤(j)

C F (λx + (1− λ)y).

Hence, by (3) of Proposition 3.1, we obtain

min{(I(j)
k,V ′ ◦ F )(x), (I(j)

k,V ′ ◦ F )(y)} ≤
(
I

(j)
k,V ′ ◦ F

)
(λx + (1− λ)y),
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and then I
(j)
k,V ′ ◦ F is quasi concave. Similarly, S

(j)
k,V ′ ◦ F is quasi concave and the

proof is completed. ¤

Theorem 3.10 ([18]). Let F : S → 2Y , V ′ ∈ 2Y \ {∅}, and k ∈ intC. Then, the
following statements hold:

(1) For each j = 1, 4, 5, if F is C-lower continuous on S then I
(j)
k,V ′ ◦F is lower

semicontinuous on S. Moreover, if F is (−C)-upper continuous on S then
I

(j)
k,V ′ ◦ F is upper semicontinuous on S.

(2) For each j = 2, 3, 6, if F is (−C)-lower continuous on S then I
(j)
k,V ′ ◦ F is

upper semicontinuous on S. Moreover, if F is C-upper continuous on S

then I
(j)
k,V ′ ◦ F is lower semicontinuous on S.

Theorem 3.11 ([18]). Let F : S → 2Y , V ′ ∈ 2Y \ {∅}, and k ∈ intC. Then, the
following statements hold:

(1) For each j = 4, 5, 6, if F is C-lower continuous on S then S
(j)
k,V ′ ◦F is lower

semicontinuous on S. Moreover, if F is (−C)-upper continuous on S then
S

(j)
k,V ′ ◦ F is upper semicontinuous on S.

(2) For each j = 1, 2, 3, if F is (−C)-lower continuous on S then S
(j)
k,V ′ ◦ F is

upper semicontinuous on S. Moreover, if F is C-upper continuous on S

then S
(j)
k,V ′ ◦ F is lower semicontinuous on S.

4. Set-valued Ky Fan minimax inequality

The following theorem is equivalent to Theorem 1 in [1] of Ky Fan minimax
inequality; this equivalence was proved by Takahashi [19] firstly in 1976.

Theorem 4.1. Let X be a nonempty compact convex subset of a Hausdorff topo-
logical vector space and f : X ×X → R. If f satisfies the following conditions:

(1) for each fixed y ∈ X, f(·, y) is lower semicontinuous,
(2) for each fixed x ∈ X, f(x, ·) is quasi concave,
(3) for all x ∈ X, f(x, x) ≤ 0,

then there exists x̄ ∈ X such that f(x̄, y) ≤ 0 for all y ∈ Y .

Based on the above theorem, we shall show four kinds of Ky Fan minimax in-
equality for set-valued maps by using several results in Section 3.

Lemma 4.2. Let Y be a real topological vector space, C a proper closed convex cone
in Y with intC 6= ∅, k ∈ intC and A, V ′ ∈ 2Y \ {∅}. Assume that r ∈ R. Then the
following statements hold:

(1) If A is C-closed, then

I
(3)
k,V ′(A) ≤ r implies A ≤(3)

C rk + V ′,

(2) If V ′ is (−C)-closed, then

I
(5)
k,V ′(A) ≤ r implies A ≤(5)

C rk + V ′.
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Proof. Firstly, we show statement (1). Assume that A is C-closed, I
(3)
k,V ′(A) ≤ r and

A 6≤(3)
C rk + V ′. Then, there exists v′ ∈ rk + V ′ such that v′ ∈ (A + C)c. Since A is

C-closed, (A + C)c is open. Hence, there exists δ > 0 such that

v′ + δk 6∈ A + C.

Thus, (r + δ)k + V ′ 6⊂ A + C and then

r < r + δ < I
(3)
k,V ′(A).

This contradicts I
(3)
k,V ′(A) ≤ r. Consequently, A ≤(3)

C rk + V ′. Similarly, we can
prove statement (2) and the proof is completed. ¤

Theorem 4.3. Let X be a nonempty compact convex subset of a Hausdorff topolog-
ical vector space, Y a real topological vector space, C a proper closed convex cone in
Y with intC 6= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:

(1) F is (−C)-bounded on X ×X,
(2) for each fixed y ∈ X, F (·, y) is C-lower continuous,
(3) for each fixed x ∈ X, F (x, ·) is type (5) properly quasi C-concave,
(4) for all x ∈ X, F (x, x) ⊂ −C,

then there exists x̄ ∈ X such that F (x̄, y) ⊂ −C for all y ∈ Y .

Proof. For this end, we consider the function
(
I

(5)
k,{θ} ◦ F

)
where k ∈ intC. From

(3) of Proposition 3.4,
(
I

(5)
k,{θ} ◦ F

)
(x, y) ∈ R for any x, y ∈ X. Moreover, by (1)

of Theorem 3.10 and (2) of Theorem 3.9, we obtain

• for each fixed y ∈ X,
(
I

(5)
k,{θ} ◦ F

)
(·, y) is lower semicontinuous,

• for each fixed x ∈ X,
(
I

(5)
k,{θ} ◦ F

)
(x, ·) is quasi concave.

Also, by the definition of I
(5)
k,{θ},

(
I

(5)
k,{θ} ◦ F

)
(x, x) ≤ 0 for all x ∈ X. Hence, we

can apply the result of Theorem 4.1 to
(
I

(5)
k,{θ} ◦ F

)
, that is, there exists x̄ ∈ X such

that
(
I

(5)
k,{θ} ◦ F

)
(x̄, y) ≤ 0 for all y ∈ Y . Clearly, {θ} is (−C)-closed and then from

(2) of Lemma 4.2, we have F (x̄, y) ⊂ −C. ¤

Theorem 4.4. Let X be a nonempty compact convex subset of a Hausdorff topolog-
ical vector space, Y a real topological vector space, C a proper closed convex cone in
Y with intC 6= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:

(1) F is C-proper and C-closed on X ×X,
(2) for each fixed y ∈ X, F (·, y) is C-upper continuous,
(3) for each fixed x ∈ X, F (x, ·) is type (3) properly quasi C-concave,
(4) for all x ∈ X, F (x, x) ∩ (−C) 6= ∅,

then there exists x̄ ∈ X such that F (x̄, y) ∩ (−C) 6= ∅ for all y ∈ Y
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Proof. In a similar way to the proof of Theorem 4.3, by (2) of Theorem 3.10, (2) of
Theorem 3.9 and Theorem 4.1, there exists x̄ ∈ X such that

(
I

(3)
k,{θ} ◦ F

)
(x̄, y) ≤ 0

for all y ∈ Y . By (1) of Lemma 4.2, it is equivalent to {θ} ⊂ F (x̄, y) + C and then
F (x̄, y) ∩ (−C) 6= ∅ for all y ∈ Y . ¤

Theorem 4.5. Let X be a nonempty compact convex subset of a Hausdorff topolog-
ical vector space, Y a real topological vector space, C a proper closed convex cone in
Y with intC 6= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:

(1) F is (−C)-proper on X ×X,
(2) for each fixed y ∈ X, F (·, y) is C-lower continuous,
(3) for each fixed x ∈ X, F (x, ·) is type (5) naturally quasi C-concave,
(4) for all x ∈ X, F (x, x) ∩ intC = ∅,

then there exists x̄ ∈ X such that F (x̄, y) ∩ intC = ∅ for all y ∈ Y .

Proof. In a similar way to the proof of Theorem 4.3, by (1) of Theorem 3.11, (1) of
Theorem 3.8 and Theorem 4.1, there exists x̄ ∈ X such that

(
S

(5)
k,{θ} ◦ F

)
(x̄, y) ≤ 0

for all y ∈ Y . It is equivalent to
(
S

(5)
k,{θ} ◦ F

)
(x̄, y) 6> 0. Hence, by (4) of Proposi-

tion 3.6 we have G 6≤(5)
C F (x̄, y) for any open neighborhood G of the zero vector of

Y . Therefore we get F (x̄, y) ∩ intC = ∅ for all y ∈ Y . ¤

Theorem 4.6. Let X be a nonempty compact convex subset of a Hausdorff topolog-
ical vector space, Y a real topological vector space, C a proper closed convex cone in
Y with intC 6= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:

(1) F is compact-valued on X ×X,
(2) for each fixed y ∈ X, F (·, y) is C-upper continuous,
(3) for each fixed x ∈ X, F (x, ·) is type (3) naturally quasi C-concave,
(4) for all x ∈ X, F (x, x) 6⊂ intC,

then there exists x̄ ∈ X such that F (x̄, y) 6⊂ intC for all y ∈ Y .

Proof. In a similar way to the proof of Theorem 4.3, by (2) of Theorem 3.11, (2) of
Theorem 3.8 and Theorem 4.1, there exists x̄ ∈ X such that

(
S

(3)
k,{θ} ◦ F

)
(x̄, y) ≤ 0

for all y ∈ Y . It is equivalent to
(
S

(3)
k,{θ} ◦ F

)
(x̄, y) 6> 0. Hence, by (2) of Propo-

sition 3.6, we have {θ} 6≤(3)
C F (x̄, y) + G for any open neighborhood G of the zero

vector of Y . Therefore we get F (x̄, y) 6⊂ intC for all y ∈ Y . ¤

Remark 4.7. It is easy to check that if F is a single-valued function into the real
numbers then Theorems 4.3, 4.4, 4.5, and 4.6 are reduced to Theorem 4.1.
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