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AN INTERIOR PROXIMAL CUTTING HYPERPLANE METHOD

FOR MULTIVALUED VARIATIONAL INEQUALITIES

PHAM NGOC ANH AND JONG KYU KIM

Abstract. We present a new method for solving multivalued variational in-
equalities on polyhedra, where the underlying function is upper semicontinuous
and generalized monotone. The method is based on the special interior proximal
function which replaces the usual quadratic function. This leads to an interior
proximal algorithm. The algorithm can be viewed as combining the cutting hy-
perplane method and the special interior proximal function. We also analyze the
global convergence of the algorithm under minimal assumptions.

1. Introduction

Let C be a polyhedral set on Rn defined by

(1.1) C := {x ∈ Rn | Ax ≤ b},
where A is a (p × n) matrix, b ∈ Rp. We suppose that intC = {x | Ax < b} is
nonempty. Let F : C → 2R

n
be a multivalued mapping. We consider the following

multivalued variational inequalities (shortly (MV I)):

Find x∗ ∈ C,w∗ ∈ F (x∗) such that ⟨w∗, x− x∗⟩ ≥ 0, ∀x ∈ C.

In this paper we suppose that F is upper semicontinuous, generalized monotone on
C and S ̸= ∅, where we denote by S the set of the solutions of (MV I).

In recent years, multivalued variational inequalities become an attractive field
for many researchers both theory and applications (see [3, 5, 7, 15, 19]). Various
methods have been developed for solving (MV I) when F is monotone and single
valued (see [4, 6, 11, 16, 18]). In general, these methods can not be applied directly
to the case when F is multivalued.

There exists several methods for solving (MV I) with monotone multivalued map-
ping F . A typical method is the projection one (see [13, 17]). At each iteration k
of this method, a point xk ∈ C and a point wk ∈ F (xk) are computed and then
the vector xk − ρkw

k, with stepsize ρk > 0, is projected on the closed convex fea-
sible domain C. When F is strongly monotone and the stepsizes ρk tend to 0, the
method is strongly convergent. Cohen [12] gave an example involving a monotone
mapping F where the projection method does not converge. Recently, Khanh et al.
[10] developed a projection-type algorithm for (MV I). This algorithm requires two
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projections on C only in a part of iterations (one third of the subcases). For the
other iterations, only one projection is used. Weak convergence is proved when F
is pseudomonone on C in a real Hilbert space.

The interior proximal regularization technique is a powerful tool for analyzing
and solving optimization problems (see [13, 14]). Recently this technique has been
used to develop proximal iterative algorithm for variational inequalities (see [11]).
In our recent papers [1], we have used the interior proximal function for variational
inequalities, and developed algorithms for solving them.

In this paper, we extend our results in [2] to generalized monotone nonlipschitzian
multivalued variational inequalities. Namely, we first use the interior proximal func-
tion to develop a convergent algorithm for (MV I) with a generalized monotone
multivalued function F . Next we construct an appropriate hyperplane which sepa-
rates the current iterative point from the solution set. We combine this technique
with Armijo-type linesearch technique to obtain a convergent algorithm for general-
ized monotone nonlipschitzian multivalued variational inequalities. Then the next
iterate is obtained as the projection of the current iterate onto the intersection of
the feasible set with the halfspace containing the solution set.

This paper is organized as follows. In the next section, we present an interior
proximal algorithm by using the interior proximal function to implement the cutting
hyperplane method. Section 3 is devoted to the proof of its global convergence to
a solution of (MV I). An application to variational inequalities is discussed in the
last section.

2. Generalized monotonicity and algorithm

Now we recall well known definition of generalized monotonicity of mappings
which will be required in our following analysis (see [21]). We assume that the
mapping F satisfies this condition.

Definition 2.1. Let x∗ be an element of the solution set S. The function F is
called generalized monotone on C, if

⟨w, x− x∗⟩ ≥ 0, ∀x ∈ C,w ∈ F (x).

It is clear that F is generalized monotone if F is monotone, i.e.,

⟨w − w′, x− x′⟩ ≥ 0, ∀x, x′ ∈ C,w ∈ F (x), w′ ∈ F (x′).

More generally, F is also generalized monotone if F is pseudomonotone, i.e., for all
x, x′ ∈ C,w ∈ F (x), w′ ∈ F (x′)

⟨w′, x− x′⟩ ≥ 0 ⇒ ⟨w, x− x′⟩ ≥ 0.

However, even if F is generalized monotone, F might not be monotone or pseu-
domonotone. It is not difficult to check such examples (see [21]).

A classical method to solve these problems is the proximal point algorithm (see
[14]), which starting with any point x0 ∈ Rn

+ := {u ∈ Rn | ui ≥ 0 ∀i = 1, . . . , n}
and λk ≥ λ > 0, iteratively updates xk+1 conforming the following problem

(2.1) 0 ∈ λkT (x) +∇xq(x, x
k),
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where

q(x, xk) =
1

2
∥x− xk∥2.

For y ∈ Rn
++ := {u ∈ Rn | ui > 0 ∀i = 1, . . . , n}, Auslender et al. in [9] have

proposed a new type of proximal interior method through replacing function q(x, xk)
by d(x, xk) which is defined as

(2.2) d(x, y) =

1
2∥x− y∥2 + µ

n∑
i=1

y2i (
xi
yi
logxi

yi
− xi

yi
+ 1) if x > 0,

+∞ otherwise,

with µ ∈ (0, 1). It is easy to verify that d(·, y) is a closed proper convex function,
nonnegative and d(x, y) = 0 if and only if x = y. One of the motivation behind the
specific form of the function d(·, ·) is as follows: The function 1

2∥x− y∥2 is an usual

regularization term used in a proximal method, while the function
n∑

i=1
y2i (

xi
yi
logxi

yi
−

xi
yi

+ 1) is added to enforce the method to become an interior one, i.e., to generate

iterates staying in interior of R++.
Applying this idea to C defined by (1.1), for y ∈ intC, let ai be the rows of the

matrix A, we define the quantities,

li(x) = bi − ⟨ai, x⟩,

l(x) =
(
l1(x), l2(x), . . . , lp(x)

)T
,

D(x, y) =

1
2∥x− y∥2 + µ

p∑
i=1

l2i (y)
(
li(x)
li(y)

log li(x)
li(y)

− li(x)
li(y)

+ 1
)

if x ∈ intC,

+∞ otherwise.

We denote by ∇1D(x, y) the gradient of D(·, y) at x for every y ∈ C. It is easy to
see that

∇1D(x, y) = x− y − µATXylog
l(x)

l(y)
,

where Xy = diag
(
l1(y), . . . , lp(y)

)
and log l(x)

l(y) =
(
log l1(x)

l1(y)
, . . . ,log

lp(x)
lp(y)

)
.

Otherwise, if F is a point-to-point mapping, then (MV I) can be formulated as
the following variational inequalities, shortly (V IP ), it can be written in:

Find x∗ ∈ C such that

⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

In this case, it is known that solutions coincide with zeros of the following projected
residual function

T (x) = x− PrC(x− F (x)).

In other words, x0 ∈ C is a solution of (V IP ) if and only if T (x0) = 0 (see
[20]). Let xk be a current approximation to the solution. First, we compute
wk = argsup{⟨w, xk⟩ | w ∈ F (xk)} and PrC(x

k − cwk) for some positive constant c.
Next, we search the line segment between xk and PrC(x

k−cwk) for a point (w̄k, zk)
such that the hyperplane ∂Hk = {x ∈ Rn | ⟨w̄k, x − zk⟩ = 0} strictly separates
xk from the solution set S of the problem. To find such (w̄k, zk), we may use a
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computationally inexpensive Armijo-type procedure. Then we compute the next
iterate xk+1 by projecting xk onto the intersection of the feasible set C with the
halfspace

Hk = {x ∈ Rn | ⟨w̄k, x− zk⟩ ≤ 0}.
Using the interior proximal function D(·, ·) to implement the cutting hyperplane

method for (MV I) is defined as follows.

Algorithm 2.2.

Step 0: Choose x0 ∈ C,w0 ∈ F (x0), k = 0, 0 < σ < β
2 , and γ ∈ (0, 1).

Step 1: Compute

wk := argsup{⟨w, xk⟩ | w ∈ F (xk)},

yk := argmin{⟨wk, y − xk⟩+ βD(y, xk) | y ∈ C},(2.3)

r(xk) := xk − yk.

Step 2: (Cutting hyperplane) Find the smallest nonnegative number mk of m
such that

(2.4) vk := sup{⟨w, r(xk)⟩ | w ∈ F
(
xk − γmkr(xk)

)
} ≥ σ∥r(xk)∥2.

Choose w̄k ∈ F
(
xk − γmkr(xk)

)
such that ⟨w̄k, r(xk)⟩ = vk.

Set zk := xk − γmkr(xk) and

Hk := {x ∈ Rn | ⟨w̄k, x− zk⟩ ≤ 0}.
Step 3: Find xk+1 := PrC∩Hk

(xk). Set k := k + 1, and go to Step 1.

3. Convergence of the algorithm

In the next lemma, we justify the stopping criterion.

Lemma 3.1. If r(xk) = 0, then (xk, wk) is a solution to (MV I).

Proof. Since yk is the solution to problem (2.3) and an optimization result in
convex programming (see [13]), we have

⟨wk + β∇1D(yk, xk), y − yk⟩ ≥ 0 ∀y ∈ C.

Replacing yk = xk in this inequality, we get

⟨wk + β∇1D(xk, xk), y − xk⟩ ≥ 0 ∀y ∈ C.

Since

(3.1) ∇1D(x, y) = x− y − µATXylog
l(x)

l(y)
∀x, y ∈ C,

we have
∇1D(xk, xk) = 0.

Thus
⟨wk, y − xk⟩ ≥ 0 ∀y ∈ C,

which implies that (xk, wk) is a solution to (MV I).
�

In Algorithm 2.2, we need to show the existence of the nonnegative integer mk.



AN INTERIOR PROXIMAL CUTTING HYPERPLANE METHOD FOR (MVI) 495

Lemma 3.2. For γ ∈ (0, 1), 0 < σ < β
2 , if r(x

k) > 0 then there exists the smallest
nonnegative integer mk such that

(3.2) sup{⟨w, r(xk)⟩ | w ∈ F
(
xk − γmkr(xk)

)
} ≥ σ∥r(xk)∥2.

Proof. Assume on the contrary, (3.2) is not satisfied for any nonnegative integer i,
i.e.,

⟨w, r(xk)⟩ < σ∥r(xk)∥2 ∀w ∈ F
(
xk − γmkr(xk)

)
.

As k → ∞, from the upper semicontinuity of F , we have

⟨w, r(xk)⟩ ≤ σ∥r(xk)∥2 ∀w ∈ F (xk).

Substituting w = w̄k ∈ F (xk), we get

(3.3) ⟨w̄k, r(xk)⟩ ≤ σ∥r(xk)∥2.

For each t > 0, we have 1− 1
t ≤ log t. We obtain after multiplication by li(y

k)
li(xk)

> 0

for each i = 1, . . . , p,

li(y
k)

li(xk)
− 1 ≤ li(y

k)

li(xk)
log

li(y
k)

li(xk)
.

Then,

D(yk, xk) =
1

2
∥xk − yk∥2 + µ

n∑
i=1

l2i (x
k)
( li(yk)
li(xk)

log
li(y

k)

li(xk)
− li(y

k)

li(xk)
+ 1

)
≥ 1

2
∥r(xk)∥2.(3.4)

Since yk is the solution to the strongly convex program (2.3), we have

⟨wk, y − xk⟩+ βD(y, xk) ≥ ⟨wk, yk − xk⟩+ βD(yk, xk) ∀y ∈ C.

Substituting y = xk ∈ C, we get

(3.5) −⟨wk, r(xk)⟩+ βD(yk, xk) ≤ 0.

Combinating (3.4) with (3.5), we obtain

(3.6)
β

2
∥r(xk)∥2 ≤ ⟨wk, r(xk)⟩.

Then, inequalities (3.3) and (3.6) imply that

β

2
∥r(xk)∥2 ≤ ⟨wk, r(xk)⟩ ≤ σ∥r(xk)∥2.

Hence it must be either r(xk) = 0 or σ ≥ β
2 . The first case contracdicts to r(xk) ̸= 0,

while the second one contracdicts to the fact σ < β
2 . �

The following results perform some property of the cutting hyperplane Hk.

Lemma 3.3. Let {xk} be a sequence generated by Algorithm 2.2. Then the follow-
ings hold:

i) xk /∈ Hk, S ⊆ C ∩Hk.
ii) xk+1 = PrC∩Hk

(ȳk), where ȳk = PrHk
(xk).
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Proof. i) By noting r(xk) ̸= 0, we have

⟨w̄k, xk − zk⟩ = ⟨w̄k, xk − (xk − γmkr(xk))⟩
= ⟨w̄k, γmkr(xk)⟩
≥ σγmk∥r(xk)∥2 > 0.

This implies xk /∈ Hk. Since F is assumed to be generalized monotone,

⟨w̄k, zk − x∗⟩ ≥ 0 ⇒ ⟨w̄k, x∗ − zk⟩ ≤ 0 ⇒ x∗ ∈ Hk.

ii) We know that

H = {x ∈ Rn | ⟨w, x− x0⟩ ≤ 0},PrH(y) = y − ⟨w, y − x0⟩
∥w∥2

w.

Hence,

ȳk = PrHk
(xk)

= xk − ⟨w̄k, xk − zk⟩
∥w̄k∥2

w̄k

= xk − γmk⟨w̄k, r(xk)⟩
∥w̄k∥2

w̄k.

Otherwise, for every y ∈ C ∩Hk there exists λ ∈ (0, 1) such that

x̂ = λxk + (1− λ)y ∈ C ∩ ∂Hk,

where ∂Hk = {x ∈ Rn | ⟨w̄k, x− zk⟩ = 0}, because xk ∈ C but xk /∈ Hk.
Therefore,

∥y − ȳk∥2 ≥ (1− λ)2∥y − ȳk∥2

= ∥x̂− λxk − (1− λ)ȳk∥2

= ∥(x̂− ȳk)− λ(xk − ȳk)∥2

= ∥x̂− ȳk∥2 + λ2∥xk − ȳk∥2 − 2λ⟨x̂− ȳk, xk − ȳk⟩
= ∥x̂− ȳk∥2 + λ2∥xk − ȳk∥2

≥ ∥x̂− ȳk∥2,(3.7)

because ȳk = PrHk
(xk). Also we have

∥x̂− xk∥2 = ∥x̂− ȳk + ȳk − xk∥2

= ∥x̂− ȳk∥2 − 2⟨x̂− ȳk, xk − ȳk⟩+ ∥ȳk − xk∥2

= ∥x̂− ȳk∥2 + ∥ȳk − xk∥2.
Since xk+1 = PrC∩Hk

(xk), using the Pythagorean theorem we can reduce that

∥x̂− ȳk∥2 = ∥x̂− xk∥2 − ∥ȳk − xk∥2

≥ ∥xk+1 − xk∥2 − ∥ȳk − xk∥2

= ∥xk+1 − ȳk∥2.(3.8)

From (2.3) and (3.8), we have

∥xk+1 − ȳk∥ ≤ ∥y − ȳk∥ ∀y ∈ C ∩Hk,
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which implies

xk+1 = PrC∩Hk
(ȳk).

�

In order to prove the convergence of algorithm 2.2, we give the following key
property of the sequence {xk} generated by the algorithm.

Lemma 3.4. The sequence {xk} generated by Algorithm 2.2 satisfies the following
inequality.

(3.9) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − yk∥2 −
(
γmkσ

∥w̄k∥

)2

∥r(xk)∥4.

Proof. Since xk+1 = PrC∩Hk
(yk), we have

⟨yk − xk+1, z − xk+1⟩ ≤ 0 ∀z ∈ C ∩Hk.

Substituting z = x∗ ∈ C ∩Hk, then we have

⟨yk − xk+1, x∗ − xk+1⟩ ≤ 0 ⇔ ⟨yk − xk+1, x∗ − yk + yk − xk+1⟩ ≤ 0,

which implies

∥xk+1 − yk∥2 ≤ ⟨xk+1 − yk, x∗ − yk⟩.

Hence,

∥xk+1 − x∗∥2 = ∥xk+1 − yk + yk − x∗∥2

= ∥xk+1 − yk∥2 + ∥yk − x∗∥2 + 2⟨xk+1 − yk, yk − x∗⟩
≤ ⟨x∗ − yk, xk+1 − yk⟩+ ∥yk − x∗∥2 + 2⟨xk+1 − yk, yk − x∗⟩
= ∥yk − x∗∥2 + ⟨xk+1 − yk, yk − x∗⟩
= ∥yk − x∗∥2 − ∥xk+1 − yk∥2.(3.10)

Since zk = xk − γmkr(xk) and

yk = PrHk
(xk) = xk − ⟨w̄k, xk − zk⟩

∥w̄k∥2
w̄k,
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we have

∥yk − x∗∥2

= ∥xk − x∗∥2 + ⟨w̄k, xk − zk⟩2

∥w̄k∥4
∥w̄k∥2 − 2⟨w̄k, xk − zk⟩

∥w̄k∥2
⟨w̄k, xk − x∗⟩

= ∥xk − x∗∥2 +
(
γmk⟨w̄k, r(xk)⟩

∥w̄k∥

)2

− 2γmk⟨w̄k, r(xk)⟩
∥w̄k∥2

⟨w̄k, xk − x∗⟩

= ∥xk − x∗∥2 −
(
γmk⟨w̄k, r(xk)⟩

∥w̄k∥

)2

−2

[
γmk⟨w̄k, r(xk)⟩

∥w̄k∥2
⟨w̄k, xk − x∗⟩ −

(
γmk⟨w̄k, r(xk)⟩

∥w̄k∥

)2
]

= ∥xk − x∗∥2 −
(
γmk⟨w̄k, r(xk)⟩

∥w̄k∥

)2

−2γmk⟨w̄k, r(xk)⟩
∥w̄k∥2

[
⟨w̄k, xk − x∗⟩ − γmk⟨w̄k, r(xk)⟩

]

= ∥xk − x∗∥2 −
(
γmk⟨w̄k, r(xk)⟩

∥w̄k∥

)2

−2γmk⟨w̄k, r(xk)⟩
∥w̄k∥2

⟨w̄k, xk − x∗ − γmkr(xk)⟩

= ∥xk − x∗∥2 −
(
γmk⟨w̄k, r(xk)⟩

∥w̄k∥

)2

− 2γmk⟨w̄k, r(xk)⟩
∥w̄k∥2

⟨w̄k, zk − x∗⟩.(3.11)

From the generalized monotonicity of F , we see that ⟨w̄k, zk − x∗⟩ ≥ 0. This,
together with w̄k ∈ F (zk), imply

⟨w̄k, r(xk)⟩ ≥ σ∥r(xk)∥2.

Thus, (3.11) reduces to

∥yk − x∗∥2 ≤ ∥xk − x∗∥2 −
(
γmk⟨w̄k, r(xk)⟩

∥w̄k∥

)2

≤ ∥xk − x∗∥2 −
(
γmkσ

∥w̄k∥

)2

∥r(xk)∥4.(3.12)

Combining (3.10) and (3.12), we obtain (3.9) �

Theorem 3.5 (Convergence theorem). Let F be upper semicontinuous, compact
valued and generalized monotone on C. Then the sequence {xk} generated by Algo-
rithm 2.2 converges to a solution of (MV I).

Proof. The inequality (3.9) implies that the sequence {∥xk − x∗∥} is nonincreasing
and hence convergent. Consequently, the sequence {xk} is bounded.

Since wk ∈ F (xk), r(xk) = xk − PrC(x
k − cwk), zk = xk − γmkr(xk) and F is

upper semicontinuous and compact valued on C, the sequence {zk} is also bounded
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(see [8]). Hence, the sequence {wk} is bounded, i.e., there exists M > 0 such that

∥wk∥ ≤ M ∀k = 1, . . . .

This, together with (3.9), implies

(3.13) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − yk∥2 −
(
γmkσ

M

)2

∥r(xk)∥4.

Since {∥xk − x∗∥} converges to zero, it is easy to see that

lim
k→∞

γmk∥r(xk)∥ = 0.

The cases remaining to consider are the following.
Case 1. lim sup

k→∞
γmk > 0. This case must follow that lim inf

k→∞
∥r(xk)∥ = 0. Since

{xk} is bounded, there exists an accumulation point x̄ of {xk}. In other words, a
subsequence {xki} converges to some x̄ such that r(x̄) = 0, as i → ∞. Then we
see from Lemma 3.3 that x̄ ∈ S, and besides we can take x∗ = x̄, in particular in
(3.13). Thus {∥xk − x̄∥} is a convergent sequence. Since x̄ is an accumulation point
of {xk}, the sequence {∥xk − x∗∥} converges to zero, i.e., {xk} converges to x̄ ∈ S.
Case 2. lim

k→∞
γmk = 0. Since mk is the smallest nonnegative integer, mk − 1 does

not satisfy (2.4). Hence, we have

⟨w, r(xk)⟩ < σ∥r(xk)∥2 ∀w ∈ F
(
xk − γmk−1r(xk)

)
,

and besides

(3.14) ⟨w, r(xki)⟩ < σ∥r(xki)∥2 ∀w ∈ F
(
xki − γmki

−1r(xki)
)
.

Passing onto the limit in (3.14) as i → ∞ and using the upper semicontinuity of F ,
we have

(3.15) ⟨w, r(x̄)⟩ ≤ σ∥r(x̄)∥2 ∀w ∈ F (x̄).

From (3.6) we have

β

2
∥r(xki)∥2 ≤ ⟨wki , r(xki)⟩.

Since F is upper semicontinuous, passing onto the limit as i → ∞ we obtain

β

2
∥r(x̄)∥2 ≤ ⟨w̄, r(x̄)⟩.

Combining this with (3.15), we have

β

2
∥r(x̄)∥2 ≤ ⟨w̄, r(x̄)⟩ ≤ σ∥r(x̄)∥2,

which implies r(x̄) = 0 or σ ≥ β
2 . The second case contracdicts to the fact 0 < σ < β

2
and hence r(x̄) = 0, x̄ ∈ S. Letting x∗ = x̄ and repeating the previous arguments,
we conclude that the whole sequence {xk} converges to x̄ ∈ S.

�
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4. Applications to variational inequalities

The aim of this section is to consider the proposed algorithm on a class of the
multivalued variational inequalities, where

C := {x ∈ Rn | Ax ≤ b},

and the function F : C → Rn is of the form:

Find x∗ ∈ C such that ⟨F (x∗), x− x∗⟩ ≥ 0 ∀x ∈ C.

We now apply Algorithm 2.2 to the variational inequalities (V IP ). Note that in
this case, at iteration k, we have

wk = F (xk),

w̄k = F
(
xk − γmkr(xk)

)
,

vk = ⟨F
(
xk − γmkr(xk)

)
, r(xk)⟩.

Then, the algorithm for (V IP ) can be written in the following.

Algorithm 4.1.

Step 0: Choose x0 ∈ C, k = 0, 0 < σ < β
2 , and γ ∈ (0, 1).

Step 1: Compute

yk := argmin{⟨F (xk), y − xk⟩+ βD(y, xk) | y ∈ C},(4.1)

r(xk) := xk − yk.

Step 2: (Cutting hyperplane) Find the smallest nonnegative number mk of
m such that

(4.2) vk ≥ σ∥r(xk)∥2.

Set zk := xk − γmkr(xk), and

Hk := {x ∈ Rn | ⟨w̄k, x− zk⟩ ≤ 0}.

Step 3: Find xk+1 := PrC∩Hk
(xk). Set k := k + 1, and go to Step 1.

Validity and convergence of this algorithm is immediate from Algorithm 2.2.
Subproblems (4.1) and (4.2) can then be solved efficiently, for example, by the
Matlab Optimization Toolbox.

To illustrate our algorithm, we consider an academic numerical test of the func-
tion F with n = 7 and F (x) := Mx+G(x)+q, where G is defined by the components
of the G(x) are Gj(x) = djarctan(xj) ∀j ≥ 1, dj is chosen by d = (3, 2, 1, 4, 9, 1, 2)T .

M :=



1 2 3 4 5 6 7
1 0 0 5 6 2 3
0 0 9 2 3 4 5
3 3 3 4 1 1 1
3 4 5 1 2 2 3
0 1 0 0 1 1 9
2 3 4 1 2 3 4


, q :=



1
3
0
1
5
6
9


, d :=



3
2
0
4
9
1
2
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and

C :=



x ∈ R7
+,

4 ≤ x1 + 2x2 + x3 + 3x5 + x7 ≤ 10,

9 ≤
7∑

i=1
xi ≤ 15,

6 ≤ x2 + x3 + 2x4 + x7 ≤ 13,

1 ≤ x2 + x3 ≤ 5.

Then, the function F is generalized monotone (but not monotone), continuous and
differentiable on C.

Lemma 3.1 shows that if r(xk) = 0 then xk is a solution to (V IP ). So that we
can say that xk is an ϵ-solution to (V IP ) if we have ∥r(xk)∥ ≤ ϵ with ϵ > 0. Take
µ = 0.5, ϵ = 10−6, γ = 0.7, β = 2, σ = 1 and x0 = (1, 1, 0.5, 1, 3, 1, 3)T ∈ C. We
perform the Algorithm 2.2 in Matlab R2008a running on a PC Desktop Intel(R)
Core(TM)2 Duo CPU T5750@ 2.00GHz 1.32 GB, 2Gb RAM. The tolerance is taken
by ϵ = 10−6. The approximate solution obtained after 9 iterations is

x∗ = (0.5836, 1.2555, 0.4890, 0.7737, 2.6514, 0.7825, 2.7080)T .
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