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A CLASS OF NONLINEAR EIGENVALUE PROBLEMS WITH

FOUR SOLUTIONS

BIAGIO RICCERI

Dedicated to the memory of Ky Fan, a true giant of Mathematics

Abstract. In this paper, we present a class of C1 functionals on reflexive Banach
spaces which possess at least four critical points for a value of a real parameter
from which they depend. Applications to the Neumann problem are also given.

The best way of introducing the main result of this paper is to consider the
Neumann problem

(Pλ)

{
−u′′ + u = λα(t)f(u) in [0,1]

u′(0) = u′(1) = 0

where λ ∈ R and f : R → R, α : [0, 1] → [0,+∞[ are two continuous non-constant
functions.

Also, consider the following two conditions:

(a) there exists σ > 0 and ξ1 ∈
]
− σ√

2
, σ√

2

[
such that

0 <

∫ ξ1

0
f(t)dt = sup

|ξ|≤σ

∫ ξ

0
f(t)dt < sup

ξ∈R

∫ ξ

0
f(t) ;

(b) one has

max

{
lim sup
|ξ|→+∞

∫ ξ
0 f(t)dt

ξ2
, lim sup

ξ→0

∫ ξ
0 f(t)dt

ξ2

}
≤ 0 < sup

ξ∈R

∫ ξ

0
f(t)dt .

Under condition (a), by Theorem 1.1 of [3], problem (Pλ) has at least one solution
for each λ > 0. On the other hand, if condition (b) is satisfied, then one necessarily
has f(0) = 0 and, by Theorem 1 of [4] (which holds for n = 1 too), problem (Pλ) has
at least two non-zero solutions for each λ > 0 large enough. So, a natural question
arises. Namely, what happens when (a) and (b) are simultaneously satisfied ? A
priori, there is no evident reason to get a better conclusion than that holding under
(b) only. However, thanks to the main result of this paper, we can prove that if,

besides (a) and (b), we also have
ξ21

2
∫ ξ1
0 f(t)dt

≤
∫ 1
0 α(t)dt <

σ2

4 supξ∈R

∫ ξ
0 f(t)dt

, there is

some λ̂ > 1 such that problem (Pλ̂) has at least three non-zero solutions.
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Here is our main result:

Theorem 1. Let X be a reflexive real Banach space; Φ : X → R a coercive and
sequentially weakly lower semicontinuous C1 functional whose derivative admits a
continuous inverse on X∗; Ψ, J : X → R two C1 functionals with compact deriva-
tive. Assume that there exist two points u0, u1 ∈ X with the following properties:

(i) u0 is a strict local minimum of Φ and Φ(u0) = Ψ(u0) = J(u0) = 0 ;
(ii) Φ(u1) ≤ Ψ(u1) and J(u1) > 0 ;
Moreover, suppose that, for some ρ ∈ R, one has either

(1) sup
λ>0

inf
x∈X

(λ(Φ(x)−Ψ(x)− ρ)− J(x)) < inf
x∈X

sup
λ>0

(λ(Φ(x)−Ψ(x)− ρ)− J(x))

or

(2) sup
λ>0

inf
x∈X

(Φ(x)−Ψ(x)− λ(ρ+ J(x))) < inf
x∈X

sup
λ>0

(Φ(x)−Ψ(x)− λ(ρ+ J(x))) .

Finally, assume that

(3) max

{
lim sup
∥u∥→+∞

Ψ(u)

Φ(u)
, lim sup

u→u0

Ψ(u)

Φ(u)

}
< 1

and

(4) max

{
lim sup
∥u∥→+∞

J(u)

Φ(u)
, lim sup

u→u0

J(u)

Φ(u)

}
≤ 0 .

Under such hypotheses, there exists λ∗ > 0 such that the equation

Φ′(u) = Ψ′(u) + λ∗J ′(u)

has at least four solutions in X, u0 being one of them.

Let us recall that, when X is a topological space (resp. a convex subset of a
vector space), a function f : X → R is said to be inf-compact (resp. quasi-concave)
if the set f−1(]−∞, c]) (resp. f−1([c,+∞[)) is compact (resp. convex) for all c ∈ R.

The following result, established in [5], is a key tool in the proof of Theorem 1.

Theorem A. Let X be a topological space, I ⊆ R an open interval and P : X×I →
R a function satisfying the following conditions:

(a1) for each x ∈ X, the function P (x, ·) is quasi-concave and continuous ;
(a2) for each λ ∈ I, the function P (·, λ) is lower semicontinuous and inf-compact ;
(a3) one has

sup
λ∈I

inf
x∈X

P (x, λ) < inf
x∈X

sup
λ∈I

P (x, λ) .

Under such hypotheses, there exists λ∗ ∈ I such that the function P (·, λ∗) has at
least two global minima.

Now, we can give the

Proof of Theorem 1. Fix µ > 0. By (i), we also can fix a neighbourhood U of u0
such that Φ(u) > 0 for all u ∈ U \ {u0}. From (3) and (4), it follows that

lim sup
u→u0

Ψ(u) + 1
µJ(u)

Φ(u)
< 1 .
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Consequently, there exists a neighbourhood V of u0, with V ⊆ U , such that

Ψ(u) + 1
µJ(u)

Φ(u)
< 1

for all u ∈ V \ {u0}. So, we have

µ(Φ(u)−Ψ(u))− J(u) > 0

for all u ∈ V \ {u0}. In other words, u0 is a strict local minimum of the functional
µ(Φ−Ψ)− J . From (ii), we have

µ(Φ(u1)−Ψ(u1))− J(u1) < 0 ,

and so u0 is not a global minimum for that functional. From (3) and (4) again, we
have

lim sup
∥u∥→+∞

Ψ(u) + 1
µJ(u)

Φ(u)
< 1 .

From this, recalling that Φ is coercive and observing that

µ(Φ(u)−Ψ(u))− J(u) = µΦ(u)

(
1−

Ψ(u) + 1
µJ(u)

Φ(u)

)
,

we clearly infer that

(5) lim
∥u∥→+∞

(µ(Φ(u)−Ψ(u))− J(u)) = +∞ .

Since X is reflexive, the functionals Ψ, J are sequentially weakly continuous, being
with compact derivative ([6], Corollary 41.9). From this and (5), in view of the
reflexivity of X again and of the Eberlein-Smulyan theorem, we then infer that the
sub-level sets of the functional µ(Φ − Ψ) − J are weakly compact. Consequently,
we can apply Theorem A, with I =]0,+∞[, considering X with the weak topology
and taking either

P (x, λ) = λ(Φ(x)−Ψ(x) + ρ)− J(x)

or

P (x, λ) = Φ(x)−Ψ(x) + λ(ρ− J(x))

according to whether either (1) or (2) holds, respectively. Therefore, in any case,
there exists µ∗ > 0 such that the functional µ∗(Φ − Ψ) − J has at least two gobal
minima. We already know that u0 is a local, not global minimum for µ∗(Φ−Ψ)−J .
Now, we remark that this functional, due to (5) and to our assumptions on Φ,Ψ
and J , turns out to satisfy the Palais-Smale condition ([6], Example 38.25). At this
point, we can apply Theorem (1.ter) of [2] which ensures the existence of at least
four critical points of the functional µ∗(Φ − Ψ) − J . Our conclusion then follows
taking λ∗ = 1

µ∗ . �

Remark 2. It is important to remark that, in view of Theorem 1 of [1], condition
(1) is equivalent to the existence of u2, u3 ∈ X satisfying

Φ(u2)−Ψ(u2) < ρ < Φ(u3)−Ψ(u3)
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and
sup(Φ−Ψ)−1(]−∞,ρ]) J − J(u2)

ρ− Φ(u2) + Ψ(u2)
<

sup(Φ−Ψ)−1(]−∞,ρ]) J − J(u3)

ρ− Φ(u3) + Ψ(u3)
.

Likewise, condition (2) is equivalent to the existence of u2, u3 ∈ X satisfying

J(u3) < ρ < J(u2)

and

Φ(u2)−Ψ(u2)− infJ−1([ρ,+∞[)(Φ−Ψ)

J(u2)− ρ
<

Φ(u3)−Ψ(u3)− infJ−1([ρ,+∞[)(Φ−Ψ)

J(u3)− ρ
.

Remark 3. We also remark that, on the basis of Theorem A, condition (1) can be
replaced by the formally more general one:

there exist an interval A ⊆ R and two functions γ : A→]0,+∞[, η : A→ R such
that

sup
λ∈A

inf
x∈X

(γ(λ)(Φ(x)−Ψ(x))−J(x)+η(λ)) < inf
x∈X

sup
λ∈A

(γ(λ)(Φ(x)−Ψ(x))−J(x)+η(λ))

and, for each x ∈ X, the function γ(·)(Φ(x) − Ψ(x)) + η(·) is quasi-concave and
continuous in A.

However, we do not know, at present, some significant situations where (1) fails
while such a condition applies. A similar remark holds for condition (2).

We now give an application of Theorem 1 from which, in turn, the result implicitly
stated at the beginning of the paper follows.

In the sequel, the Sobolev space H1(0, 1) is considered with the usual norm

∥u∥ =

(∫ 1

0
(|u′(t)|2 + |u(t)|2)dt

) 1
2

.

Note that

sup
[0,1]

|u| ≤
√
2∥u∥

for all u ∈ H1(0, 1).

We will use the following lemma.

Lemma 4. Let h : R → R and γ : [0, 1] → [0,+∞[ be two continuous non-zero
functions. For each u ∈ H1(0, 1), put

T (u) =

∫ 1

0
γ(t)h(u(t))dt .

Then, one has

(6) lim sup
u→0

T (u)

∥u∥2
≤ sup

[0,1]
γmax

{
0, lim sup

ξ→0

h(ξ)

ξ2

}
and

(7) lim sup
∥u∥→+∞

T (u)

∥u∥2
≤ sup

[0,1]
γmax

{
0, lim sup

|ξ|→+∞

h(ξ)

ξ2

}
.
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Proof. For brevity, put

ρ1 = max

{
0, lim sup

ξ→0

h(ξ)

ξ2

}
and

ρ2 = max

{
0, lim sup

|ξ|→+∞

h(ξ)

ξ2

}
.

Fix η > ρ1. So, there is some δ > 0 such that

h(ξ) ≤ ηξ2

for all ξ ∈ [−δ, δ]. For u ∈ H1(0, 1) with ∥u∥ ≤ δ√
2
, we have sup[0,1] |u| ≤ δ and so

h(u(t)) ≤ η|u(t)|2

for all t ∈ [0, 1]. Multiplying by γ (recall that γ ≥ 0) and integrating, we then get

T (u) ≤ η sup
[0,1]

γ∥u∥2 .

From this it follows that

lim sup
u→0

T (u)

∥u∥2
≤ η sup

[0,1]
γ

and so (6), by the arbitrariness of η.
Now, let ν > ρ2. So, for some ω > 0, we have

h(ξ) ≤ νξ2

for all ξ ∈ R \ [−ω, ω]. For each u ∈ H1(0, 1) \ {0}, we have

T (u)

∥u∥2
=

∫
u−1([−ω,ω]) γ(t)h(u(t))dt

∥u∥2
+

∫
u−1(R\[−ω,ω]) γ(t)h(u(t))dt

∥u∥2

≤
sup[0,1] γ sup[−ω,ω] h

∥u∥2
+ ν sup

[0,1]
γ .

Hence

lim sup
∥u∥→+∞

T (u)

∥u∥2
≤ ν sup

[0,1]
γ

and (7) follows by the arbitrariness of ν. �

Here is the application of Theorem 1.

Theorem 5. Let f, g : R → R, α, β : [0, 1] → [0,+∞[ be four non-zero continuous
functions. Assume that

(8) max

{
lim sup
|ξ|→+∞

∫ ξ
0 f(t)dt

ξ2
, lim sup

ξ→0

∫ ξ
0 f(t)dt

ξ2

}
≤ 0

and

(9) sup
ξ∈R

∫ ξ

0
g(t)dt < +∞, lim sup

ξ→0

∫ ξ
0 g(t)dt

ξ2
<

1

2 sup[0,1] β
.
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Finally, suppose that there exist σ > 2
√∫ 1

0 β(t)dt supξ∈R
∫ ξ
0 g(t)dt and ξ1 ∈ R such

that

(10) 0 <

∫ ξ1

0
f(t)dt = sup

|ξ|≤σ

∫ ξ

0
f(t)dt < sup

ξ∈R

∫ ξ

0
f(t)

and

(11) ξ21 ≤ 2

∫ 1

0
β(t)dt

∫ ξ1

0
g(t)dt .

Under such hypotheses, there exists λ∗ > 0 such that the problem{
−u′′ + u = λ∗α(t)f(u) + β(t)g(u) in [0, 1]

u′(0) = u′(1) = 0

has at least three non-zero solutions.

Proof. For each u ∈ H1(0, 1), put

Φ(u) =
1

2
∥u∥2 ,

Ψ(u) =

∫ 1

0
β(t)G(u(t))dt

and

J(u) =

∫ 1

0
α(t)F (u(t))dt ,

where F (ξ) =
∫ ξ
0 f(t)dt, G(ξ) =

∫ ξ
0 g(t)dt. By classical results, the functionals

Φ,Ψ, J are C1, Φ′, J ′ are compact and, for λ ∈ R, the solutions of the problem{
−u′′ + u = λα(t)f(u) + β(t)g(u) in [0, 1]

u′(0) = u′(1) = 0

are exactly the critical points in H1(0, 1) of the functional Φ − Ψ − λJ . To apply
Theorem 1, we take u0 = 0 and u1 = ξ1. Of course, (i) is evident and (ii) follows
directly from (10) and (11). Moreover, thanks to Lemma 4, conditions (3) and (4)
are direct consequences of (9) and (8) respectively. Finally, let us check that (1)
holds. To this end, choose

ρ =
σ2

4
−
∫ 1

0
β(t)dt sup

R
G .

Now, observe that

{u ∈ H1(0, 1) : Φ(u)−Ψ(u) ≤ ρ} ⊆
{
u ∈ H1(0, 1) : ∥u∥2 ≤ 2

(
ρ+

∫ 1

0
β(t)dt sup

R
G

)}
=

{
u ∈ H1(0, 1) : ∥u∥2 ≤ σ2

2

}
⊆

{
u ∈ H1(0, 1) : sup

[0,1]
|u| ≤ σ

}
.

From this, taking (10) into account, we get

sup
(Φ−Ψ)−1(]−∞,ρ])

J ≤ J(u1) .
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On the other hand, by (11), one has

Φ(u1)−Ψ(u1) ≤ 0 < ρ .

At this point, we see that to satisfy the equivalent formulation of (1) recalled in
Remark 2, we can choose u2 = u1 and take as u3 any constant c such that F (c) >
sup[−σ,σ] F . Such a c does exist by (10). So, each assumption of Theorem 1 is
satisfied, and the conclusion follows. �

Remark 6. It is very important to remark that if, instead of (10), we assume that

there exist σ > 2
√∫ 1

0 β(t)dt supξ∈R
∫ ξ
0 g(t)dt and ξ1, ξ2 ∈ R, with ξ1ξ2 > 0, such

that

0 <

∫ ξ1

0
f(t)dt = sup

|ξ|≤σ

∫ ξ

0
f(t)dt <

∫ ξ2

0
f(t) ,

then, in the conclusion of Theorem 5, we can ensure that the three non-zero solutions
are non-negative (resp. non-positive) provided ξ1 > 0 (resp. ξ2 < 0). To see this, it
suffices to apply Theorem 5 to the functions f0, g0 : R → R defined by

f0(ξ) =

{
f(ξ) if ξ ≥ 0

0 if ξ < 0 ,

g0(ξ) =

{
g(ξ) if ξ ≥ 0

0 if ξ < 0 ,

when ξ1 > 0 or by

f0(ξ) =

{
f(ξ) if ξ ≤ 0

0 if ξ > 0 ,

g0(ξ) =

{
g(ξ) if ξ ≤ 0

0 if ξ > 0 ,

when ξ1 < 0.

From Theorem 5, applied with f = g and α = β, via Remark 6, we get:

Corollary 7. Let f : R → R be a continuous function such that

sup
ξ∈R

∫ ξ

0
f(t)dt < +∞, lim sup

ξ→0

∫ ξ
0 f(t)dt

ξ2
≤ 0 .

Moreover, suppose that there exist σ > 0 and ξ1, ξ2 ∈ R, with ξ1ξ2 > 0, such that

0 <

∫ ξ1

0
f(t)dt = sup

|ξ|≤σ

∫ ξ

0
f(t)dt <

∫ ξ2

0
f(t)

and
ξ21∫ ξ1

0 f(t)dt
<

σ2

2 supξ∈R
∫ ξ
0 f(t)dt

.
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Under such hypotheses, for every continuous function α : [0, 1] → [0,+∞[ satisfying

ξ21

2
∫ ξ1
0 f(t)dt

≤
∫ 1

0
α(t)dt <

σ2

4 supξ∈R
∫ ξ
0 f(t)dt

,

there exists λ̂ > 1 such that the problem{
−u′′ + u = λ̂α(t)f(u) in [0, 1]

u′(0) = u′(1) = 0

has at least three non-zero solutions which are non-negative or non-positive accord-
ing to whether ξ1 > 0 or ξ1 < 0.

Another consequence of Theorem 5 is as follows:

Proposition 8. Let f : R → R be a continuous function and a, b, c, σ four positive
constants, with a < b < σ < c and σ >

√
2b, such that

f(ξ) ≥ 0

for all ξ ∈]−∞,−c] ∪ [−σ, 0] ∪ [a, b], while

f(ξ) ≤ 0

for all ξ ∈ [−c,−σ] ∪ [0, a] ∪ [b,+∞[, and

0 <

∫ b

0
f(t)dt <

∫ −c

0
f(t)dt .

Moreover, let g : R → R and β : [0, 1] → [0,+∞[ be two continuous functions such
that ∫ b

0
g(t)dt > 0, sup

ξ∈R

∫ ξ

0
g(t)dt < +∞, lim sup

ξ→0

∫ ξ
0 g(t)dt

ξ2
<

1

2 sup[0,1] β

and
b2

2
∫ b
0 g(t)dt

≤
∫ 1

0
β(t)dt <

σ2

4 supξ∈R
∫ ξ
0 g(t)dt

.

Under such hypotheses, for each continuous non-zero function α : [0, 1] → [0,+∞[,
there exists λ∗ > 0 such that the problem{

−u′′ + u = λ∗α(t)f(u) + β(t)g(u) in [0, 1]

u′(0) = u′(1) = 0

has at least three non-zero solutions.

Proof. The assumptions on the sign of f readily imply that∫ b

0
f(t)dt = sup

|ξ|≤σ

∫ ξ

0
f(t)dt < sup

ξ∈R

∫ ξ

0
f(t)dt =

∫ −c

0
f(t)dt .

The same assumptions also imply that
∫ ξ
0 f(t)dt ≤ 0 for all ξ ∈ [−σ, a], and so (8)

holds. Consequently, if we take ξ1 = b, the assumptions of Theorem 5 are satisfied
and the conclusion follows. �
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Finally, notice the following two particular cases of Proposition 8.

Example 9. Let a, b, c, σ be four constants as in Proposition 8, and let φ : [a, b] →
[0,+∞[, ψ : [−c,−σ] →] − ∞, 0] be two continuous non-constant functions, with
ψ(−c) = ψ(−σ) = φ(a) = φ(b) = 0, such that∫ b

a
φ(t)dt <

∫ −c

−σ
ψ(t)dt .

Define the continuous function f : R → R by

f(ξ) =


ψ(ξ) if ξ ∈ [−c,−σ]

φ(ξ) if ξ ∈ [a, b]

0 otherwise .

Then, for each triple of continuous functions g : R → R, α, β : [0, 1] → [0,+∞[ as
in Proposition 8, the conclusion of Proposition 8 does hold.

Example 10. Let a, b, c, σ be four constants as in Proposition 8. Furthermore, assume
that

0 < b4 − 2ab3 < c4 − 2σc3 .

Define the function f : R → R by

f(ξ) =

{
−ξ3 + (a+ b)ξ2 − abξ if ξ ≥ 0

−ξ3 − (σ + c)ξ2 − σcξ if ξ < 0 .

Then, for each triple of continuous functions g : R → R, α, β : [0, 1] → [0,+∞[ as
in Proposition 8, the conclusion of Proposition 8 does hold.
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