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ANOTHER NOTE ON THE VON NEUMANN ALTERNATING

PROJECTIONS ALGORITHM

EVA KOPECKÁ AND SIMEON REICH

Abstract. We present another elementary geometric proof of von Neumann’s
classical convergence theorem regarding alternating orthogonal projections in
Hilbert space. In contrast with previous proofs, this time our argument is based
on the two-dimensional case.

1. Introduction

A few years ago we presented [6] an elementary geometric proof of von Neu-
mann’s classical convergence theorem regarding alternating orthogonal projections
in Hilbert space. The main purpose of the present note is to present another ele-
mentary geometric proof of this seminal result. In contrast with previous proofs,
this time our argument is based on a reduction to the two-dimensional case.

Let S1 and S2 be two closed subspaces of a real Hilbert space (H, ⟨·, ·⟩), and let
P1 : H 7→ S1 and P2 : H 7→ S2 be the corresponding orthogonal projections of H
onto S1 and S2, respectively. Denote by N = {0, 1, 2, . . . } the set of nonnegative
integers. Let x0 be an arbitrary point in H, and define the sequence {xn : n ∈ N}
of alternating projections by

(1.1) x2n+1 = P1x2n and x2n+2 = P2x2n+1,

where n ∈ N.

Theorem 1.1. The sequence {xn : n ∈ N} defined by (1.1) converges in norm as
n → ∞ to PSx0, where PS : H 7→ S is the orthogonal projection of H onto the
intersection S = S1 ∩ S2.

This is von Neumann’s classical theorem [8, p. 475]. It was rediscovered by
several other authors; see, for example, [1], [7] and [10]. More information regarding
this theorem and its manifold applications can be found in [3] and the references
mentioned therein. Other proofs of Theorem 1.1 can be found, for instance, in [4],
[9], [2] and [6]. We take this opportunity to note that on line 6 of [6, p. 383], the
set on the right-hand side of the equality should be intersected with D.

We begin the next section of our paper with an orthogonal decomposition lemma
[5] and then continue with two simple lemmata regarding alternating projections
between two lines. Section 3 is devoted to several lemmata concerning alternating
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projections between two finite-dimensional subspaces. These results lead in Section
4 to a key estimate which, in its turn, yields a proof of Theorem 1.1 itself.

2. Lines and planes

We first present an orthogonal decomposition lemma [5]. It shows that any two
finite-dimensional subspaces X, Y ⊂ H with 1 ≤ dimX = m ≤ n = dimY possess
orthonormal bases {ei}mi=1 and {fi}ni=1, respectively, so that X + Y can be written
as a sum of the following pairwise orthogonal, at most two-dimensional, subspaces
defined by the basis vectors:

(2.1) span {e1, f1} ⊕ · · · ⊕ span {em, fm} ⊕ span {fm+1} ⊕ · · · ⊕ span {fn}.

Lemma 2.1. Let X and Y be two subspaces of H with 1 ≤ dimX = m ≤ n =
dimY . Then there exist orthonormal bases {ei}mi=1 and {fi}ni=1 of X and Y , respec-
tively, and 0 ≤ k ≤ m so that

(i) ei = fi if and only if i ≤ k;
(ii) the at most two-dimensional spaces span {ei}, i ≤ k, span {ei, fi}, k < i ≤

m, and span {fi}, m < i ≤ n, are all pairwise orthogonal.

We continue with two simple lemmata concerning alternating projections between
two lines.

Lemma 2.2. Let e and f be two unit vectors in a Hilbert space H, and let Pe

and Pf be the two orthogonal projections of H onto the lines spanned by e and

f , respectively. Let u ∈ span {e} and uk = (PfPe)
ku, k ∈ N. Then |u − uk|2 ≤

|u|2 − |uk|2 for all k ∈ N.

Proof. We have ⟨u − u1, f⟩ = 0 and uk = tkf with sign tk = sign t1 and |tk| ≤ |t1|
for all k ≥ 1. Consequently, we also have |u|2 = |u− uk|2 + 2⟨u− uk, uk⟩+ |uk|2 =
|u−uk|2+2⟨u− tkf, tkf⟩+ |uk|2 = |u−uk|2+2⟨u1− tkf, tkf⟩+ |uk|2 = |u−uk|2+
2(t1 − tk)tk + |uk|2 ≥ |u− uk|2 + |uk|2 for all k ≥ 1, as asserted. �

Lemma 2.3. Let e and f be two unit vectors in a Hilbert space H, and let Pe and
Pf be the orthogonal projections of H onto the lines spanned by e and f , respectively.

Let v ∈ H and vk = (PfPe)
kv, k ∈ N. Then |v− vk|2 ≤ 2(|v|2− |vk|2) for all k ∈ N.

Proof. Let u = Pev and uk = (PfPe)
ku, k ∈ N. Then uk = vk, k ≥ 1, and it follows

from the triangle inequality and Lemma 2.2 that |v−vk|2 ≤ 2(|v−u|2+ |u−vk|2) =
2(|v − u|2 + |u − uk|2) = 2(|v|2 − |u|2 + |u − uk|2) ≤ 2(|v|2 − |u|2 + |u|2 − |uk|2) =
2(|v|2 − |uk|2) = 2(|v|2 − |vk|2) for all k ≥ 1, as claimed. �

3. Alternating projections

In this section we collect several lemmata regarding alternating projections be-
tween two finite-dimensional subspaces. We first provide representations of the
composition of two orthogonal projections and its iterates.
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Lemma 3.1. Let X and Y be two finite-dimensional subspaces of a Hilbert space
H with m = dimX ≤ dimY = n, and let

(3.1) X + Y = E1 ⊕ E2 ⊕Em ⊕ · · · ⊕ En

be the decomposition obtained in Lemma 2.1. Let Qj : H 7→ Ej be the orthogonal
projection onto Ej, 1 ≤ j ≤ n, Pi = PfiPei, 1 ≤ i ≤ m, and set P = PY PX . Then

(3.2) Pz =

m∑
i=1

PiQiz

for all z ∈ H.

Proof. Fix a point z ∈ H. For each 1 ≤ j ≤ n, let Qjz = αjej + βjfj , 1 ≤ j ≤ n,

where αj = 0 for m < j ≤ n. We have PX(Qjz) =
m∑
i=1

⟨Qjz, ei⟩ei =
m∑
i=1

⟨αjej +

βjfj , ei⟩ei = [αj⟨ej , ej⟩ + βj⟨ej , fj⟩]ej = (αj + βj⟨ej , fj⟩)ej , 1 ≤ j ≤ m, and hence
PXz =

∑n
j=1 PX(Qjz) =

∑m
i=1(αi + βi⟨ei, fi⟩)ei. Therefore

Pz = PY PXz

=
n∑

j=1

(
m∑
i=1

(αi + βi⟨ei, fi⟩)⟨ei, fj⟩)fj

=
m∑
j=1

(αj + βj⟨ej , fj⟩)⟨ej , fj⟩fj .

On the other hand, for each 1 ≤ i ≤ m,

Pi(Qiz) = PfiPei(αiei + βifi)

= Pfi(αi⟨ei, ei⟩ei + βi⟨ei, fi⟩ei)
= Pfi(αiei + βi⟨ei, fi⟩ei)
= αi⟨ei, fi⟩fi + βi⟨ei, fi⟩⟨ei, fi⟩fi,

and the result follows. �
In the next three lemmata and in their proofs we continue to use the notations

of Lemma 3.1.

Lemma 3.2. For each k ≥ 1 and z ∈ H,

(3.3) P kz =

m∑
i=1

P k
i (Qiz).

Proof. We use induction on k. For k = 1 this equality holds by Lemma 3.1. Assume
it is true for a certain natural number k. Then

P k+1z = P (
m∑
i=1

P k
i (Qiz)) =

m∑
i=1

Pi(Qi(
m∑
j=1

P k
j (Qjz)))

=

m∑
i=1

PiP
k
i (Qiz) =

m∑
i=1

P k+1
i (Qiz),

as required. �
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Lemma 3.3. For each k ≥ 1, z ∈ H and 1 ≤ i ≤ m,

(3.4) P k
i Qiz = QiP

kz.

Proof. By Lemma 3.2 we have P kz =
m∑
j=1

P k
j (Qjz) and therefore QiP

kz = P k
i Qiz,

as claimed. �
Lemma 3.4. For each k ∈ N and z ∈ H,

(3.5) |z − P kz|2 ≤ 2(|z|2 − |P kz|2).

Proof. Fix z ∈ H. Then z =
m∑
i=1

Qiz + y, where the point y ∈ H is orthogonal to

E1 ⊕ E2 ⊕ · · · ⊕ Em. Therefore

|z − P kz|2 = |
m∑
i=1

Qiz + y −
m∑
i=1

P k
i (Qiz))|2 = |

m∑
i=1

(Qiz − P k
i (Qiz)) + y|2

=

m∑
i=1

|Qiz − P k
i (Qiz)|2 + |y|2 ≤ 2

m∑
i=1

(|Qiz|2 − |P k
i (Qiz)|2) + |y|2

= 2

m∑
i=1

(|Qiz|2 − |QiP
kz|2) + |y|2 = 2(|z|2 − |y|2 − |P kz|2) + |y|2

= 2(|z|2 − |P kz|2)− |y|2 ≤ 2(|z|2 − |P kz|2),
where we have used Lemmata 3.2, 2.3 and 3.3. �
Remark 3.5. In the setting of Lemma 3.1, let Ri = PeiPfi , 1 ≤ i ≤ m, and set
R = PXPY . Then analogous computations to those used in the proofs of Lemmata
3.1, 3.2, 3.3 and 3.4 lead to the following facts:

(3.6) Rz =
m∑
i=1

RiQiz, z ∈ H;

(3.7) Rkz =
m∑
i=1

Rk
i (Qiz), k ≥ 1, z ∈ H;

(3.8) Rk
iQiz = QiR

kz, k ≥ 1, z ∈ H, 1 ≤ i ≤ m;

(3.9) |z −Rkz|2 ≤ 2(|z|2 − |Rkz|2), k ≥ 1, z ∈ H.

4. Convergence

In this section we first prove a key estimate and then Theorem 1.1 itself.

Proposition 4.1. Let the sequence {xn : n ∈ N} be defined by (1.1), and let p and
r belong to N. Then

(4.1) |xr − xr+p|2 ≤ 4(|xr|2 − |xr+p|2).
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Proof. We may assume without any loss of generality that xr+1 ∈ S1. Assume first
that p = 2k for some k ≥ 1. Let

(4.2) X := span {xr+1, xr+3, . . . , xr+2k+1} ⊂ S1

and

(4.3) Y := span {xr+2, xr+4, . . . , xr+2k} ⊂ S2.

Then xr+2k = (P2P1)
kxr = (PY PX)kxr. Hence

|xr − xr+p|2 = |xr − xr+2k|2 ≤ 2(|xr|2 − |xr+2k|2) = 2(|xr|2 − |xr+p|2)

by Lemma 3.4 and Remark 3.5.
Assume now that p = 2k + 1 for some k ≥ 1. Then

|xr − xr+p|2 = |xr − xr+2k+1|2

≤ 2(|xr − xr+2k|2 + |xr+2k − xr+2k+1|2)
= 2(|xr − xr+2k|2 + |xr+2k|2 − |xr+2k+1|2)
≤ 2(2(|xr|2 − |xr+2k|2) + |xr+2k|2 − |xr+2k+1|2),

where we have used the previous case (that is, p = 2k). Hence

|xr − xr+p|2 ≤ 2(2|xr|2 − |xr+2k|2 − |xr+2k+1|2)
≤ 2(2|xr|2 − 2|xr+2k+1|2)
= 4(|xr|2 − |xr+2k+1|2)
= 4(|xr|2 − |xr+p|2),

(4.4)

as asserted. �

Alternatively, when p = 2k + 1 we have

|xr − xr+p|2 = |xr − xr+2k+1|2

≤ 2(|xr − xr+1|2 + |xr+1 − xr+2k+1|2)

= 2(|xr|2 − |xr+1|2 + |xr+1 − (P1P2)
kxr+1|2)

= 2(|xr|2 − |xr+1|2 + |xr+1 − (PXPY )
kxr+1|2)

≤ 2(|xr|2 − |xr+1|2 + 2(|xr+1|2 − |xr+2k+1|2))
= 2(|xr|2 + |xr+1|2 − 2|xr+2k+1|2)
≤ 2(2|xr|2 − 2|xr+2k+1|2)
= 4(|xr|2 − |xr+2k+1|2)
= 4(|xr|2 − |xr+p|2).

Proof of Theorem 1.1. Since the numerical sequence {|xn| : n ∈ N} decreases to its
limit as n → ∞, Proposition 4.1 shows that {xn : n ∈ N} is a Cauchy sequence
which converges in norm as n → ∞ to PSx0 by part (c) of [6, Lemma 2.1]. �
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Alternatively, once we know that

|xr − xr+2k|2 ≤ 2(|xr|2 − |xr+2k|2),
we have

(4.5) |x2m − x2(m+k)|2 ≤ 2(|x2m|2 − |x2(m+k)|2),
so x2m = (P2P1)

mx0 → z, a fixed point of P2P1, as m → ∞. This limit z clearly
belongs to S2. If z were not in S1, then we would obtain |P2P1z| ≤ |P1z| < |z|, a
contradiction. Thus z ∈ S1, x2m+1 = P1x2m → P1z = z as m → ∞, and the whole
sequence {xn : n ∈ N} converges in norm as n → ∞ to z = PSx0, as claimed.
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Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Prague, Czech Republic;
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