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KRASNOSEL′SKII AND KY FAN TYPE FIXED POINT

THEOREMS IN ORDERED BANACH SPACES

N. HUSSAIN, A. R. KHAN, AND R. P. AGARWAL

Abstract. A common fixed point theorem for a condensing map S and a 1-set
contractive map T, defined on a closed convex subset of an ordered Banach space,
is proved. As applications, a number of Krasnosel′skii type fixed point theorems,
iterative approximation of common fixed points and Ky Fan type approxima-
tion theorems for various classes of 1-set contractive and 1-ball contractive maps
(e.g. operators of contractive type with compact or completely continuous per-
turbations, operators of semicontractive type, pseudo-contractive maps etc.) are
derived. Moreover, an integral equation is solved as an application of our main
result.

1. Introduction

In 1958, M. A. Krasnosel′skii [15] proved a fixed point theorem which is an
important supplement to both the Schauder fixed point theorem and the Banach
contraction principle. Krasnosel′skii fixed point theorem has a wide range of appli-
cations to nonlinear integral equations of mixed type. It has also been extensively
used in differential and functional differential equations. Krasnosel′skii fixed point
theorem has been generalized in many directions, see ([3, 6, 21]) and the references
therein. Fixed point theorems for monotone operators in ordered Banach spaces are
widely investigated and have found various applications in differential and integral
equations (see [7, 8] and references therein). Ambrosetti [1] was the first to use the
measure of noncompactness to prove existence results for differential equations in
Banach spaces. Recently, Dhage [8] proved some common fixed point theorems for
two condensing and weakly isotone mappings in ordered Banach spaces and obtained
existence theorems for common solutions of two nonlinear differential equations in
Banach spaces. Dhage et al. [9] further improved the results in [8] for common fixed
points. Using a result from [9], we prove a common fixed point theorem for weakly
isotone mappings where one of the mappings is 1-set contractive (or 1-ball contrac-
tive) on an ordered Banach space. We then apply our main result to establish some
Krasnosel′skii type fixed point theorems, iterative approximation of common fixed
points and Ky Fan type best approximation theorems for various types of 1-set
contractive, 1-ball contractive and pseudo-contractive maps. Moreover, an integral
equation is solved as an application of our main result.
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2. Preliminaries

Let M be a nonempty subset of a normed space X and A be a nonempty bounded
subset ofM , and let α(.) be the set measure of noncompactness, that is, α(A) = inf{
c > 0 : A can be covered by a finite number of sets of diameter ≤ c} and χ(.) the
ball measure of noncompactness, that is, χ(A) = inf{ c > 0 : A can be covered
by a finite number of balls with centers in M and radius c}. It is well known
that the measures α(.) and χ(.) are different, although, they have a good deal in
common (see for details [2, 17]). Let T : M → X be a mapping. If T (M) is
bounded and for every nonempty bounded subset A of M with α(A) > 0, we have,
α(T (A)) < α(A), then T is called set-condensing. If there exists k, 0 ≤ k ≤ 1,
such that T (M) is bounded and for each nonempty bounded subset A of M , we
have α(T (A)) ≤ kα(A), then T is called k-set contractive. Clearly, every k-set
contractive map with k < 1 (known as strict-set contraction in [8]) is set-condensing
and that every set-condensing map is 1-set contractive. As in the case of α(.), for
χ(.), we have ball-condensing and k-ball contractive maps. We shall denote by M (
respectively ∂M, int(M) )the closure ( respectively, the boundary, the interior) of
M. Let T : M → X be a mapping. Then T is called: (1) nonlinear contraction if
there exists a continuous and nondecreasing function ϕT : [0,∞) → [0,∞) such that
∥Tx− Ty∥ ≤ ϕT (∥x− y∥) for all x, y ∈ M, where ϕT (r) < r for r > 0. In particular,
if ϕT (r) = kr, 0 ≤ k < 1, then T is called a contraction mapping; (2) nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ M ; (3) generalized contraction if, for each x ∈ M
there exists a number k(x) < 1 with ∥Tx− Ty∥ ≤ k(x) ∥x− y∥ for each y ∈ M ;
(4) completely continuous if it maps weakly convergent sequences into strongly

convergent sequences; (5) compact if T (A) is compact when A ⊂ M is bounded; (6)
uniformly strictly contractive on M relative to X if the map T : X → X has the
property that, for each x ∈ X there exists a number k(x) < 1 such that ∥Tx− Ty∥ ≤
k(x) ∥x− y∥ for each y ∈ M ; (7) LANE (locally almost nonexpansive) if, for each
u ∈ M and ε > 0, there exists a weak neighborhood Nu of u in M (depending
also on ε) such that ∥Tx− Ty∥ ≤ ∥x− y∥ + ε for each x, y ∈ Nu; (8) pseudo-
contractive if ∥x− y∥ ≤ ∥(1 + r)(x− y)− r(Tx− Ty)∥ for each x, y ∈ M and r > 0,
or equivalently, (1 − λ) ∥x− y∥ ≤ ∥(I − λT )x− (I − λT )y∥ for each x, y ∈ M and
λ ∈ (0, 1) (with I denoting the identity mapping); (9) k-dissipative with k ∈ R, if
(Tx − Ty, f) ≤ k ∥x− y∥2 for all f ∈ J(x − y) and x, y ∈ M where J : X → 2X

∗

is a normalized duality mapping defined by J(x) = {f ∈ X∗ : (x, f) = ∥f∥ ∥x∥ and
∥f∥ = ∥x∥}.

Let M be a nonempty closed bounded subset of X and T : M → X a continuous
map.

(1) Suppose there exists a continuous mapping V : X × X → X such that
Tx = V (x, x) for x ∈ M. Then
(i) T is strictly semicontractive if, for each x ∈ M , V (., x) is contraction

and V (x, .) is compact;
(ii) T is weakly semicontractive if, for each x ∈ M , V (., x) is nonexpansive

and V (x, .) is compact;
(iii) T is semicontractive if, for each x ∈ M , V (., x) is nonexpansive and

V (x, .) is completely continuous.
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(2) Suppose there exists a continuous mapping V : M × M → X such that
Tx = V (x, x) for x ∈ M. Then
(iv) T is weakly semicontractive type if, for each x ∈ M , V (., x) is a non-

expansive map of M into X and x → V (x, .) of M into the space of
continuous mappings of M into X is compact;

(v) T is semicontractive type if, for each x ∈ M , V (., x) is a nonexpansive
map of M into X and V (x, .) is completely continuous from M to X,
uniformly for x ∈ M . For more details of these mappings, we refer the
reader to [20].

For x ∈ X, let IM (x) := {x+ a(u− x) : u ∈ M,a ≥ 0}.
Let M be a convex subset of a Banach space X with 0 ∈ int(M). We define the

Minkowski functional p : X → [0,∞) of M as

p(x) = inf{r > 0 : x ∈ rM}, x ∈ X.

The following properties are well known;

(i) p is continuous;

(ii) p(x+ y) ≤ p(x) + p(y) for x, y ∈ X;

(iii) p(λx) = λp(x), λ ≥ 0, x ∈ X;

(iv) 0 ≤ p(x) < 1 for x ∈ int(M);

(v) p(x) > 1 for x /∈ M ;

(vi) p(x) = 1 for x ∈ ∂M.

We define for any x ∈ X, dp(x,M) = inf{p(x− y) : y ∈ M}.
Let S, T : M → X be mappings. A point x ∈ M is a common fixed point of

S and T if x = Sx = Tx. The set of fixed points of S is denoted by F (S). A
mapping T : M → X is called weakly continuous if {xn} converges weakly to x
implies {Txn} converges weakly to Tx. If M is convex, then T is called affine if
T ((1 − k)x + ky) = (1 − k)Tx + kTy for all x, y ∈ M and k ∈ [0, 1]. A mapping
T : M → X is said to be demiclosed at y if for every sequence {xn} ⊂ M such that
{xn} converges weakly to x and {Txn} converges strongly to y, we have y = Tx.

Let X be a Banach space and K be a cone in X ( i.e. K is closed subset such that
K+K ⊆ K, tK ⊆ K for all t ≥ 0, K ∩ (−K) = {0}). We define an order relation ≼
in X with the help of the cone K as follows: for x, y ∈ X, x ≼ y iff. y − x ∈ K. By
an ordered Banach space X, we mean the Banach space X equipped with a partial
ordering ≼ induced by K. A mapping T : M → M is said to be isotone increasing
if x, y ∈ M with x ≼ y, then Tx ≼ Ty. Two mappings S, T : M → M are said to be
weakly isotone increasing if Sx ≼ TSx and Tx ≼ STx hold for all x ∈ M . Similarly,
the mappings S, T : M → M are said to be weakly isotone decreasing if Sx ≽ TSx
and Tx ≽ STx hold for all x ∈ M . We say that two mappings S, T : M → M
are weakly isotone if they are either weakly isotone increasing or weakly isotone
decreasing on M .

The following results will be needed.



478 N. HUSSAIN, A. R. KHAN, AND R. P. AGARWAL

Theorem 2.1 ([8, 9]). Let M be a nonempty closed subset of an ordered Banach
space X and S, T : M → M be two continuous set-condensing (or ball-condensing)
mappings. If S and T are weakly isotone decreasing, then F (S) ∩ F (T ) ̸= ∅.

Theorem 2.2 ([8]). Let M be a nonempty closed convex and bounded subset of a
Banach space X, and let T : M → M be a nonlinear contraction. Then T has a
unique fixed point x0 and the sequence of successive iterations {Tnx} converges to
x0 for each x ∈ M .

3. Main results

Theorem 3.1. Let M be a nonempty closed convex subset of an ordered reflexive
Banach space X and S : M → M be an affine continuous and set-condensing (or
ball-condensing) map with Sx ≽ 0 for each x ∈ M. Assume that T : M → M is
continuous 1-set contractive (or 1-ball contractive) map. Suppose that the following
two conditions are satisfied:

(a) (I − T ) is demiclosed at 0,

(b) S and T are weakly isotone decreasing.

Then F (S) ∩ F (T ) ̸= ∅.

Proof. Without loss of generality, we may assume that 0 ∈ M. Define Tn : M → M
by

(3.1) Tnx =
(
1− 1

n+ 1

)
Tx

for all x ∈ M . Then each Tn is a continuous set-condensing (or ball-condensing)
map. We show that for each n, the pair {S, Tn} is weakly isotone decreasing. As S
and T are weakly isotone decreasing, S is affine and Sx ≽ 0, so for any x ∈ M,

Tnx =
(
1− 1

n+ 1

)
Tx

≽
(
1− 1

n+ 1

)
STx

= S
((

1− 1

n+ 1

)
Tx

)
= STnx

and

TnSx =
(
1− 1

n+ 1

)
TSx ≼

(
1− 1

n+ 1

)
Sx ≼ Sx.

Thus by Theorem 2.1, there is xn ∈ M such that xn = Sxn = Tnxn for all n.
This implies that xn − Txn = ( 1

n+1)Txn. Since T (M) is bounded, it follows that

xn − Txn → 0 as n → ∞. Since X is reflexive and {xn} a bounded sequence, we
may assume (eventually considering a subsequence) that {xn} is weakly convergent
to an element x0 ∈ M. As (I − T ) is demiclosed at 0, we have that Tx0 = x0. The
map S is continuous and affine, so it is weakly continuous and hence Sx0 = x0 as
desired. �
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Note that Theorem 3.1 remains valid if S is positively homogeneous ( or, in
particular, S(kx) = kS(x) where 0 < k ≤ 1) and weakly continuous instead of
being affine. Such operators are well known in the study of nonlinear economic
systems [14]. Further, if S (M) ⊆ K, the condition “Sx ≽ 0 for each x ∈ M” is
automatically satisfied. Thus we obtain the following;

Corollary 3.2. Let K be a convex cone in an ordered reflexive Banach space X and
S : K → K be a positively homogeneous, continuous in weak and strong topologies
of X and set-condensing (or ball-condensing) map. Assume that T : K → K is
continuous 1-set contractive (or 1-ball contractive) map and the conditions (a) and
(b) of Theorem 3.1 are satisfied. Then F (S) ∩ F (T ) ̸= ∅.
Theorem 3.3. Let M be a nonempty closed bounded convex subset of an ordered
reflexive Banach space X and S : M → M be an affine continuous and condensing
map with Sx ≽ 0 for each x ∈ M. Assume that f : M → M is nonexpansive and
g : M → M is continuous compact map. If T = f + g and S satisfy the conditions
(a) and (b) of Theorem 3.1, then F (S) ∩ F (T ) ̸= ∅.
Proof. Clearly, T is 1-set contractive. The result now follows from Theorem 3.1. �

It is well known [5] that if M is a nonempty closed convex subset of a uniformly
convex Banach space and T : M → X is nonexpansive, then (I − T ) is demiclosed
and T is 1-set contractive. Consequently, we have:

Corollary 3.4. Let M be a nonempty closed convex subset of an ordered uniformly
convex Banach space X and S : M → M be an affine continuous and set-condensing
map with Sx ≽ 0 for each x ∈ M. Assume that T : M → M is nonexpansive and
the condition (b) of Theorem 3.1 is satisfied. Then F (S) ∩ F (T ) ̸= ∅.
Theorem 3.5. Let M be a nonempty closed bounded convex subset of an ordered re-
flexive Banach space X and S : M → M be an affine continuous and set-condensing
map with Sx ≽ 0 for each x ∈ M. Assume that f : M → M is a generalized con-
traction and g : M → M completely continuous. If T = f + g and S satisfy the
condition (b) of Theorem 3.1, then F (S) ∩ F (T ) ̸= ∅.
Proof. Since g : M → M is a completely continuous map, α(g(A)) = 0 for each
subset A of M . Hence T = f + g is 1-set contractive map. We show that (I − T )
is demiclosed at 0. Suppose {xn} ⊆ M be such that xn −→ x0 weakly and xn −
Txn −→ 0 strongly as n → ∞. Since g is completely continuous, it follows that
gxn −→ gx0 strongly as n → ∞. Now xn − fxn = xn −Txn + gxn → gx0 strongly
as n → ∞. As in the proof of Lemma 2.1 [20], {xn} is a cauchy sequence which
necessarily converges strongly to x0 . Consequently, we have x0 − fx0 = gx0 and
so x0 − Tx0 = 0. Thus (I − T ) is demiclosed at 0. Now Theorem 3.1 guarantees
that F (S) ∩ F (T ) ̸= ∅. �
Theorem 3.6. Let M be a nonempty closed bounded convex subset of an ordered re-
flexive Banach space X and S : M → M be an affine continuous and set-condensing
map with Sx ≽ 0 for each x ∈ M. Assume that f : M → X is a continuous compact
map and g : M → X a uniformly strictly contractive map on M relative to X. If
fx+ gy ∈ M whenever x, y ∈ M and T = f + g and S satisfy the condition (b) of
Theorem 3.1, then F (S) ∩ F (T ) ̸= ∅.
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Proof. Since T : M → M is 1-set contractive map; in view of Theorem 3.1, it
suffices to show that (I − T ) is demiclosed at 0. Suppose that {xn} ⊆ M is such
that xn −→ x0 weakly and xn − Txn −→ 0 strongly as n → ∞. Since {xn} is
bounded and f is compact, it follows that fxn −→ y strongly in X as n → ∞. Now
xn−gxn = xn−Txn+fxn → y strongly as n → ∞. This implies that xn−hxn → 0
as n → ∞, where h : M → X is uniformly strictly contractive map defined by
hx = gx + y. As in [13], {xn} is a Cauchy sequence which necessarily converges
strongly to x0 . This and the continuity of T imply that x0 − Tx0 = 0. Thus
(I −T ) is demiclosed at 0. Now Theorem 3.1 guarantees that F (S)∩F (T ) ̸= ∅. �
Corollary 3.7. Let M be a nonempty closed bounded convex subset of an ordered
uniformly convex Banach space X and S : M → M be an affine continuous and
set-condensing map with Sx ≽ 0 for each x ∈ M. Assume that T : M → M is
a continuous LANE map and T and S satisfy the condition (b) of Theorem 3.1.
Then F (S) ∩ F (T ) ̸= ∅.

Proof. By Nussbaum [19], T is 1-set contractive and (I−T ) is demiclosed at 0. The
result now follows from Theorem 3.1. �
Corollary 3.8. Let M be a nonempty closed bounded convex subset of an ordered
uniformly convex Banach space X and S : M → M be an affine continuous and
set-condensing map with Sx ≽ 0 for each x ∈ M. Assume that f : M → M is
continuous LANE map and g : M → M is completely continuous. If T = f + g
and S satisfy the condition (b) of Theorem 3.1, then F (S) ∩ F (T ) ̸= ∅.

Proof. By Remark 3.7 in [20], T is a LANE map. From Corollary 3.7, F (S) ∩
F (T ) ̸= ∅. �
Corollary 3.9. Let M be a nonempty closed bounded convex subset of an ordered re-
flexive Banach space X and S : M → M be an affine continuous and ball-condensing
map with Sx ≽ 0 for each x ∈ M. Assume that T : M → M is a continuous weakly
semicontractive map and T and S satisfy the conditions (a) and (b) of Theorem
3.1. Then F (S) ∩ F (T ) ̸= ∅.

Proof. By Petryshyn [[20], Lemma 3.1], T is 1-ball contractive and hence the proof
from Theorem 3.1. �
Corollary 3.10. Let M be a nonempty closed bounded convex subset of an or-
dered reflexive Banach space X and S : M → M be an affine continuous and
set-condensing map with Sx ≽ 0 for each x ∈ M. Assume that T : M → M is a
continuous map of weakly semicontractive type and T and S satisfy the conditions
(a) and (b) of Theorem 3.1. Then F (S) ∩ F (T ) ̸= ∅.

Proof. By Petryshyn [[20], Lemma 3.2], T is 1-set contractive. Now Theorem 3.1
guarantees that F (S) ∩ F (T ) ̸= ∅. �
Corollary 3.11. Let M be a nonempty closed bounded convex subset of an ordered
uniformly convex Banach space X and S : M → M be an affine continuous and
condensing map with Sx ≽ 0 for each x ∈ M. Assume that T : M → M is a
continuous map of semicontractive type and T and S satisfy the condition (b) of
Theorem 3.1. Then F (S) ∩ F (T ) ̸= ∅.
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Proof. By Browder [5], (I−T ) is demiclosed onM . Since every mapping of semicon-
tractive type is also of weakly semicontractive type, the result follows from Corollary
3.10. �

Theorem 3.12. Let X be an ordered Banach space. Let M be a nonempty closed
bounded convex subset of X with 0 ∈ int(M) and S : M → M be an affine con-
tinuous and set-condensing (ball-condensing) map with Sx ≽ 0 for each x ∈ M.
Assume that T : M → M is a continuous map and the condition (b) of Theorem
3.1 is satisfied. Suppose further that one of the following conditions holds:

(i) X is reflexive space and T is a strictly semicontractive map;
(ii) X is reflexive space which admits a weakly continuous duality mapping from

X into X∗ and T is a semicontractive map;
(iii) X and X∗ are uniformly convex and T is both 1-set contractive and pseudo-

contractive map;
(iv) X is reflexive space and T is both 1-set contractive and k-dissipative with

k < 1.

Then F (S) ∩ F (T ) ̸= ∅.

Proof. (i) By Lemma 3.1 in [20], T is k-ball contractive with k < 1 and hence T is 1-
ball contractive. We show that (I − T ) is demiclosed at 0. Suppose that {xn} ⊆ M
is such that xn −→ x0 weakly and xn − Txn −→ 0 strongly as n → ∞. Then
the set {xn} is precompact as in the proof of Theorem 3.1 in [20]. Without loss
of generality, we may assume that {xn} itself converges to some x ∈ M. Clearly,
x = x0 . Further the continuity of T implies that x0 − Tx0 = 0. Thus (I − T ) is
demiclosed at 0. Now Theorem 3.1 guarantees that F (S) ∩ F (T ) ̸= ∅.

(ii) Let x ∈ M . Since the map V (x, .) is completely continuous and X is reflexive,
it follows that V (x, .) is also compact. Therefore, T is weakly semicontractive. By
Lemma 3.1 in [20], T is 1-ball contractive. We show that (I−T ) is demiclosed at 0.
Suppose that {xn} ⊆ M is such that xn −→ x0 weakly and xn−Txn −→ 0 strongly
as n → ∞. Then, as in the proof of Theorem 3.2 in [20], x0 − Tx0 = 0. Thus
(I − T ) is demiclosed at 0. Now Theorem 3.1 guarantees that F (S) ∩ F (T ) ̸= ∅.

(iii) By Browder [5], (I − T ) is demiclosed on M. Theorem 3.1 implies that
F (S) ∩ F (T ) ̸= ∅.

(iv) By Lemma 4.1 in [16], (I − T ) is demiclosed on M and so the result from
Theorem 3.1. �

Remark 3.13. All results of this paper (3.1- 3.12 ) remain valid if we replace “S is set-
(ball-)condensing map” by either “S is strict-set contraction” or “S is nonlinear-set
contraction” or “S is nonlinear contraction [4]”(cf. Remarks 2.1-2.2[8]). Further,
we note that the new results obtained, provide iterative convergence scheme for
finding unique common fixed point of S and T ; we state and prove only one result
below; other results can be obtained similarly.

Theorem 3.14. Let M be a nonempty closed convex and bounded subset of an
ordered reflexive Banach space X and S : M → M be an affine and nonlinear con-
traction map with Sx ≽ 0 for each x ∈ M. Assume that T : M → M is continuous
1-set contractive (1-ball contractive) map and T and S satisfy the conditions (a) and
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(b) of Theorem 3.1. Then F (S) ∩ F (T ) = {x0 } and for each x ∈ M , the sequence
of Picard iterates {Snx} of S converges to x0 .

Proof. Since S is a nonlinear contraction, it is continuous and set-condensing (ball-
condensing). Thus by Theorem 3.1, S and T have a common fixed point x0 . Since
S has a unique fixed point, so S and T have a unique common fixed point x0 .
Further, by Theorem 2.2, for each x ∈ M , the sequence of Picard iterates {Snx} of
S converges to x0 which is the unique common fixed point of S and T. �

4. Applications

As an application of the results established in previous section, we develop here
the Ky Fan type approximation theorems which generalize results in [11, 12, 17, 18]
and many others. For any closed convex subset M of a Banach space X with
0 ∈ int(M), we define R : X → M by(see [17, 18])

Rx =

{
x if x ∈ M

x
p(x) if x /∈ M

where p is the Minkowski functional of M.

Theorem 4.1. Let M be a closed convex subset of an ordered reflexive Banach space
X and S : M → M be an affine continuous and set-condensing (or ball-condensing)
map with Sx ≽ 0 for each x ∈ M. Assume that T : M → X is continuous 1-set
contractive (or 1-ball contractive) map such that (I −RT ) is demiclosed at 0 where
R is a mapping defined above. Suppose that S and T are weakly isotone decreasing
whenever ST is defined and the following holds;

(c) RT (x) ≽ SRT (x), if Tx /∈ M .
Then there exists x0 ∈ M such that

p(x0 − Tx0) = p(Sx0 − Tx0) = dp(Tx0,M) = dp(Tx0, IM (x0)).

More precisely, either

(1) S and T have a common fixed point x0 ∈ M , or
(2) there exists x0 ∈ ∂M with

0 < p(Tx0 − Sx0) = p(Tx0 − x0) = dp(Tx0,M) = dp(Tx0, IM (x0)).

Proof. Clearly, R is continuous and R(A) ⊆ con({0} ∪ A) for any subset A of M
where “con(B)” denotes convex hull of the set B. As a result, R is a 1-set contractive
(1-ball contractive) map. Define f : M → M by fx = RoT (x) = RT (x). It is easy
to see that f is a continuous 1-set contractive (1-ball contractive) map. Now we
prove that f and S are weakly isotone. For any x ∈ M,

fSx = RTSx =

{
TSx ≼ Sx if TSx ∈ M

TSx
p(TSx) ≼

Sx
p(TSx) ≼ Sx if TSx /∈ M

Also,

fx = RTx = Tx ≽ STx = Sfx if Tx ∈ M

and by (c) fx ≽ Sfx if Tx /∈ M
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Thus f and S are weakly isotone. By Theorem 3.1, there exists x0 ∈ M such
that x0 = fx0 = Sx0. The proof is broken up into two cases.

(1) Suppose that Tx0 ∈ M. Then x0 = fx0 = RTx0 = Tx0. As a result of this,
we get:

p(x0 − Tx0) = p(Sx0 − Tx0) = 0 = dp(Tx0,M) and x0 is a common fixed point
of S and T.

(2) Suppose that Tx0 /∈ M. Then

x0 = fx0 = RTx0 =
Tx0

p(Tx0)
.

Thus for any x ∈ M , we have

p(Tx0 − Sx0) = p(Tx0 − x0) = p
(
Tx0 −

Tx0
p(Tx0)

)
= p

(p(Tx0)Tx0 − Tx0
p(Tx0)

)
=

(p(Tx0)− 1

p(Tx0)

)
p(Tx0)

= p(Tx0)− 1 ≤ p(Tx0)− p(x)

= p((Tx0 − x) + x)− p(x)

≤ p(Tx0 − x)

≤ inf{p(Tx0 − z) : z ∈ M} = dp(Tx0,M).

Consequently, p(Tx0 − Sx0) = p(Tx0 − x0) = dp(Tx0,M) and p(Tx0 − x0) > 0
since p(Tx0 − x0) = p(Tx0)− 1.
It remains to show that

p(Tx0 − x0) = dp(Tx0, IM (x0)).

For this, let z ∈ IM (x0)\M. Then there exist y ∈ M and a > 1 with z = x0 + a(y−
x0)( note if 0 ≤ a ≤ 1, then z = (1 − a)x0 + ay ∈ M). Assume that p(Tx0 − z) <
p(Tx0 − x0).

Clearly, 1
az + (1− 1

a)x0 = y ∈ M, so we have

p(Tx0 − y) = p
[1
a
(Tx0 − z) +

(
1− 1

a

)
(Tx0 − x0)

]
≤ 1

a
p(Tx0 − z) +

(
1− 1

a

)
p(Tx0 − x0)

< p(Tx0 − x0),

which contradicts the fact that p(Tx0 − x0) = dp(Tx0,M). Thus p(Tx0 − x0) ≤
p(Tx0 − z) for all z ∈ IM (x0). Further, note that p is continuous, so we have

p(Tx0 − x0) ≤ p(Tx0 − z) for all z ∈ IM (x0). This implies that p(Tx0 − x0) ≤
dp(Tx0, IM (x0)). Also we have equality since x0 ∈ IM (x0). Hence

0 < p(Tx0 − Sx0) = p(Tx0 − x0) = dp(Tx0,M) = dp(Tx0, IM (x0)).

It is well known that IM (x0) = X provided x0 ∈ int(M), so dp(Tx0, IM (x0)) = 0.
Thus x0 ∈ ∂M as desired. �
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Corollary 4.2. Let M be a closed ball with center at origin and radius r in an
ordered reflexive Banach space X and S : M → M be an affine continuous and
set-condensing (or ball-condensing) map with Sx ≽ 0 for each x ∈ M. Assume that
T : M → X is continuous 1-set contractive (or 1-ball contractive) map such that
(I − RT ) is demiclosed at 0. Suppose that S and T are weakly isotone decreasing
whenever ST is defined and

(d) RT (x) ≽ SRT (x), if ∥Tx∥ > r holds.

Then there exists x0 ∈ M such that

∥x0 − Tx0∥ = ∥Sx0 − Tx0∥ = d(Tx0,M) = d(Tx0, IM (x0)).

More precisely, the conclusion (1) or (2) of Theorem 4.1 holds with norm “∥.∥”
instead of Minkowski functional “p”.

Proof. It is clear that p(x) = ∥x∥
r is the Minkowski functional of M [19] and the

mapping R becomes

Rx =

{
x if ∥x∥ ≤ r

rx
∥x∥ if ∥x∥ > r

.

This is well known retraction map of X onto M [18]. Now apply Theorem 4.1 to
obtain the result. �

Corollary 4.3. Let M be a closed ball with center at origin and radius r in an
ordered reflexive Banach space X and S : M → M be an affine continuous and
set-condensing (or ball-condensing) map with Sx ≽ 0 for each x ∈ M. Assume that
T : M → X is continuous 1-set contractive (or 1-ball contractive) map such that
(I −RT ) is demiclosed at 0 where R is a retraction of X onto M . Suppose that S
and RT are weakly isotone decreasing on M . Then there exists x0 ∈ M such that

∥x0 − Tx0∥ = ∥Sx0 − Tx0∥ = d(Tx0,M) = d(Tx0, IM (x0)).

More precisely, the conclusion (1) or (2) of Theorem 4.1 holds with norm “∥.∥”
instead of Minkowski functional “p”.

Theorem 4.4. Let M, X,S , T and R be as in Theorem 4.1. Suppose that (I−RT )
is demiclosed at 0. Suppose that S and T are weakly isotone decreasing whenever
ST is defined and the condition (c) holds.

Moreover T satisfies one of the following conditions for each x ∈ ∂M, with x ̸=
Tx:

(i) p(Tx− y) < p(Tx− x) for some y in IM (x) ;

(ii) There is a λ such that |λ| < 1 and λx+ (1− λ)Tx ∈ IM (x);

(iii) Tx ∈ IM (x);
(iv) For each λ ∈ (0, 1), x ̸= λTx;
(v) There exists α ∈ (1,∞) such that, pα(Tx− x) ≥ pα(Tx)− 1;
(vi) There exists β ∈ (0, 1) such that, pβ(Tx− x) ≤ pβ(Tx)− 1.

Then F (S) ∩ F (T ) ̸= ∅.



KRASNOSEL′SKII AND FAN TYPE FIXED POINT RESULTS 485

Proof. Theorem 4.1, guarantees that either
(1) S and T have a common fixed point x0 ∈ M , or
(2) there exists x0 ∈ ∂M with

0 < p(Tx0 − Sx0) = p(Tx0 − x0) = dp(Tx0,M) = dp(Tx0, IM (x0)).

(i). Now suppose (2) holds. If x0 ̸= Tx0, then by the condition (i) , there exists

y ∈ IM (x) such that p(Tx0 − y) ≺ p(x0 − Tx0). This contradicts p(Tx0 − x0) =

dp(Tx0, IM (x0)).
(ii). Now suppose (2) holds. If x0 ̸= Tx0. Then the condition (ii) implies that

there is a λ such that |λ| < 1 and λx0 + (1− λ)Tx0 ∈ IM (x). By (2) we have

0 < p(Tx0 − x0) ≤ p (Tx0 − [λx0 + (1− λ)Tx0) = p (λ(Tx0 − x0)) = λp(Tx0 − x0)

< p(Tx0 − x0),

which is a contradiction.
If T satisfies the condition (iii), then T satisfies the condition (ii) by letting

λ = 0.
Suppose that T satisfies the condition (iv). Now suppose (2) holds and x0 ̸= Tx0.

Note that

x0 = fx0 = RTx0 =
Tx0

p(Tx0)

and p(Tx0) > 1 and this implies that
x0 = λ0x0 where λ0 =

1
p(Tx0)

∈ (0, 1). This contradicts the condition (iv).

Suppose that T satisfies the condition (v). Now suppose (2) holds and x0 ̸= Tx0.
Then the condition (v) implies that there exists α ∈ (1,∞) such that, pα(Tx−x) ≥
pα(Tx)− 1. Let λ0 =

1
p(Tx0)

. Note that λ0 ∈ (0, 1) and

(p(Tx0)− 1)α

pα(Tx0)
= (1− λ0)

α

< 1− (λ0)
α

=
pα(Tx0)− 1

pα(Tx0)

≤ pα(Tx0 − x0)

pα(Tx0)
.

This implies that p(Tx0 − x0) > p(Tx0) − 1, and this contradicts p(Tx0 − x0) =
p(Tx0)− 1. Further,

x0 = λ0x0 where λ0 = 1
p(Tx0)

∈ (0, 1). Hence Tx0 ∈ M and Sx0 = x0 = Tx0 as

desired.
Suppose that T satisfies the condition (vi). Using an argument similar to the one

employed for the condition (v), we obtain the desired result �
Corollary 4.5. Let M, X, S , T , R and (d) be as in Corollary 4.2. Suppose that
(I −RT ) is demiclosed at 0 and T satisfies one of the following conditions for each
x ∈ ∂M, with x ̸= Tx:

(i) ∥Tx− y∥ < ∥Tx− x∥ for some y in IM (x) ;

(ii) There is a λ such that |λ| < 1 and λx+ (1− λ)Tx ∈ IM (x);
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(iii) Tx ∈ IM (x);
(iv) For each λ ∈ (0, 1), x ̸= λTx;
(v) There exists α ∈ (1,∞) such that, ∥Tx− x∥α ≥ ∥Tx∥α − rα;

(vi) There exists β ∈ (0, 1) such that, ∥Tx− x∥α ≤ ∥Tx∥β − rβ.

Then F (S) ∩ F (T ) ̸= ∅.

Following the above ideas, it is possible to obtain approximation and fixed point
theorems in Hilbert spaces ( here the mapping R is replaced by the proximity map
P ).

Theorem 4.6. Let M be a nonempty closed convex subset of an ordered Hilbert
space H and S : M → M be an affine continuous and set-condensing (or ball-
condensing) map with Sx ≽ 0 for each x ∈ M. Assume that T : M → H is
continuous 1-set contractive (or 1-ball contractive) map such that (I−PT ) is demi-
closed at 0 where P is the proximity map on M. If S and PT are weakly isotone,
then there exists x0 ∈ M such that

∥x0 − Tx0∥ = ∥Sx0 − Tx0∥ = d(Tx0,M) = d(Tx0, IM (x0)).

More precisely, either
(1) S and T have a common fixed point x0 ∈ M , or (2) there exists x0 ∈ ∂M

with

0 < ∥Tx0 − Sx0∥ = ∥Tx0 − x0∥ = d(Tx0,M) = d(Tx0, IM (x0)).

Proof. Let P be the proximity map on M ; that is for each x ∈ H, we have,
∥Px− x∥ = d(x,M). It is well known that P is nonexpansive in H. Thus PT :
M → M is 1-set contractive (1-ball contractive) map. By Theorem 3.1, there exists
x0 ∈ M such that x0 = Sx0 = PTx0. Thus we obtain, as in Theorem 4.1, the
desired conclusion. �
Corollary 4.7. Let M be a nonempty closed convex subset in an ordered Hilbert
space H and S : M → M be an affine continuous and condensing map with Sx ≽ 0
for each x ∈ M. Assume that T : M → H is nonexpansive map. If S and PT are
weakly isotone, then there exists x0 ∈ M such that

∥x0 − Tx0∥ = ∥Sx0 − Tx0∥ = d(Tx0,M) = d(Tx0, IM (x0)).

More precisely, the conclusion (1) or (2) of Theorem 4.6 holds.

Proof. Let P be the proximity map of H onto M. Since P is nonexpansive, PT :
M → M is also nonexpansive and hence 1-set contractive map. Now by Browder’s
result [5], (I − PT ) is demiclosed at 0. Hence the proof by Theorem 4.6. �
Theorem 4.8. Let M be a nonempty closed bounded convex subset of an ordered
Hilbert space H and S : M → M be an affine continuous and condensing map with
Sx ≽ 0 for each x ∈ M. Assume that T : M → H is a continuous semicontractive
map. If S and PT are weakly isotone, then there exists x0 ∈ M such that

∥x0 − Tx0∥ = ∥Sx0 − Tx0∥ = d(Tx0,M) = d(Tx0, IM (x0)).

More precisely, the conclusion (1) or (2) of Theorem 4.6 holds.
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Proof. Let P be the proximity map ofH ontoM. Then PT :M → M is a continuous
semicontractive map. Now by Browder’s result [5], (I −PT ) is demiclosed at 0 (see
also Theorem 3.12(ii)). Since T is 1-ball contractive map so Theorem 4.6 implies
the conclusion. �

Theorem 4.9. Let M be a nonempty closed bounded convex subset of an ordered
Hilbert space H and S : M → M be an affine continuous and condensing map with
Sx ≽ 0 for each x ∈ M. Assume that T : M → H is a LANE map. If S and PT
are weakly isotone, then there exists x0 ∈ M such that

∥x0 − Tx0∥ = ∥Sx0 − Tx0∥ = d(Tx0,M) = d(Tx0, IM (x0)).

More precisely, the conclusion (1) or (2) of Theorem 4.6 holds.

Proof. Let P be the proximity map of H onto M. Since T is a LANE map and P
is nonexpansive, therefore PT : M → M is also a LANE map. As in Corollay 3.7,
(I −PT ) is demiclosed at 0 and T is 1-set contractive map. The result now follows
from Theorem 4.6. �

5. An example

Let’s consider the implicit integral equation

(5.1) p(t, x(t)) =

∫ 1

0
q(t, s, x(s))ds, t ∈ [0, 1],

where x ∈ Lp[0, 1], 1 < p < ∞. Integral equations like (5.1) were introduced by
Fec̆kan [10] and could occur in the study of nonlinear boundary value problems of
ordinary differential equations.

Let M be a nonempty closed convex subset of Lp[0, 1] partially ordered by the
closed convex cone

K = {x ∈ Lp[0, 1] : x(t) ≥ 0, a.e.}.

Let α denote the Kuratowski measure of noncompactness on Lp[0, 1] and b =
sup{∥x∥ : x ∈ M}. We assume the following:

(p1) p : [0, 1]×M → M .
(p2) ∥p(t, x(t))− p(t, y(t))∥ ≤ ∥x− y∥ for all x, y ∈ M .
(p3) p(t, s) ≤ s for all t ∈ [0, 1] and s ∈ [0, b].
(q1) q(t, s, x(s)) ≥ 0 on [0, 1]× [0, 1]×M .
(q2) q(t, s, kx(s)) ≤ k q(t, s, x(s)) for all k ∈ (0, 1].

(q3)
∫ 1
0 q(t, s, x(s)))ds ∈ M for all t ∈ [0, 1] and x ∈ M .

(q4) α(
∫ 1
0 q(·, ·, B(s))ds) < α(B(·)) for all bounded subsets B of M .

(q5) q(t, s, p(s, x(s))) ≤ p(t, x(t)) for all s, t ∈ [0, 1].

Define

(Tx)(t) = p(t, x(t)) and (Sx)(t) =

∫ 1

0
q(t, s, x(s))ds.

The condition (p2) implies that T : M → M is nonexpansive, so that I − T is
demiclosed on M ([22], Proposition 10.9) and T is 1-set contractive. By (q4), S is
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condensing , and Sx ≽ 0 for all x ∈ M by (q1). Furthermore, for k ∈ (0, 1],

S(kx)(t) =

∫ 1

0
q(t, s, kx(s))ds ≤ k

∫ 1

0
q(t, x(s))ds = k S(x)(t)

by (q2).
Using (p3) and (q5), respectively, we get∫ 1

0
q(t, s, x(s)))ds ≽ p(t,

∫ 1

0
q(t, x(s))ds),

and ∫ 1

0
q(t, p(s, x(s)))ds ≼

∫ 1

0
p(t, x(t))ds = p(t, x(t)).

Hence Sx ≽ TSx and Tx ≽ STx imply that S and T are weakly isotone decreasing.
Now we can apply Theorem 3.1 to conclude that the integral equation has a

solution in Lp[0, 1].
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