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CONVERGENCE OF INFINITE PRODUCTS OF

NONEXPANSIVE OPERATORS IN HILBERT SPACE

EVGENIY PUSTYLNIK, SIMEON REICH, AND ALEXANDER J. ZASLAVSKI

Abstract. Using angles between subspaces, we establish several convergence
theorems regarding infinite products of orthogonal projections and nonexpansive
operators in Hilbert space.

1. Introduction

Let {Ai}∞i=1 be a sequence of nonexpansive operators on a Hilbert space H with
inner product ⟨·, ·⟩ and induced norm ∥ · ∥. These operators need not be different
from each other. Our goal in this paper is to find conditions which imply the
convergence of the sequence {Pn}∞n=1, defined by Pn = AnAn−1 · · ·A1, n = 1, 2, . . . ,
in either the strong or uniform sense. Note that if all Ai = A, where A is a fixed
nonexpansive operator, then Pn = An for all natural numbers n.

If all the operators Ai are linear, then weak convergence is known to hold under
rather mild conditions [2], [1], [6]. At the same time, there are examples which show
that strong convergence may fail even if all the operators Ai are contractive in the
sense that ∥Aix−Aiy∥ < ∥x− y∥, x ̸= y. Here is one such example.

Example. Let {αi}∞i=1 and {βi}∞i=1 be two sequences of positive real numbers such
that all αi, βi < 1, and

∞∏
i=1

αi = a > 0,

∞∏
i=1

βi = 0.

Denoting by x = (x1, x2, . . .) an arbitrary element in l2, we define the following two
linear operators A,B : l2 → l2:

Ax = (0, α1x1, β1x2, . . . , αix2i−1, βix2i, . . .), x ∈ l2,

Bx = (0, β1x1, α1x2, . . . , βix2i−1, αix2i, . . .), x ∈ l2.

It is easy to see that ∥Ax∥ < ∥x∥, ∥Bx∥ < ∥x∥ for x ̸= 0 and that

lim
n→∞

∥Anx∥ = lim
n→∞

∥Bnx∥ = 0 for any x ∈ l2.

At the same time, for e1 = (1, 0, 0, . . .) and e2 = (0, 1, 0, . . .), one gets

∥(BA)ne1∥ =

n∏
i=1

α2
i −→ a2 ̸= 0
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and ∥(AB)ne2∥ → a2/α1 ̸= 0 too. Hence the sequences {(BA)ne1} and {(AB)ne2}
have no strong limits in l2.

The situation changes when some of operators Ai are orthogonal projections
PSi onto some closed linear subspaces Si ⊂ H. Any orthogonal projection P is
selfadjoint and idempotent; moreover, these two properties are sufficient for a given
linear operator onH to be an orthogonal projection onto some closed linear subspace
of H. The projection operators are not contractive in general, but they do have the
property that ∥Px∥ < ∥x∥ whenever Px ̸= x. Many properties and applications of
orthogonal projections and of their infinite products can be found in the monograph
[9] and in Chapter 9 of the monograph [4]. In what follows all subspaces are closed
linear subspaces of H.

It turns out that projection operators behave well when they are applied imme-
diately one after another and their compositions are repeated cyclically in the given
infinite product. One of the first (and apparently the strongest) results of this kind
is the result obtained by I. Halperin [12], which states that, for an arbitrary finite
set of subspaces S1, S2, . . . , Sk with intersection S and for any x ∈ H, one has

(1.1) lim
n→∞

∥(PSk
PSk−1

· · ·PS1)
nx− PSx∥ = 0

(the case k = 2 was proved much earlier by J. von Neumann [16]). Although
Halperin’s proof admits some extensions (e.g., to positive selfadjoint nonexpan-
sive operators; see [4, p. 234]), the repeated order of operators is essential to the
proof. Even a single change of the prescribed order or the inclusion of nonexpansive
operators of other kinds can destroy the proof, making strong convergence either
unproved or nonexistent [7, p. 104]. We remark in passing that a recent elementary
geometric proof of von Neumann’s classical theorem can be found in [15].

In the present paper we show that this drawback can in some cases be overcome
by using some stronger relations between the adjacent projections, described by
the “angles” between the corresponding subspaces. The concept of angles between
subspaces has a long history and many different definitions. Various applications to
correlation theory, computed tomography and mathematical statistics do not use
just one angle, but the set of principal angles for any separate pair of subspaces
(see, e.g., [3] and [13]). The same situation occurs in multidimensional geometry
[19]. There exists a spectral approach (via spectra of the operators PSPT ; see [14]),
where the set of all angles between two given subspaces is infinite. Even in the
definition of a single angle, one can use either the maximal or the minimal one, or
an angle which is optimal in some other sense (see, e.g., [5]).

In our considerations we adopt the definition of angles between subspaces given by
K. Friedrichs in [8], which turns out to be the most useful in the study of projections.
A rather full theory of such angles is given in [4], using various properties of products
of projection operators and the methods of Functional Analysis. For the reader’s
convenience, we give shorter and more elementary proofs of some needed facts,
using methods of three-dimensional geometry (not only for illustration but for the
complete proof); our approach is based on Lemma 2.3 below. Another key point of
our approach is that we do not prescribe any special order or the character of the
operators in the whole product; we are only concerned with some special segments
of this product. Consequently, we cannot state the rate of convergence of the given
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infinite product, which is the main rationale and the main application of the angles
between subspaces in [4] and many related works. Instead, we are only interested in
convergence. Of course, some estimates of the rate of convergence could be derived
from our results in the presence of sufficient information on all the other operators
participating in the infinite product, but this is outside the scope of the present
paper.

2. Angles between subspaces of Hilbert space

Let H be a real Hilbert space. As usual, for any x, y ∈ H, we define the angle
θ(x, y) ∈ [0, π] between x and y by

cos θ(x, y) =
⟨x, y⟩

∥x∥ · ∥y∥
,

where ⟨·, ·⟩ stands for the inner product in H. Let S be a closed linear subspace
of H and let PS denote the orthogonal projection of H onto S. Then, for any
x ∈ H which is not orthogonal to S, we define the angle θ(x, S) between x and S
as θ(x, PSx). When x ⊥ S we set θ(x, S) = π

2 (we also agree that θ(x, 0) = π
2 for

any x ̸= 0).

The following three simple lemmata (principles) will be widely used in our argu-
ments below.

Lemma 2.1 (principle of minimality). For every element x ∈ H and any subspace
S ⊂ H, we have θ(x, PSx) ≤ θ(x, y) for any y ∈ S; moreover, θ(x, S) ≤ π/2 and
θ(x, S) = 0 if and only if x ∈ S.

Proof. This assertion follows immediately from the inequality ∥x−PSx∥ ≤ ∥x−y∥,
y ∈ S. �
Lemma 2.2 (lemma on three perpendiculars). An element x ∈ H is orthogonal to
some z ∈ S if and only if PSx ⊥ z.

Proof. Using the fact that every orthogonal projection is self-adjoint, we obtain
⟨PSx, z⟩ = ⟨x, PSz⟩ = ⟨x, z⟩. Hence ⟨PSx, z⟩ and ⟨x, z⟩ have to vanish together. �
Lemma 2.3 (principle of geometric treatment). Given three vectors x, y, z ∈ H,
their properties (including lengths and angles) may be studied as if these vectors
were in R3, that is, using the standard geometric pictures and methods.

Proof. Indeed, the vectors x, y, z may be considered to belong to some three-
dimensional space L, where we can choose three orthogonal unit vectors e1, e2, e3.
This basis can be extended to a complete orthonormal basis of H, yielding a sub-
space M so that H = L⊕M . Since the inner product of vectors from L is obviously
independent of M , all properties involving vector lengths and angles may be studied
just in L. �

Now we can move on to the main topic of this section.

Definition 2.4. Let S and T be two subspaces of H such that none of them
coincides with S ∩ T . The angle θ(T, S) between these subspaces is defined to be
inf θ(x, S), where the infimum is taken over all x ∈ T such that x ⊥ (S ∩ T ).
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Alternatively, if at least one of subspaces S, T contains the other one, then we set
θ(T, S) = 0.

According to this definition, the angle between abstract subspaces is a natu-
ral generalization of the standard geometric angle between either two lines or two
planes, and even between a line and a plane in three-dimensional geometry. In spite
of the non-symmetric form of the definition, the angle, as defined above, is com-
pletely symmetric with respect to S and T . Indeed, by Lemma 2.2, the condition
x ⊥ (S ∩ T ) implies that PSx ⊥ (S ∩ T ) as well. Hence

θ(T, S) = inf{θ(x, y) : x ∈ T, y ∈ S, x, y ⊥ (S ∩ T )} = θ(S, T ).

Consequently, θ(x, PSx) ≥ θ(S, T ) for any x ∈ T such that x ⊥ (S ∩ T ) and
θ(y, PT y) ≥ θ(S, T ) for any y ∈ S such that y ⊥ (S ∩ T ).

In the rest of this section we always assume that S, T ̸= S∩T . We call the vectors
x ∈ T and y ∈ S admissible if they are orthogonal to S ∩ T ; only such vectors are
needed for the definition of θ(S, T ). Define

S = S◦ ⊕ (S ∩ T ) and T = T ◦ ⊕ (S ∩ T ),

where ⊕ means an orthogonal sum. Now the definition of θ(S, T ) may be rewritten
as

θ(S, T ) = inf{θ(x, y) : x ∈ T ◦, y ∈ S◦}.
The concept of the angle between vectors has its own useful properties, e.g., the

“triangle inequality” θ(x, y) ≤ θ(x, z) + θ(z, y) (see, e.g., [10, p. 151]). However,
in practical computations it is more convenient to use cos θ(x, y). This leads to the
relation

cos θ(S, T ) = sup{⟨x, y⟩ : x ∈ T ◦, y ∈ S◦, ∥x∥ ≤ 1, ∥y∥ ≤ 1}.
The main problem in the following applications is to check that θ(S, T ) > 0 for

two given subspaces S, T and thus cos θ(S, T ) < 1. The next example shows that
this property may not be so simple to ascertain.

Example. Let {ei}∞i=1 be an orthonormal basis in a Hilbert space H. We consider
two infinite dimensional subspaces S and T with the bases {un}∞n=1 and {vn}∞n=1,
respectively, defined for k = 0, 1, . . . by

u3k+1 =
1√
2
(e4k+1 − e4k+3), u3k+2 =

1√
2
(e4k+1 + e4k+3), u3k+3 = e4k+4,

v2k+1 = (cos
1

k
) e4k+1 + (sin

1

k
) e4k+2, v2k+2 = e4k+4.

It is a simple task to check that both bases {un} and {vn} are orthonormal and
that S ∩ T is the span of {e4k+4}. Thus S◦ is spanned by the basis {u3k+1, u3k+2}
and T ◦ is spanned by the basis {v2k+1}. Note in addition that, for any of the
basis vectors um ∈ S◦ and vn ∈ T ◦ thus obtained, their angles θ(um, vn) > π

4 ,

since ⟨um, vn⟩ < 1√
2
for all combinations of m,n. At the same time, the vectors

e4k+1 = 1√
2
(u3k+1 + u3k+2) ∈ S◦ for all k and ⟨e4k+1, v2k+1⟩ = cos 1

k → 1 as

k → ∞; hence θ(S, T ) = 0. Note, in conclusion, that this fact has not been
obtained by considering just the basis vectors, making the problem of deciding
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whether θ(S, T ) > 0 rather difficult in general. At this point, one should mention
the remarkable result of F. Deutsch (see [4, p. 222]), stating that θ(S, T ) > 0 if and
only if the subspace S + T is closed in H. This fact has many useful theoretical
consequences, but its practical verification is not easier than the initial problem.

The infinite dimensionality of all the spaces in this example is essential as shown
by the following assertion which was first mentioned in [8].

Theorem 2.5. If at least one of the spaces S◦ and T ◦ is finite dimensional, then
the angle between S and T is positive.

Proof. It is not difficult to see that θ(x, S) = θ(x, PSx) is continuous as a function
of x. Moreover, this function is independent of ∥x∥ and may be considered only
on the unit sphere of the subspace T ◦. If T ◦ is finite dimensional, then this sphere
is a compact set and the continuous function θ(x, S) attains its minimal value at
some point x0 of this sphere, that is, θ(T, S) = θ(x0, S). Thus we obtain that if
θ(T, S) = 0, then θ(x0, S) = 0 for some x0 ∈ T ◦ with ∥x0∥ = 1. But from Lemma
2.1 we know that this is possible only if x0 ∈ S and thus x0 ∈ S ∩ T ◦ = {0}, which
contradicts the property x0 ̸= 0 and proves our theorem. �

Of course, the hypothesis of this theorem holds if one of the spaces S or T is
finite dimensional.

The following assertion allows us to relate the properties of the angles between
subspaces with those between their orthogonal complements. It is mentioned in [4,
p. 224] without proof, but with the remark that “an elementary proof of this fact
seems fairly lengthy”. Since our proof is both short and elementary, we may hope
that it is new.

Theorem 2.6. θ(S, T ) = θ(S⊥, T⊥).

Proof. Note that we may only consider the case where both the angles θ(S, T ) and
θ(S⊥, T⊥) are positive, referring to Theorem 9.35 from the monograph [4], which
asserts that these angles must vanish together. Proceeding to the proof, we first of
all ascertain which of the vectors y1 ∈ S⊥ and y2 ∈ T⊥ are admissible for computing
θ(S⊥, T⊥). The condition y ⊥ (S⊥ ∩ T⊥) means that

y ∈ (S⊥ ∩ T⊥)⊥ = (S⊥)⊥ + (T⊥)⊥ = S + T ,

that is, a vector y is admissible for the couple S⊥, T⊥ if and only if it is orthogonal
to one of spaces S or T and belongs to the closure of the sum S + T .

Case 1. Let θ(S, T ) = π
2 . This means that θ(u, PTu) = θ(v, PSv) = π

2 for any

u ∈ S◦ and v ∈ T ◦, i.e., S◦ ⊥ T ◦. Consequently, S + T = S◦ ⊕ T = S ⊕ T ◦ and
a vector y1 from S + T is orthogonal to S if and only if y1 ∈ T ◦. Analogously, a
vector y2 from S + T is orthogonal to T if and only if y2 ∈ S◦. We obtain that
y1 ⊥ y2 for any admissible vectors y1 ∈ S⊥ and y2 ∈ T⊥, and thus θ(S⊥, T⊥) = π

2 ,
as required.

Case 2. Suppose now that θ(S, T ) < π
2 . This implies the existence of a vector

u1 ∈ T ◦ such that θ(u1, PSu1) = α < π
2 as well. Set PSu1 = u2 and PTu2 = u3.

Obviously, u2 ∈ S◦, u3 ∈ T ◦ and θ(u2, u3) = β ≤ α (the last inequality follows from
Lemma 2.1).
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Consider now the two vectors y1 = u1 − u2 and y2 = u3 − u2 which obviously
belong to S + T . By the definition of projections, y1 ⊥ S and y2 ⊥ T ; hence these
vectors are admissible for computing the angle between S⊥ and T⊥. We obtain that

cos θ(y1, y2) =
⟨u1 − u2, u3 − u2⟩
∥u1 − u2∥ ∥u3 − u2∥

=
⟨u2, u2 − u3⟩

∥u1∥ sinα ∥u2∥ sinβ
,

because (u3 − u2) ⊥ u1. Calculations yield

⟨u2, u2 − u3⟩ = ∥u2∥2 − ∥u2∥ ∥u3∥ cosβ = ∥u2∥2(1− cos2 β).

Hence

cos θ(y1, y2) =
∥u2∥ sinβ
∥u1∥ sinα

= cosα
sinβ

sinα
.

Therefore

(2.1) cos θ(S⊥, T⊥) ≥ cosα
sinβ

sinα
for any admissible u1 and the angles α, β as defined above.

By definition of the angle θ(S, T ), there is a sequence of vectors {u(n)1 } such that

the corresponding angles α(n) → θ(S, T ). Since α(n) ≥ β(n) ≥ θ(S, T ), we also

obtain that β(n) → θ(S, T ) and, passing to the limit on the right-hand side of (2.1)
(recall that θ(S, T ) ̸= 0), we see that

cos θ(S⊥, T⊥) ≥ cos θ(S, T ).

By the symmetry between S, T and S⊥, T⊥, we obtain the reverse inequality and
thus the required equality. �
Corollary 2.7. If at least one of the subspaces S or T is of finite codimension,
then θ(S, T ) > 0.

Proof. The hypothesis of the corollary means that at least one of the subspaces S⊥

or T⊥ is finite dimensional, a fact which by Theorem 2.5 implies that θ(S⊥, T⊥) > 0.
Theorem 2.6 now gives the same positive value for θ(S, T ). �

3. Uniform convergence

Consider now an infinite product of nonexpansive (possibly nonlinear) opera-
tors {Ai}, acting on a Hilbert space H, which are not necessarily different from
each other. The problem is to study the behavior of the partial products Bn =
AnAn−1 · · ·A1 when n → ∞. In this section we give some conditions which imply
the uniform convergence of Bn on (bounded subsets of) the space H. The main
assumption will be that some of the operators Ai (in fact, infinitely many) are
orthogonal projections onto given subspaces of H. To illustrate our methods, we
consider the case where the number of these subspaces is rather small.

Theorem 3.1. Let S and T be two subspaces of H with intersection F = S ∩ T ,
and let the angle θ(T, S) be positive. Let their intersection F = S ∩ T be invariant
under all the operators participating in a given infinite product

∏∞
i=1Ai of possi-

bly nonlinear nonexpansive operators and let at least one of compositions PSPT or
PTPS be present in this product infinitely many times. Then, for any initial point
x0 ∈ H, the corresponding partial products xn = Bnx0 form a sequence uniformly
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approaching F , that is, the distance ρ(xn, F ) = ∥xn − PFxn∥ → 0, uniformly over
any bounded set of initial points x0.

Proof. Let the given infinite product have infinitely many compositions of the form
PSPT . We are interested in the set of all natural numbers k such that

Ak+1 = PT and Ak+2 = PS .

It is clear that this set is a strictly increasing sequence of natural numbers which
we denote by {kn}∞n=1. Suppose that an iteration xkn has already been reached so
that the next iterations are xkn+1 = PTxkn and xkn+2 = PSxkn+1. We have

ρ(xkn+1, F ) = ∥xkn+1 − PFxkn+1∥ = ∥PTxkn − PFPTxkn∥
≤ ∥xkn − PFxkn∥ = ρ(xkn , F ),

since PFPT = PTPF , and analogously,

ρ(xkn+2, F ) = ∥xkn+2 − PFxkn+2∥ = ∥PS

(
xkn+1 − PFxkn+1

)
∥.

Now we observe that xkn+1 − PFxkn+1 = PT (xkn − PFxkn) ∈ T ; moreover, this
vector is orthogonal to F = S ∩ T . Therefore

∥PS

(
xkn+1 − PFxkn+1

)
∥ = ∥xkn+1 − PFxkn+1∥ cosα,

where α is the angle between the vector xkn+1 − PFxkn+1 and its projection onto
S. By definition, α ≥ θ(S, T ) and thus cosα ≤ cos θ(S, T ) = q < 1, which yields
ρ(xkn+2, F ) ≤ qρ(xkn+1, F ). Since the distance between the iterates and the set F
decreases, this implies that ρ(xkn+2, F ) ≤ qρ(xkn , F ).

Now let Q denote the product of all intermediate operators in the given infi-
nite product up to the next appearance of the composition PSPT , that is, Q =
Akn+1Akn+1−1 · · ·Akn+3. By the hypotheses of the theorem, it is a nonexpansive
operator and F = S ∩ T is an invariant subspace of Q. Using our notations, we
obtain that xkn+1 = Qxkn+2 and then

ρ(xkn+1 , F ) ≤ ∥xkn+1 −QPFxkn+2∥,
since QPFxkn+2 is a point of F . This implies that

ρ(xkn+1 , F ) ≤ ∥Qxkn+2 −QPFxkn+2∥
≤ ∥xkn+2 − PFxkn+2∥ = ρ(xkn+2, F ) ≤ qρ(xkn , F ).

Thus the theorem is proved, because any next appearance of PSPT adds one more
factor q < 1, independent of x0. �

Now we prove an extension of Theorem 3.1 to the case of three subspaces S, T
and U .

Theorem 3.2. Let the subspace F = S∩T ∩U be invariant under all nonexpansive
operators acting on a Hilbert space H and participating in a given infinite product.
Let the composition PUPTPS be present in this product infinitely many times. Fi-
nally, assume that the angles θ(S, T ) = α and θ(S ∩ T,U) = β are positive. Then,
for any initial point x0 ∈ H, the corresponding partial products form a sequence
{xn} such that limn→∞ ρ(xn, F ) = 0, uniformly over any bounded set of initial
points x0.
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Proof. As before, we consider the strictly increasing sequence {kn}∞n=1 of all numbers
kn such that

Akn+1 = PS , Akn+2 = PT , Akn+3 = PU .

Consider an iteration xkn reached just before an application of the composition
PUPTPS . Denote an = ρ(xkn , F ) = ∥xkn − PFxkn∥. The next iteration is xkn+1 =
PSxkn and then an+1 := ρ(xkn+1, F ) = ∥xkn+1 − PFxkn+1∥. But PFxkn+1 =
PFPSxkn = PFxkn , since F ⊂ S, that is, the point O = PFxkn is the nearest
point in F to the point A = xkn+1 as well as to the point xkn . Proceeding further,
we obtain analogously that the same point in F is the nearest one to the points
B = xkn+2 = PTxkn+1 and C = xkn+3 = PUxkn+2. Passing to geometric language,

we need to compare the lengths an+1 = |
−→
OA|, an+2 = |

−−→
OB| and an+3 = |

−−→
OC| with

an.
At the first step we readily obtain that

an+1 = ∥PS(xkn − PFxkn)∥ ≤ ∥xkn − PFxkn∥ = an.

Thereafter we define the point D = PS∩Txkn+1, obtaining the vector
−−→
OD ∈ S ∩ T ,

and (due to Lemma 2.3) restrict ourselves to the Euclidean space R3 containing the

vectors
−→
OA,

−−→
OB and

−−→
OD. In fact, we have to consider the faces of the tetrahedron

OABD. By construction, we get the following values of the angles:

]ODA = ]ODB = ]OBA = ]ABD =
π

2
, ]ADB = γ ≥ θ(S, T ) = α.

From the triangle △ODB we get OB2 = OD2 +DB2, from △ADB we get DB =
AD cos γ and from △ODA we get AD2 = OA2−OD2. Hence OB2 = OA2 cos2 γ+
OD2 sin2 γ. Setting OD = bn+1, we obtain the recursion formula

a2n+2 = a2n+1 cos
2 γ + b2n+1 sin

2 γ.

Since bn+1 = OD ≤ OB = an+1, it follows that an+2 ≤ an+1 ≤ an. Unfortunately,
this is, of course, not yet sufficient to conclude that an → 0.

Recall that for any three vectors x, y, z, we have the “triangle inequality for
angles” θ(x, y) ≤ θ(x, z) + θ(z, y) [10, p. 151]. For instance,

]DOC ≤ ]DOB + ]BOC.

But ]DOC ≥ θ(S ∩ T,U) = β, since
−−→
DO ⊥ (S ∩ T ) ∩ U . Hence at least one of

the angles ]DOB or ]BOC is no smaller than β/2. If ]BOC ≥ β/2, then from
△BOC with the right angle ∠BCO we get that OC ≤ OB cos(β/2), that is,

(3.1) an+3 ≤ q1an+2 ≤ q1an with q1 = cos(β/2) < 1.

Assume now that ]DOB ≥ β/2. Going back to △ODB of the tetrahedron
OABD, we get that DB ≥ OB sin(β/2). Then from △ADB we obtain that AB =
DB tan γ ≥ OB sin(β/2) tanα. Finally, we use the relation AB2 = AO2 − OB2

from △ABO, which yields the inequality

AO2 ≥ OB2(1 + sin2(β/2) tan2 α).

Passing to our initial notations, we obtain

(3.2) an+2 ≤ q2an+1, where q2 = (1 + sin2(β/2) tan2 α)−1/2.



INFINITE PRODUCTS 469

Note that an+3 ≤ an+2 in any case as a leg and the hypotenuse of △BOC. Thus,
setting q = max(q1, q2), we obtain from (3.1) and (3.2) that in all situations an+3 ≤
qan with q < 1. In the initial (algebraic) notations this means that ρ(xkn+3, F ) ≤
qρ(xkn , F ).

Since the last part of the proof is almost the same as the last part of the proof
of Theorem 3.1, it is omitted.

In some particular (extreme) cases the geometric picture may be slightly different

from the one described above. For example, the vector
−−→
AD could be orthogonal to T

so that D = B and the triangle △ADB degenerates. But in this case OD = bn+1 =
an+2 and from the hypotheses of the theorem we get immediately that an+3 ≤ qan+2

with q = cosβ < 1, as needed. The reader can easily modify the proof in other
similar cases. �

Remark 3.3. The conditions on the projection operators in Theorem 3.2 are fulfilled
if at least one of the subspaces S or T is finite-dimensional. Indeed, the subspace
S ∩T in this case is also finite-dimensional and both angles θ(S, T ) and θ(S ∩T,U)
are positive by Theorem 2.5.

Remark 3.4. If all the operators of the given infinite product commute with PF

and, for all of them, the subspace F is not only invariant, but consists exclusively
of common fixed points (e.g., all operators are projections), then, for any initial
point x0, the sequence of the corresponding iterations {xn}∞n=0 converges to the
best approximation PFx0 of x0. This is true for Theorem 3.1 as well.

4. Strong convergence

The results of the previous section show that, in the case where the products
of projections are uniformly convergent, the insertion of additional nonexpansive
operators into these products does not interfere with this property, and the new
infinite products continue to converge uniformly (over bounded subsets of H). The
situation changes if the convergence of projection products is not uniform. This
indeed happens in the setting of the theorems of von Neumann and Halperin when
not all relevant angles are positive. For example, Halperin’s theorem implies that
the sequence of operators Bn =

(
PU (PSPT )

k
)n

is strongly convergent for any fixed
k as n → ∞, even without any knowledge about the angle θ(S∩T,U). But this the-
orem does not apply if k changes from factor to factor and/or other non-projection
operators are incorporated into the definition of Bn. In this section we consider
some cases where the infinite product remains strongly convergent, even with these
changes present.

For our considerations, we need formula (1.1) for the case k = 2 in the form

(4.1) lim
n→∞

∥(PUPV )
nx− PU∩V x∥ = 0 for any x ∈ H,

where U and V are arbitrary subspaces of H. We need also the following assertion
from [17]:

Proposition 4.1. Let A : H → H be a nonexpansive operator and let F ⊂ H be a
closed set such that, for any given x ∈ H, ρ(Anx, F ) → 0. Let a sequence {xn} ⊂ H
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be such that, for each n = 1, 2, . . .,

∥xn+1 −Axn∥ ≤ γn,

∞∑
n=1

γn < ∞.

Then ρ(xn, F ) → 0. Moreover, if the sequence {Anx} is strongly convergent for
each x ∈ H, then ∥xn − x∗∥ → 0 for some point x∗ ∈ F (dependent on the sequence
{xn}).

Using this result, we prove, first of all, an auxiliary assertion.

Lemma 4.2. Let U and V be two subspaces of a Hilbert space H, and let Qn, n =
1, 2, . . ., be a sequence of nonexpansive operators on H such that, for all x ∈ H,

∥Qnx− PV x∥ ≤ γn∥x∥ ,
∞∑
n=1

γn < ∞.

Then, for any x ∈ H, there exists x∗ ∈ U ∩ V such that

(4.2) lim
n→∞

∥PUQnPUQn−1 · · ·PUQ1 x− x∗∥ = 0.

Proof. Let A = PUPV . Then formula (4.1) means that ρ(Anx, U ∩ V ) → 0 and the
sequence {Anx} is strongly convergent for any x ∈ H. Fix such an x and define a
sequence {xn} recursively by

x1 = x, xn+1 = PUQn xn, n = 1, 2, . . . .

Then

∥xn+1 −Axn∥ = ∥PU (Qnxn − PV xn)∥ ≤ ∥Qnxn − PV xn∥ ≤ γn∥xn∥.
But the hypotheses of the lemma imply that Qn(0) = 0 for any n and thus ∥Qnx∥ ≤
∥x∥ for any x ∈ H. Therefore ∥xn+1∥ ≤ ∥xn∥ and

∥xn+1 −Axn∥ ≤ γn∥x1∥ for all n = 1, 2, . . . .

Consequently, Proposition 4.1 yields a point x∗ ∈ U ∩V such that ∥xn+1−x∗∥ → 0.
By definition of the sequence {xn}, this coincides with (4.2). �

The next results are based on Lemma 4.2. They are obtained by using particular
realizations of the operators Qn.

Theorem 4.3. Let S, T and U be three subspaces of a Hilbert space H such that
the angle θ(S, T ) is positive. Let the nonexpansive operators An, n = 1, 2, . . . , be
such that all elements of the subspace V = S ∩ T are fixed points for each An. Let
a sequence of natural numbers {kn} be such that

(4.3)

∞∑
n=1

qkn < ∞ , where q = cos θ(S, T ).

Define the operators

Qn = An(PSPT )
kn , n = 1, 2, . . . .

Then, for any x ∈ H, there exists x∗ ∈ S ∩ T ∩ U such that

lim
n→∞

∥PUAn(PSPT )
knPUAn−1(PSPT )

kn−1 · · ·PUA1(PSPT )
k1x− x∗∥ = 0.



INFINITE PRODUCTS 471

Proof. By the hypotheses of the theorem any x ∈ V is a fixed point of An. Hence
AnPV x = PV x for any x ∈ H and thus

∥Qnx− PV x∥ = ∥An(PSPT )
knx−AnPV x∥ ≤ ∥(PSPT )

knx− PV x∥,

since An is a nonexpansive operator. The next arguments are similar to those in
the proof of Theorem 3.1. Namely, PV = PV PSPT , and thus

∥(PSPT )
knx− PV x∥ = ∥(PSPT )

knx− PV (PSPT )
kn−1x∥ = ∥PSPT y − PV y∥,

where we set y = (PSPT )
kn−1x. The vector PT (y − PV y) belongs to T and is

orthogonal to V = S ∩ T . Hence

∥PSPT y − PV y∥ = ∥PSPT (y − PV y)∥ ≤ ∥PT (y − PV y)∥ cos θ(S, T ) ≤ q∥y − PV y∥.

Proceeding inductively, we obtain that

∥(PSPT )
knx− PV x∥ ≤ qkn∥x− PV x∥ ≤ qkn∥x∥.

By condition (4.3), this inequality yields all the hypotheses of Lemma 4.2 and
therefore proves the theorem. �

Theorem 4.3 admits an interesting new application to Numerical Analysis. Sup-
pose we are interested in finding the point PS∩T∩Ux0 for some given x0 ∈ H. Due
to Halperin’s theorem we may use the iterations xn = (PUPSPT )

nx0 which con-
verge to the needed point. Suppose the subspace U is such that any computation
of the projection PU is much harder in comparison with the other two projections.
Omitting all An, we see that, in the case where θ(S, T ) > 0, Theorem 4.3 provides
us with another iteration process, namely,

xN = PU (PSPT )
knPU (PSPT )

kn−1 · · ·PU (PSPT )
k1x0, N = n+

n∑
i=1

ki ,

with arbitrarily quickly increasing kn and, correspondingly, arbitrarily rare compu-
tations of PU . Indeed, in the absence of all non-projection operators, the point x∗

from Theorem 4.3 obviously coincides with PS∩T∩Ux0.

Using the methods of Theorem 3.2, we can generalize the result of Theorem 4.3
to the intersection of four subspaces.

Theorem 4.4. Let S, T, U and W be four subspaces of a Hilbert space H such that
the angles θ(S, T ) = α > 0 and θ(S∩T,U) = β > 0. Let the nonexpansive operators
An, n = 1, 2, . . . , be such that all elements of the subspace V = S ∩ T ∩U are fixed
points of each An. Let a sequence of natural numbers {kn} be such that

(4.4)
∞∑
n=1

qkn < ∞ , where q = max{cos(β/2), (1 + sin2(β/2) tan2 α)−1/2}.

Define the operators

Qn = An(PUPSPT )
kn , n = 1, 2, . . . .
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Then, for any x ∈ H, there exists x∗ ∈ S ∩ T ∩ U ∩W such that

lim
n→∞

∥PWAn(PUPSPT )
knPWAn−1(PUPSPT )

kn−1

· · ·PWA1(PUPSPT )
k1x− x∗∥ = 0.

After computing q for (4.4) in accordance with the constructions in the proof of
Theorem 3.2, the remaining part of the proof of this theorem is very similar to that
of Theorem 4.3 and therefore we omit it.

Proposition 4.1 (and the arguments in [18]) also prove to be useful in the case
of uniform convergence. They lead to an improvement of Theorems 3.1 and 3.2
other than the one mentioned in Remark 3.4, omitting the requirement that the
operators An and PF commute. As before, we obtain that the sequence of iterations
{xn} not only approaches the intersection F , but converges to some point x∗ ∈ F .
Unfortunately, we cannot now assert that x∗ coincides with the best approximation
PFx0 of the initial point x0.

The following discussion does not depend on the number of subspaces and on the
particular estimate of the factor q. In order to unify the proof, we denote by P the
product PSPT in the case of Theorem 3.1 with q defined as in (4.3). In the case of
Theorem 3.2 the same P will mean the product PSPTPU with q defined as in (4.4).
The main inequalities obtained in the course of the proofs of Theorems 3.1 and 3.2
can now be written in the same form:

(4.5) ∥Px− PFx∥ ≤ q∥x− PFx∥ for any x ∈ H.

Theorem 4.5. Let x0 ∈ H be an arbitrary initial point for the sequence of iterations

xn =

n∏
i=1

(AiP)x0, n = 1, 2, . . . ,

where all Ai are nonexpansive operators such that all points of the subspace F are
their fixed points. Let inequality (4.5) be satisfied with some q < 1. Then there
exists x∗ ∈ F such that limn→∞ ∥xn − x∗∥ = 0, uniformly over any bounded set of
initial points x0.

Proof. Take the operator P as the operator A in Proposition 4.1. Since PFPx =
PFx for any x ∈ H, we readily obtain from (4.5) that

∥Pnx− PFx∥ ≤ q∥Pn−1x− PFx∥ ≤ · · · ≤ qn∥x− PFx∥ −→ 0

as n → ∞. Thus the sequence {Pnx} is strongly convergent for each x ∈ H
(uniformly over any bounded set of initial points), and so the conditions imposed
on the operator A in Proposition 4.1 are satisfied. We claim that the sequence of
iterations {xn} also satisfies all needed conditions. Indeed, since An+1PF = PF , we
have

∥xn+1 − Pxn∥ = ∥An+1Pxn −Pxn∥
≤ ∥An+1Pxn −An+1PFxn∥+ ∥Pxn −An+1PFxn∥
≤ 2∥Pxn − PFxn∥ ≤ 2q∥xn − PFxn∥.
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The properties of projections imply that

∥xn − PFxn∥ ≤ ∥xn − PFxn−1∥ = ∥AnPxn−1 −AnPFxn−1∥ ≤ q∥xn−1 − PFxn−1∥,
and proceeding by induction we arrive at the final estimate

∥xn+1 − Pxn∥ ≤ 2qn+1∥x0 − PFx0∥ = γn,

which provides all needed properties of the sequence {xn}. The claim concerning
uniform convergence over any bounded set of initial points follows as in [18]. �

Before finishing the paper, we would like to make a few comments regarding
conditions (4.3) and (4.4), which were imposed on the sequence {ki}∞i=1. If all ki
are different from each other, both conditions are obviously fulfilled. If at least one
of the values of ki is repeated infinitely many times, then both series in (4.3) and
(4.4) are divergent. Suppose now that every value n ∈ N is repeated among all {ki}
exactly mn times (some mn could be zero). Then

∑
qki =

∑
mnq

n, that is, we
obtain a convergence problem for a power series and it is enough to require that
lim sup n

√
mn < 1/q. But algorithms for the computation of angles between given

subspaces (and thus the computation of q) have not yet been developed (in the case
of finite dimensional subspaces some explicit formulas can be found in [11]). At the
same time, the mere verification of positivity of the needed angles might be much
simpler and the inequality lim sup n

√
mn ≤ 1 covers all these cases.
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