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ON QUASI-VARIATIONAL INCLUSIONS AND
ASYMPTOTICALLY STRICT PSEUDO-CONTRACTIONS

XIAOLONG QIN, JUNG IM KANG, AND YEOL JE CHO∗

Abstract. In this paper, quasi-variational inclusions and fixed point problems
are considered. A general iterative process is introduced for finding a common
element in the zero set of the sum of maximal monotone operators and inverse
strongly-monotone mappings and the fixed point set of asymptotically strict
pseudo-contractions. Further, weak convergence theorems for common elements
in two sets mentioned above are established in real Hilbert spaces.

1. Introduction and preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with the
inner product 〈·, ·〉 and the norm ‖ ·‖. Let C be a nonempty closed convex subset of
H. Let S : C → C be a mapping and F (S) denote the fixed point set of S. Recall
the following definitions:

(1) S is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

(2) S is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂
[1,∞) with kn → 1 as n →∞ such that

‖Snx− Sny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [7] in 1972. It is known that, if C is a nonempty bounded closed convex
subset of a Hilbert space space H, then every asymptotically nonexpansive self-
mapping has a fixed point. Further, the set F (S) of fixed points of S is closed and
convex. Since 1972, a host of authors have studied the weak and strong convergence
problems of iterative processes for such a class of mappings.

(3) S is said to be strictly pseudo-contractive if there exists a constant κ ∈ [0, 1)
such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C.
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For such a case, S is also said to be κ-strict pseudo-contraction. The class of
strict pseudo-contractions was introduced by Browder and Petryshyn [3] in 1967.
It is clear that every nonexpansive mapping is a 0-strict pseudo-contraction.

(4) S is called an asymptotically strict pseudo-contraction if there exist a sequence
{kn} ⊂ [1,∞) with kn → 1 as n →∞ and a constant κ ∈ [0, 1) such that

‖Snx− Sny‖2 ≤ kn‖x− y‖2 + κ‖(I − Sn)x− (I − Sn)y‖2, ∀x, y ∈ C, n ≥ 1.

For such a case, S is also called an asymptotically κ-strict pseudo-contraction.
The class of asymptotically strict pseudo-contractions is introduced by Qihou [21] in
1996. It is clear that every asymptotically nonexpansive mapping is an asymptotical
0-strict pseudo-contraction.

(5) Let A : C → H be a mapping. A is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

(6) A is said to be inverse strongly-monotone if there exists a constant α > 0
such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse strongly monotone.

Let M : H → 2H be a set-valued mapping. The set D(M) defined by D(M) =
{x ∈ H : Mx 6= ∅} is called the domain of M. The set R(M) defined by R(M) =
∪x∈HMx is called the range of M. The set G(M) defined by G(M) = {(x, y) ∈
H ×H : x ∈ D(M), y ∈ R(M)} is called the graph of M.

(7) M is said to be monotone if

〈x− y, f − g〉 > 0, ∀(x, f), (y, g) ∈ G(M).

(8) M is said to be maximal monotone if it is not properly contained in any other
monotone operator. Equivalently, M is maximal monotone if R(I + rM) = H for
all r > 0.

The class of monotone mappings is one of the most important classes of mappings
among nonlinear mappings. For a maximal monotone operator M on H and r > 0,
we may define the single-valued resolvent Jr = (I + rM)−1 : H → D(M). It is
known that Jr is firmly nonexpansive and M−1(0) = F (Jr), where F (Jr) denotes
the fixed point set of Jr.

On the other hand, recall that the classical variational inequality problem is to
find x ∈ C such that

(1.1) 〈Ax, y − x〉 ≥ 0, ∀y ∈ C.

Denote by V I(C,A) the solution set of the problem (1.1). It is known that x ∈ C
is a solution of the problem (1.1) if and only if x is a fixed point of the mapping
PC(I − λA), where λ > 0 is a constant and I is the identity mapping.

Recently, many authors have considered the weak convergence of the iterative
sequences for the variational inequality (1.1) and fixed point problems of nonlinear
mappings (see, for example, [1, 5, 8-11, 13, 14, 16-20, 25-27]).
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For finding a common element in the solution set of the variational inequality
(1.1) and the fixed point set of nonexpansive mappings, Takahashi and Toyoda [26]
proved the following weak convergence theorem:

Theorem 1.1. Let C be a closed convex subset of a real Hilbert space H. Let A
be an α-inverse strongly-monotone mapping of C into H and S be a nonexpansive
mapping of C into itself such that F (S) ∩ V I(C,A) 6= ∅. Let {xn} be the sequence
generated by{

x0 ∈ C,

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), ∀n ≥ 0,

where λn ∈ [a, b] for some a, b ∈ (0, 2α) and αn ∈ [c, d] for some c, d ∈ (0, 1). Then
the sequence {xn} converges weakly to a point z ∈ F (S) ∩ V I(C,A), where

z = lim
n→∞

PF (S)∩V I(C,A)xn.

Let S : C → C be an asymptotically strict pseudo-contraction, A : C → H be
an α-inverse strongly-monotone mapping, M : H → 2H be a maximal monotone
operator such that D(M) ⊂ C, where D(M) is the domain of M , B : C → H be
a β-inverse strongly-monotone mapping and W : H → 2H be a maximal monotone
operator such that D(W ) ⊂ C, where D(W ) is the domain of W .

In this paper, motivated by Theorem 1.1, we consider the problem of finding a
common element in the following set:

F (S) ∩ (A + M)−1(0) ∩ (B + W )−1(0),

where (A + M)−1(0) is the zero point set of A + M and (B + W )−1(0) is the zero
point set of B + W , prove some weak convergence theorems of common elements
are established in real Hilbert spaces. The results presented in this paper improve
and extend the corresponding results announced by Takahashi and Toyoda [26] and
others.

In order to prove our main results, we also need the following lemmas:

Lemma 1.2 ([12]). Let C be a nonempty closed convex subset of a Hilbert space H
and S : C → C be an asymptotically κ-strict pseudo-contraction. Then

(1) S is Lipschitz continuous.
(2) I − S is demi-closed, this is, if {xn} is a sequence in C with xn ⇀ x and

xn − Sxn → 0, then x ∈ F (S).

Lemma 1.3 ([24]). Let H be a Hilbert space and 0 < p ≤ tn ≤ q < 1 for all n ≥ 1.
Suppose that {xn} and {yn} are sequences in H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and
lim

n→∞
‖tnxn + (1− tn)yn‖ = r

for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.
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Lemma 1.4 ([2]). Let C be a nonempty closed convex subset of a Hilbert space H
and A : C → H be a mapping and M : H → 2H be a maximal monotone mapping.
Then

F (Jr(I − rA)) = (A + M)−1(0), ∀r > 0.

Lemma 1.5. In a real Hilbert space H, the following inequality holds:

‖ax + (1− a)y‖2 = a‖x‖2 + (1− a)‖y‖2 − a(1− a)‖x− y‖2, ∀a ∈ [0, 1], x, y ∈ H.

Lemma 1.6 ([28]). Let {an}, {bn} and {cn} be three nonnegative sequences satis-
fying the following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞

n=1 bn < ∞ and
∑∞

n=1 cn < ∞. Then the
limit limn→∞ an exists.

2. Main results

Now, we give our main results in this paper.

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, S : C → C be an asymptotically κ-strict pseudo-contraction with the sequence
{kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞, A : C → H be an α-inverse strongly

monotone mapping and B : C → H be a β-inverse strongly monotone mapping.
Let M : H → 2H and W : H → 2H be maximal monotone operators such that
D(M) ⊂ C and D(W ) ⊂ C, respectively. Assume that F := F (S)∩ (A+M)−1(0)∩
(B + W )−1(0) 6= ∅. Let {xn} be the sequence generated in the following manner:

x0 ∈ C,

zn = Jsn(xn − snBxn),
yn = Jrn(zn − rnAzn),
xn+1 = αnxn + (1− αn)

(
βnyn + (1− βn)Snyn

)
, ∀n ≥ 0,

where Jrn = (I + rnM)−1, Jsn = (I + rnW )−1, {rn} is a sequence in (0, 2α), {sn}
is a sequence in (0, 2β) and {αn} and {βn} are sequences in [0, 1]. Assume that the
following restrictions are satisfied:

(a) 0 < a ≤ αn ≤ b < 1, where a, b ∈ R are two constants;
(b) 0 ≤ κ ≤ βn ≤ c < 1, where c ∈ R is a constant;
(c) d ≤ rn ≤ e and f ≤ sn ≤ g, where 0 < d < e < 2α and 0 < f < g < 2β are

four constants.
Then the sequence {xn} converges weakly to a point x̄ ∈ F .

Proof. First, we show that {xn} is bounded. In fact, note that (I − rnA) and (I −
snB) are nonexpansive for each fixed n ≥ 0. Indeed, it follows from the restriction
(c) that

‖(I − rnA)x− (I − rnA)y‖2 = ‖x− y‖2 − 2rn〈x− y, Ax−Ay〉+ r2
n‖Ax−Ay‖2

≤ ‖x− y‖2 − rn(2α− rn)‖Ax−Ay‖2

≤ ‖x− y‖2, ∀x, y ∈ C.
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This shows that (I − rnA) is nonexpansive for each fixed n ≥ 0 and so is (I − snB).
Put

Snx = βnx + (1− βn)Snx, ∀x ∈ C.

Fix p ∈ F . In view of Lemma 1.5, it follows from the restriction (b) that

(2.1)

‖Snyn − p‖2

= βn‖yn − p‖2 + (1− βn)‖Snyn − p‖2 − βn(1− βn)‖Snyn − yn‖2

≤ βn‖yn − p‖2 + (1− βn)kn‖yn − p‖2 + (1− βn)(κ− βn)‖Snyn − yn‖
≤ kn‖yn − p‖2.

Since Jrn , Jsn , I − rnA and I − snB are nonexpansive, we see from (2.1) that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖Snyn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖yn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖zn − p‖2

≤
(
1 + (kn − 1)

)
‖xn − p‖2.

In view of Lemma 1.6, we see that the limit of the sequence {‖xn− p‖} exists. This
shows that the sequence {xn} is bounded and so are {yn} and {zn}. Without loss
of generality, we may assume that limn→∞ ‖xn−p‖ = d > 0. Notice from (2.1) that

‖xn+1 − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖Snyn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖(zn − rnAzn)− p‖2

≤ αn‖xn − p‖2 + (1− αn)kn(‖zn − p‖2 − rn(2α− rn)‖Azn −Ap‖2)

≤ kn‖xn − p‖2 − (1− αn)knrn(2α− rn)‖Azn −Ap‖2,

which implies that

(1− αn)knrn(2α− rn)‖Azn −Ap‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (kn − 1)‖xn − p‖2.

In view of the restrictions (a) and (c), we see that

(2.2) lim
n→∞

‖Azn −Ap‖ = 0.

Notice from (2.1) that

‖xn+1 − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖Snyn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖yn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖(xn − snBxn)− p‖2

≤ αn‖xn − p‖2 + (1− αn)kn(‖xn − p‖2 − sn(2β − sn)‖Bxn −Bp‖2)

≤ kn‖xn − p‖2 − (1− αn)knsn(2β − sn)‖Bxn −Bp‖2.
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It follows that

(1− αn)knsn(2β − sn)‖Bxn −Bp‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (kn − 1)‖xn − p‖2.

In view of the restrictions (a) and (c), we see that

(2.3) lim
n→∞

‖Bxn −Bp‖ = 0.

Since Jrn is firmly nonexpansive, we obtain

‖yn − p‖2 = ‖Jrn(zn − rnAzn)− Jrn(p− rnAp)‖2

≤ 〈yn − p, (zn − rnAzn)− (p− rnAp)〉

=
1
2
(
‖yn − p‖2 + ‖(zn − rnAzn)− (p− rnAp)‖2

− ‖(yn − p)−
(
(zn − rnAzn)− (p− rnAp)

)
‖2

)
≤ 1

2
(
‖yn − p‖2 + ‖zn − p‖2 − ‖yn − zn + rn(Azn −Ap)‖2

)
=

1
2
(
‖yn − p‖2 + ‖zn − p‖2 − ‖yn − zn‖2 − r2

n‖Azn −Ap‖2

− 2rn〈yn − zn, Azn −Ap〉
)

≤ 1
2
(
‖yn − p‖2 + ‖xn − p‖2 − ‖yn − zn‖2 + 2rn‖yn − zn‖‖Azn −Ap‖

)
,

which in turn implies that

(2.4) ‖yn − p‖2 ≤ ‖xn − p‖2 − ‖yn − zn‖2 + 2rn‖yn − zn‖‖Azn −Ap‖.

In a similar way, we can obtain

(2.5) ‖zn − p‖2 ≤ ‖xn − p‖2 − ‖zn − xn‖2 + 2sn‖zn − xn‖‖Bxn −Bp‖.

Combining (2.1) with (2.4) yields that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖Snyn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖yn − p‖2

≤ kn‖xn − p‖2 − (1− αn)kn‖yn − zn‖2

+ 2(1− αn)knrn‖yn − zn‖‖Azn −Ap‖,

which in turn implies that

(1− αn)kn‖yn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (kn − 1)‖xn − p‖2

+ 2(1− αn)knrn‖yn − zn‖‖Azn −Ap‖.

In view of the restrictions (a) and (c), it follows from (2.2) that

(2.6) lim
n→∞

‖yn − zn‖ = 0.
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Combining (2.1) with (2.5) yields that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖Snyn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖yn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖zn − p‖2

≤ kn‖xn − p‖2 − (1− αn)kn‖zn − xn‖2

+ 2(1− αn)knsn‖zn − xn‖‖Bxn −Bp‖,
which in turn implies that

(1− αn)kn‖zn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (kn − 1)‖xn − p‖2

+ 2(1− αn)knsn‖zn − xn‖‖Bxn −Bp‖.

In view of the restrictions (a) and (c), it follows from (2.3) that

(2.7) lim
n→∞

‖zn − xn‖ = 0.

Combining (2.6) with (2.7) yields that

(2.8) lim
n→∞

‖xn − yn‖ = 0.

Notice that
‖Snyn − p‖ ≤

√
kn‖yn − p‖ ≤

√
kn‖xn − p‖.

This implies that
lim sup

n→∞
‖Snyn − p‖ ≤ d.

On the other hand, we have

lim
n→∞

‖αn(xn − p) + (1− αn)(Snyn − p)‖ = d.

In view of Lemma 1.3, we obtain

(2.9) lim
n→∞

‖Snyn − xn‖ = 0.

Note that

Snyn − xn =
Snyn − xn

1− βn
+

βn(xn − yn)
1− βn

.

From (2.8), (2.9) and the restriction (b), it follows that

(2.10) lim
n→∞

‖Snyn − xn‖ = 0.

On the other hand, it follows from Lemma 1.2 that

‖Snxn − xn‖ ≤ ‖Snxn − Snyn‖+ ‖Snyn − xn‖
≤ L‖xn − yn‖+ ‖Snyn − xn‖,

where L denotes the Lipschitz constant, and so, from (2.8) and (2.10),

lim
n→∞

‖Snxn − xn‖ = 0.

Since S is Lipschitz continuous, we see that

(2.11) lim
n→∞

‖Sxn − xn‖ = 0.
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Since {xn} is bounded, we see that there exits a subsequence {xni} of {xn} which
converges weakly to a point x̄. By virtue of Lemma 1.2, it follows that x̄ ∈ F (S).

Next, we show that x̄ ∈ (A + M)−1(0). In fact, notice that

zn − rnAzn ∈ yn + rnMyn.

Let µ ∈ Mν. Since M is monotone, we have

〈zn − yn

rn
−Azn − µ, yn − ν〉 ≥ 0.

In view of the restriction (c), it follows from (2.6) that

〈−Ax̄− µ, x̄− ν〉 ≥ 0.

This implies that −Ax̄ ∈ Mx̄, that is, x̄ ∈ (A + M)−1(0).
In similar way, we can obtain that x̄ ∈ (B + W )−1(0). This proves that x̄ ∈ F .
Assume that there exits another subsequence {xnj} of {xn} such that {xnj}

converges weakly to a point x′. By the above proof, we also have x′ ∈ F .
If x̄ 6= x′, it follows from Opial’s condition ([15]) that

lim
n→∞

‖xn − x̄‖ = lim inf
i→∞

‖xni − x̄‖ < lim inf
i→∞

‖xni − x′‖

= lim
n→∞

‖xn − x′‖ = lim inf
j→∞

‖xnj − x′‖

< lim inf
j→∞

‖xnj − x̄‖ = lim
n→∞

‖xn − x̄‖,

which is a contradiction. Hence we have x̄ = x′. This implies that xn ⇀ x̄ ∈ F .
This completes the proof. �

If S is asymptotically nonexpansive in Theorem 2.1, then we have the following:

Corollary 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H,
S : C → C be an asymptotically nonexpansive mapping with the sequence {kn} ⊂
[1,∞) such that

∑∞
n=1(kn−1) < ∞, A : C → H be an α-inverse strongly monotone

mapping and B : C → H be a β-inverse strongly monotone mapping. Let M : H →
2H and W : H → 2H be maximal monotone operators such that D(M) ⊂ C and
D(W ) ⊂ C, respectively. Assume that F := F (S)∩(A+M)−1(0)∩(B+W )−1(0) 6= ∅.
Let {xn} be the sequence generated in the following manner:

x0 ∈ C,

zn = Jsn(xn − snBxn),
xn+1 = αnxn + (1− αn)SnJrn(zn − rnAzn), ∀n ≥ 0,

where Jrn = (I + rnM)−1, Jsn = (I + rnW )−1, {rn} is a sequence in (0, 2α), {sn}
is a sequence in (0, 2β) and {αn} is a sequence in [0, 1]. Assume that the following
restrictions are satisfied:

(a) 0 < a ≤ αn ≤ b < 1, where a, b ∈ R are two constants;
(b) d ≤ rn ≤ e and f ≤ sn ≤ g, where 0 < d < e < 2α and 0 < f < g < 2β are

four constants.
Then the sequence {xn} converges weakly to a point x̄ ∈ F .
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3. Applications

Let H be a Hilbert space and f : H → (−∞,+∞] be a proper convex lower
semi-continuous function. Then the subdifferential ∂f of f is defined as follows:

∂f(x) = {y ∈ H : f(z) ≥ f(x) + 〈z − x, y〉, ∀z ∈ H}, ∀x ∈ H.

From Rockafellar [22, 23], we know that ∂f is maximal monotone. It is easy to
verify that 0 ∈ ∂f(x) if and only if f(x) = miny∈H f(y). Let IC be the indicator
function of C, i.e.,

(3.1) IC(x) =

{
0, x ∈ C,

+∞, x /∈ C.

Since IC is a proper lower semi-continuous convex function on H, we see that the
subdifferential ∂IC of IC is a maximal monotone operator.

Lemma 3.1 ([27]). Let C be a nonempty closed convex subset of a real Hilbert space
H, PC be the metric projection from H onto C and ∂IC be the subdifferential of IC ,
where IC is as defined in (3.1) and Jr = (I + r∂IC)−1. Then

y = Jrx ⇐⇒ y = PCx, ∀x ∈ H, y ∈ C.

Now, we consider the existence of solutions of the variation inequality (1.1).

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H, S : C → C be an asymptotically κ-strict pseudo-contraction with the sequence
{kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞, A : C → H be an α-inverse strongly

monotone mapping and B : C → H be a β-inverse strongly monotone mapping.
Assume that F := F (S) ∩ V I(C,A) ∩ V I(C,B) 6= ∅. Let {xn} be the sequence
generated in the following manner:

x0 ∈ C,

zn = PC(xn − snBxn),
yn = PC(zn − rnAzn),
xn+1 = αnxn + (1− αn)

(
βnyn + (1− βn)Snyn

)
, ∀n ≥ 0,

where {rn} is a sequence in (0, 2α), {sn} is a sequence in (0, 2β) and {αn} and
{βn} are sequences in [0, 1]. Assume that the following restrictions are satisfied:

(a) 0 < a ≤ αn ≤ b < 1, where a, b ∈ R are two constants;
(b) 0 ≤ κ ≤ βn ≤ c < 1, where c ∈ R is a constant;
(c) d ≤ rn ≤ e and f ≤ sn ≤ g, where 0 < d < e < 2α and 0 < f < g < 2β are

four constants.
Then the sequence {xn} converges weakly to a point x̄ ∈ F .

Proof. Put M = W = ∂IC . Next, we show that V I(C,A) = (A + ∂IC)−1(0) and
V I(C,B) = (B + ∂IC)−1(0), respectively. Notice that

x ∈ (A + ∂IC)−1(0) ⇐⇒ 0 ∈ Ax + ∂ICx

⇐⇒ −Ax ∈ ∂ICx

⇐⇒ 〈Ax, y − x〉 ≥ 0

⇐⇒ x ∈ V I(C,A).
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In the same way, we can obtain

x ∈ (B + ∂IC)−1(0) ⇐⇒ x ∈ V I(C,B).

From Lemma 3.1, we can conclude the desired conclusion immediately. This com-
pletes the proof. �

Putting βn = 0 and B = 0 (: the zero mapping) in Theorem 3.2, we have the
following:

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H,
S : C → C be an asymptotically nonexpansive mapping with the sequence {kn} ⊂
[1,∞) such that

∑∞
n=1(kn − 1) < ∞ and A : C → H be an α-inverse strongly

monotone mapping. Assume that F := F (S) ∩ V I(C,A) 6= ∅. Let {xn} be the
sequence generated in the following manner:

x0 ∈ C, xn+1 = αnxn + (1− αn)SnPC(xn − rnAxn), ∀n ≥ 0,

where {rn} is a sequence in (0, 2α) and {αn} is a sequences in [0, 1]. Assume that
the following restrictions are satisfied

(a) 0 < a ≤ αn ≤ b < 1, where a, b ∈ R are two constants;
(b) d ≤ rn ≤ e, where 0 < d < e < 2α are two constants.

Then the sequence {xn} converges weakly to a point x̄ ∈ F .

Remark 3.4. If the mapping S is nonexpansive in Corollary 3.3, then Corollary 3.3
is reduced to Theorem 1.1 in Section 1.

Let F be a bifunction of C ×C into R, where R denotes the set of real numbers.
Recall the following equilibrium problem:

(3.2) Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C.

Forward, EP (F ) denotes the solution set of the equilibrium problem (3.2).

To study the equilibrium problems (3.2), we may assume that F satisfies the
following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim sup
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and weakly lower semi-continuous.

Putting F (x, y) = 〈Ax, y−x〉 for all x, y ∈ C, we see that the equilibrium problem
(3.2) is reduced to the variational inequality (1.1).

The following lemma can be found in [4] and [6]:

Lemma 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H
and F : C × C → R be a bifunction satisfying (A1)-(A4). Then, for any r > 0 and
x ∈ H, there exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.
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Further, define

(3.3) Trx = {z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, ∀r > 0, x ∈ H.

Then we have the following:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(c) F (Tr) = EP (F );
(d) EP (F ) is closed and convex.

Lemma 3.6 ([27]). Let C be a nonempty closed convex subset of a real Hilbert
space H, F be a bifunction from C × C to R which satisfies (A1)-(A4) and AF be
a set-valued mapping of H into itself defined by

(3.4) AF x =

{
{z ∈ H : F (x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C,

∅, x /∈ C.

Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C, EP (F ) =
A−1

F (0) and
Trx = (I + rAF )−1x, ∀x ∈ H, r > 0,

where Tr is defined as in (3.3)

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space
H, S : C → C be an asymptotically κ-strict pseudo-contraction with the sequence
{kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞. Let FM and FW be two bifunctions

from C × C to R which satisfies (A1)-(A4). Assume that F := F (S) ∩ EP (FM ) ∩
EP (FM ) 6= ∅. Let {xn} be the sequence generated in the following manner:

x0 ∈ C,

zn ∈ C such that FW (zn, u) + 1
sn
〈v − zn, zn − xn〉 ≥ 0, ∀v ∈ C,

yn ∈ C such that FM (yn, u) + 1
rn
〈u− yn, yn − zn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnxn + (1− αn)
(
βnyn + (1− βn)Snyn

)
, ∀n ≥ 0,

where {αn} and {βn} are sequences in [0, 1]. Assume that the following restrictions
are satisfied:

(a) 0 < a ≤ αn ≤ b < 1, where a, b ∈ R are two constants;
(b) 0 ≤ κ ≤ βn ≤ c < 1, where c ∈ R is a constant;
(c) 0 < d ≤ rn ≤ e < ∞ and 0 < f ≤ sn ≤ g < ∞, where d, e, f, g ∈ R are four

constants.
Then the sequence {xn} converges weakly to a point x̄ ∈ F .
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