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ON A HYERS-ULAM-AOKI-RASSIAS TYPE STABILITY

AND A FIXED POINT THEOREM

SIN-EI TAKAHASI, T. MIURA, AND H. TAKAGI

Abstract. LetX be a set with a binary operation ◦ and (Y, d) a complete metric
space with a binary operation ⋄. Take a nonnegative function ε on X × X,
a nonnegative function δ on X and two mappings f, g : X → Y . With the
aid of Banach’s fixed point theorem, we establish two general settings on which
the following holds: If d

(
f(x ◦ x′), g(x) ⋄ g(x′)

)
≤ ε(x, x′) and d

(
f(x), g(x)

)
≤

δ(x) for all x, x′ ∈ X, then there exists a unique mapping f∞ : X → Y such
that f∞(x ◦ x′) = f∞(x) ⋄ f∞(x′), d

(
f(x), f∞(x)

)
≤ Aε(x, x) + B δ(x) and

d
(
g(x), f∞(x)

)
≤ Aε(x, x) + C δ(x) for all x, x′ ∈ X and some finite constants

A, B and C. Moreover, we describe various concrete settings to which the above
results are applicable. Some of them are the known results.

1. Introduction

It is natural to ask the following stability question:

(1.1) Given an approximate solution, can we find the strict solution near it?

This paper is motivated by this question.
In 1940, S. M. Ulam posed the following problem (cf. [16, 17]):

For what metric group G, is it true that for any approximate au-
tomorphism f of G, there exists a strict automorphism of G near
f?

Next year, D. H. Hyers [8] gave an affirmative answer to this problem as follows:

Let X and Y be Banach spaces and ε > 0. Then for any (approxi-
mately additive) mapping f : X → Y satisfying ∥f(x+ x′)− f(x)−
f(x′)∥ ≤ ε for all x, x′ ∈ X, there exists a unique additive mapping
f∞ : X → Y such that ∥f(x)− f∞(x)∥ ≤ ε for all x ∈ X.

In fact, Hyers got the solution f∞ by putting f∞(x) = limn→∞ 2−nf(2nx) (x ∈ X).
Some years later, T. Aoki [2] and Th. M. Rassias [15] independently generalize
Hyers’ result as follows (cf. [11, 12]):

Let X and Y be Banach spaces, λ > 0 and 0 ≤ p < 1. Then for any
mapping f : X → Y satisfying ∥f(x+x′)−f(x)−f(x′)∥ ≤ λ

(
∥x∥p+

∥x′∥p
)
for all x, x′ ∈ X, there exists a unique additive mapping

f∞ : X → Y such that ∥f(x)− f∞(x)∥ ≤
[
λ/(1− 2p−1)

]
∥x∥p for all

x ∈ X.

2010 Mathematics Subject Classification. Primary 39B22; Secondary 39B82.
Key words and phrases. Functional equation, Hyers-Ulam stability.



424 S.-E. TAKAHASI, TAKESHI MIURA, AND HIROYUKI TAKAGI

Behind their proof, we can find Picard’s method of successive approximation, and
we learn the close relation between a perturbation and a fixed point. This point
of view may be found in many recent paper [1, 3, 9, 10, 13]. For instance, Kim,
Jun and Rassias [10] used the Diaz-Margolis fixed point theorem [4] to prove the
Hyers-Ulam-Rassias stability of the Euler-Lagrange functional equation f(ax+by)+
f(ax− by) + 2af(−x) = 0.

When we study mathematics, we often encounter the concept “commutativity”,
which is fundamental and important. For example, the additive mapping in Hyers’
result [8] is regarded as the mapping which commutes the additive operation. Also,
the functional equation f(ax + by) + f(ax − by) + 2af(−x) = 0 in [10] means the
commutativity of the mapping f and some binary operation. As a generalization of
such commutativity, we take up the following two commutative diagrams:

(A) : X ×X
◦−→ X

g × g ↓ ↓ f

Y × Y −→
⋄

Y

(B) : X
σ−→ X

g ↓ ↓ f

Y −→
τ

Y

If Y is a metric space, then we can define an approximate commutative diagram,
and we can reformulate the problem (1.1) as follows:

Can we find a strict commutative diagram near a given approximate
commutative diagram?

The referred results in [8] and [10] are, of course, related with this problem for the
commutative diagram of the form (A). While G.-L. Forti [5, 6] investigates such
problem. In this paper, we also consider the above problem.

In Section 1, we show one consequence of Banach’s fixed point theorem. Using
it, we give the affirmative answer to the above stability problem on several settings.
Section 2 is the main part of this paper, where we prove the Hyers-Ulam-Aoki-
Rassias type stability for the commutative diagram of the form (A). The rest of the
paper consists of its applications. Section 3 is about the commutative diagram of
the form (B). In Sections 4–6, we describe various concrete settings to which the
results in Section 2 are applicable. Some of them are the known results.

2. One consequence of Banach’s fixed point theorem

Let X be a set and (Y, d) a complete metric space. Fix a mapping f of X into
Y and a nonnegative function φ on X. By ∆f,φ, we denote the set of all mappings
u : X → Y with the property that there exists a finite constant Ku satisfying

d
(
u(x), f(x)

)
≤ Ku φ(x) (x ∈ X).

For any u, v ∈ ∆f,φ, we have

d
(
u(x), v(x)

)
≤ d

(
u(x), f(x)

)
+ d

(
f(x), v(x)

)
≤ (Ku +Kv)φ(x) (x ∈ X)

and hence we can define the distance

ρf,φ(u, v) = inf
{
K ≥ 0 : d

(
u(x), v(x)

)
≤ Kφ(x) (x ∈ X)

}
.

We easily see that (∆f,φ, ρf,φ) is a complete metric space which contains f .
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Let σ be a selfmap of X and τ a selfmap of Y . For any mapping u : X → Y , we
define the mapping Tσ,τu : X → Y by

(Tσ,τu)(x) = τ(u(σx)) (x ∈ X).

Moreover, if X, (Y, d), φ and σ, τ are as above, and if ε is a nonnegative function
on X ×X, then we can consider three quantities:

ασ,ε = inf
{
K ≥ 0 : ε(σx, σx) ≤ K ε(x, x) (x ∈ X)

}
,

βσ,φ = inf
{
K ≥ 0 : φ(σx) ≤ K φ(x) (x ∈ X)

}
,

γτ = inf
{
K ≥ 0 : d(τy, τy′) ≤ K d(y, y′) (y, y′ ∈ Y )

}
.

If one of these quantities is determined as a nonnegative real number, then we write
ασ,ε <∞, βσ,φ <∞ and γτ <∞ respectively. In each case, we have

ε(σx, σx) ≤ ασ,ε ε(x, x) (x ∈ X),

φ(σx) ≤ βσ,φ φ(x) (x ∈ X),

d(τy, τy′) ≤ γτ d(y, y
′) (y, y′ ∈ Y ).

We will use these symbols and these inequalities throughout this paper.

We here state our fixed point theorem, which is an easy consequence of Banach’s
fixed point theorem (the contraction principle):

Proposition 2.1. Let X be a set and (Y, d) a complete metric space. Take a
mapping f : X → Y and a nonnegative function φ on X. Let σ and τ be selfmaps
of X and Y respectively. Suppose that

Tσ,τf ∈ ∆f,φ, βσ,φ <∞, γτ <∞ and βσ,φγτ < 1.

Then Tσ,τ (∆f,φ) ⊂ ∆f,φ and Tσ,τ has a unique fixed point f∞ in ∆f,φ. Moreover,

lim
n→∞

d
(
(Tnσ,τf)(x), f∞(x)

)
= 0 and d

(
f(x), f∞(x)

)
=
ρf,φ(Tσ,τf, f)

1− βσ,φγτ
φ(x)

for all x ∈ X.

Proof. For the sake of simplicity, we write ∆ = ∆f,φ, ρ = ρf,φ, T = Tσ,τ , β = βσ,φ
and γ = γτ .

We first observe that T (∆) ⊂ ∆. Take u ∈ ∆ arbitrarily. Then ρ(u, f) is definite.
Since β, γ <∞, we have

d
(
(Tu)(x), (Tf)(x)

)
= d

(
τ(u(σx)), τ(f(σx))

)
≤ γ d

(
u(σx), f(σx)

)
≤ γ ρ(u, f)φ(σx) ≤ γ ρ(u, f)β φ(x)

for all x ∈ X. Note that Tf ∈ ∆ implies ρ(Tf, f) <∞. Then we have

d
(
(Tu)(x), f(x)

)
≤ d

(
(Tu)(x), (Tf)(x)

)
+ d

(
(Tf)(x), f(x)

)
≤ βγ ρ(u, f)φ(x) + ρ(Tf, f)φ(x) =

[
βγ ρ(u, f) + ρ(Tf, f)

]
φ(x).

for all x ∈ X. Hence Tu ∈ ∆. We get T (∆) ⊂ ∆.
Let us verify that T is a contraction of ∆. For any u, v ∈ ∆, we have

d
(
(Tu)(x), (Tv)(x)

)
= d

(
τ(u(σx)), τ(v(σx))

)
≤ γ d(u(σx), v(σx)

)
≤ γ ρ(u, v)φ(σx) ≤ γ ρ(u, v)β φ(x) (x ∈ X),
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and so

(2.1) ρ(Tu, Tv) ≤ βγ ρ(u, v).

Hence the hypothesis βγ < 1 implies that T is a contraction of ∆.
Once T is a contraction of a complete metric space (∆, ρ), Banach’s fixed point

theorem tells us that T has a unique fixed point f∞ in ∆. At the same time, it shows
that limn→∞ ρ(Tnf, f∞) = 0. Noting that d

(
(Tnf)(x), f∞(x)

)
≤ ρ(Tnf, f∞)φ(x),

we get

lim
n→∞

d
(
(Tnf)(x), f∞(x)

)
= 0 (x ∈ X).

Moreover, the repeated use of (2.1) yields

ρ(T kf, T k−1f) ≤ (βγ)k−1 ρ(Tf, f)

for k = 1, 2, . . .. Noting that βγ < 1, we have

ρ(Tnf, f) ≤
n∑
k=1

ρ(T kf, T k−1f) ≤
n∑
k=1

(βγ)k−1ρ(Tf, f) <
ρ(Tf, f)

1− βγ
.

Since limn→∞ ρ(Tnf, f∞) = 0, the continuity of the metric ρ shows that ρ(f∞, f) ≤
ρ(Tf, f)/(1− βγ), and hence

d
(
f(x), f∞(x)

)
≤ ρ(f, f∞)φ(x) ≤ ρ(Tf, f)

1− βγ
φ(x) (x ∈ X).

�

In many papers on the Hyers-Ulam stability problem, we often find the applica-
tions of the fixed point theorem by J. B. Diaz and B. Margolis ([4]). We note that
the above proposition is based on Banach’s fixed point theorem only.

3. A Stability problem for commutative diagram (A)

In this section, we establish two general settings, on which we can show the Hyers-
Ulam-Aoki-Rassias type stability for the commutative diagram (A). These settings
are joined in a property such as duality, and each of them works as a complement
of the other to be applicable to many cases. The first setting is described in the
following theorem:

Theorem 3.1. Let X be a set with a binary operation ◦, and suppose that the
square operator σ̂ : x 7→ x ◦ x is an automorphism of X with the inverse σ̂−1. Let
(Y, d) be a complete metric space with a continuous binary operation ⋄, and suppose
that the square operator τ̂ : y 7→ y ⋄ y is an endomorphism of Y . Fix a nonnegative
function ε on X ×X and a nonnegative function δ on X. Suppose that

ασ̂−1,ε <∞, βσ̂−1,δ <∞, γτ̂ <∞ and γτ̂ max{ασ̂−1,ε, βσ̂−1,δ} < 1.

If two mappings f, g : X → Y satisfy

d
(
f(x ◦ x′), g(x) ⋄ g(x′)

)
≤ ε(x, x′) (x, x′ ∈ X),(3.1)

d
(
f(x), g(x)

)
≤ δ(x) (x ∈ X),(3.2)
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then there exists a unique mapping f∞ : X → Y such that

f∞(x ◦ x′) = f∞(x) ⋄ f∞(x′) (x, x′ ∈ X),(3.3)

d
(
f(x), f∞(x)

)
≤
ασ̂−1,ε ε(x, x) + βσ̂−1,δγτ̂ δ(x)

1− γτ̂ max{ασ̂−1,ε, βσ̂−1,δ}
(x ∈ X),(3.4)

d
(
g(x), f∞(x)

)
≤

ασ̂−1,ε ε(x, x) + δ(x)

1− γτ̂ max{ασ̂−1,ε, βσ̂−1,δ}
(x ∈ X).(3.5)

Proof. For simplicity, we write σ = σ̂−1 and τ = τ̂ . It is obvious that σ is an
automorphism of X. We adopt the abbreviations: α = ασ,ε = ασ̂−1,ε, β = βσ,δ =
βσ̂−1,δ, γ = γτ = γτ̂ and T = Tσ,τ . We break the proof into five steps.

[Step 1] Put φ(x) = α ε(x, x) + βγ δ(x) for all x ∈ X. To f and φ, we apply the
argument in Section 1. We first observe that Tf ∈ ∆f,φ. Take x ∈ X. Replacing x
and x′ in (3.1) by σx, we get

d
(
f(σx ◦ σx), g(σx) ⋄ g(σx)

)
≤ ε(σx, σx).

Since σx ◦ σx = σ̂(σx) = x, g(σx) ⋄ g(σx) = τ(g(σx)) = (Tg)(x) and ε(σx, σx) ≤
α ε(x, x), it follows that

(3.6) d
(
f(x), (Tg)(x)

)
≤ α ε(x, x).

While we make use of (3.2) to see

d
(
(Tf)(x), (Tg)(x)

)
= d

(
τ(f(σx)), τ(g(σx))

≤ γ d
(
f(σx), g(σx)

)
≤ γ δ(σx) ≤ γβ δ(x).

(3.7)

Combining these inequalities, we have

d
(
(Tf)(x), f(x)

)
≤ d

(
(Tf)(x), (Tg)(x)

)
+ d

(
(Tg)(x), f(x)

)
≤ βγ δ(x) + α ε(x, x)

= φ(x).

Hence Tf ∈ ∆f,φ and ρf,φ(Tf, f) ≤ 1.
Next, we estimate the quantity βσ,φ. For any x ∈ X, we have

φ(σx) = α ε(σx, σx) + βγ δ(σx) ≤ α2ε(x, x) + β2γ δ(x)

≤ max{α, β}
(
α ε(x, x) + βγ δ(x)

)
= max{α, β}φ(x).

Hence βσ,φ ≤ max{α, β} <∞ and βσ,φγτ ≤ γmax{α, β} < 1.
Now, let us apply Proposition 2.1. Then T has a unique fixed point f∞ ∈ ∆f,φ

and

lim
n→∞

d
(
(Tnf)(x), f∞(x)

)
= 0,(3.8)

d
(
f(x), f∞(x)

)
≤
ρf,φ(Tf, f)

1− βσ,φγτ
φ(x) ≤ α ε(x, x) + βγ δ(x)

1− γmax{α, β}
for all x ∈ X. The last inequality is (3.4).

[Step 2] We put ψ(x) = α ε(x, x) + δ(x) for all x ∈ X. Let us discuss g and ψ
similarly. By (3.6) and (3.2), we obtain

d
(
(Tg)(x), g(x)

)
≤ d

(
(Tg)(x), f(x)

)
+ d

(
f(x), g(x)

)
≤ α ε(x, x) + δ(x) = ψ(x)
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for all x ∈ X. Hence Tg ∈ ∆g,ψ and ρg,ψ(Tg, g) ≤ 1. Also, we have

ψ(σx) = α ε(σx, σx) + δ(σx) ≤ α2ε(x, x) + β δ(x)

≤ max{α, β}
(
α ε(x, x) + δ(x)

)
= max{α, β}ψ(x)

for all x ∈ X. Hence βσ,ψ ≤ max{α, β} < ∞ and βσ,ψγτ ≤ γmax{α, β} < 1. Thus
we can apply Proposition 2.1 and see that T has a unique fixed point g∞ ∈ ∆g,ψ

and

lim
n→∞

d
(
(Tng)(x), g∞(x)

)
= 0,(3.9)

d
(
g(x), g∞(x)

)
≤
ρg,ψ(Tg, g)

1− βσ,ψγτ
ψ(x) ≤ α ε(x, x) + δ(x)

1− γmax{α, β}
(3.10)

for all x ∈ X.

[Step 3] Let us show that

(3.11) f∞(x ◦ x′) = g∞(x) ⋄ g∞(x′) (x, x′ ∈ X).

For any x, x′ ∈ X, we have

d
(
f∞(x ◦ x′), g∞(x) ⋄ g∞(x′)

)
≤ d

(
f∞(x ◦ x′), (Tnf)(x ◦ x′)

)
+ d

(
(Tnf)(x ◦ x′), (Tng)(x) ⋄ (Tng)(x′)

)
+ d

(
(Tng)(x) ⋄ (Tng)(x′), g∞(x) ⋄ g∞(x′)

)
.

Let n→ ∞. Then the first and third terms in the right hand side tend to 0, by (3.8),
(3.9) and the continuity of ⋄. Also, the second term tends to 0, because γα < 1 and
(3.1) yields

d
(
(Tnf)(x ◦ x′), (Tng)(x) ⋄ (Tng)(x′)

)
= d

(
τn(f(σn(x ◦ x′))), τn(g(σnx)) ⋄ τn(g(σnx′))

)
= d

(
τn(f(σnx ◦ σnx′)), τn(g(σnx) ⋄ g(σnx′))

)
≤ γn d

(
f(σnx ◦ σnx′), g(σnx) ⋄ g(σnx′)

)
≤ γn ε(σnx, σnx′)

≤ γnαn ε(x, x′),

where τn and σn denote the n-fold compositions of endomorphisms τ and σ, respec-
tively. These facts force that d

(
f∞(x ◦ x′), g∞(x) ⋄ g∞(x′)

)
= 0, which is nothing

but (3.11).

[Step 4] Pick x ∈ X. Replacing x and x′ in (3.11) by σx, we have

f∞(σx ◦ σx) = g∞(σx) ⋄ g∞(σx).

Since σx◦σx = σ̂(σx) = x and g∞(σx)⋄g∞(σx) = τ(g∞(σx)) = (Tg∞)(x) = g∞(x),
it follows that f∞(x) = g∞(x). Hence (3.11) and (3.10) become (3.3) and (3.5),
respectively.

[Step 5] Finally we check the uniqueness of f∞. Suppose that the mapping
f∗ : X → Y has the same properties (3.3)–(3.5) as f∞. The property (3.4) implies
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that

d
(
f∗(x), f(x)

)
≤ α ε(x, x) + βγ δ(x)

1− γmax{α, β}
=

1

1− γmax{α, β}
φ(x) (x ∈ X),

and so f∗ ∈ ∆f,φ. By the property (3.3): f∗(x ◦ x′) = f∗(x) ⋄ f∗(x′) (x, x′ ∈ X), we
get

(Tf∗)(x) = τ(f∗(σx)) = f∗(σx) ⋄ f∗(σx) = f∗(σx ◦ σx) = f∗(σ̂(σx)) = f∗(x)

for all x ∈ X. Hence f∗ is a fixed point of T in ∆f,φ. Thus Step 1 shows that
f∗ = f∞. �

Consider the case δ = 0 or the case ε = 0 in Theorem 3.1. Then we obtain the
following two corollaries immediately:

Corollary 3.2. Let X, ◦, σ̂ and (Y, d), ⋄, τ̂ be as in Theorem 3.1. Take a nonneg-
ative function ε on X ×X. Suppose that ασ̂−1,ε <∞, γτ̂ <∞ and ασ̂−1,εγτ̂ < 1. If

a mapping f : X → Y satisfies d
(
f(x ◦x′), f(x) ⋄ f(x′)

)
≤ ε(x, x′) for all x, x′ ∈ X,

then there exists a unique mapping f∞ : X → Y such that

f∞(x ◦ x′) = f∞(x) ⋄ f∞(x′) and d
(
f(x), f∞(x)

)
≤

ασ̂−1,ε

1− ασ̂−1,εγτ̂
ε(x, x)

for all x, x′ ∈ X.

Corollary 3.3. Let X, ◦, σ̂ and (Y, d), ⋄, τ̂ be as in Theorem 3.1. Take a nonneg-
ative function δ on X. Suppose that βσ̂−1,δ <∞, γτ̂ <∞ and βσ̂−1,δγτ̂ < 1. If two

mappings f, g : X → Y satisfy f(x ◦ x′) = g(x) ⋄ g(x′) and d
(
f(x), g(x)

)
≤ δ(x) for

all x, x′ ∈ X, then there exists a unique mapping f∞ : X → Y such that

f∞(x ◦ x′) = f∞(x) ⋄ f∞(x′),

d
(
f(x), f∞(x)

)
≤

βσ̂−1,δγτ̂

1− βσ̂−1,δγτ̂
δ(x) and d

(
g(x), f∞(x)

)
≤ 1

1− βσ̂−1,δγτ̂
δ(x)

for all x, x′ ∈ X.

The next theorem explains the second setting, on which we can show the Hyers-
Ulam-Aoki-Rassias type stability for the commutative diagram (A).

Theorem 3.4. Let X be a set with a binary operation ◦, and suppose that the square
operator σ̂ : x 7→ x ◦ x is an endomorphism of X. Let (Y, d) be a complete metric
space with a continuous binary operation ⋄, and suppose that the square operator
τ̂ : y 7→ y ⋄ y is an automorphisn of Y with the inverse τ̂−1. Fix a nonnegative
function ε on X ×X and a nonnegative function δ on X. Suppose that

ασ̂,ε <∞, βσ̂,δ <∞, γτ̂−1 <∞ and γτ̂−1 max{ασ̂,ε, βσ̂,δ} < 1.

If two mappings f, g : X → Y satisfy

d
(
f(x ◦ x′), g(x) ⋄ g(x′)

)
≤ ε(x, x′) (x, x′ ∈ X),(3.12)

d
(
f(x), g(x)

)
≤ δ(x) (x ∈ X),(3.13)
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then there exists a unique mapping f∞ : X → Y such that

f∞(x ◦ x′) = f∞(x) ⋄ f∞(x′) (x, x′ ∈ X),(3.14)

d
(
f(x), f∞(x)

)
≤ γτ̂−1 ε(x, x) + δ(x)

1− γτ̂−1 max{ασ̂,ε, βσ̂,δ}
(x ∈ X),(3.15)

d
(
g(x), f∞(x)

)
≤
γτ̂−1

(
ε(x, x) + βσ̂,δ δ(x)

)
1− γτ̂−1 max{ασ̂,ε, βσ̂,δ}

(x ∈ X).(3.16)

Proof. The proof is similar to that of Theorem 3.1. This time, we put σ = σ̂ and
τ = τ̂−1. Also, we adopt the abbreviations: α = ασ,ε = ασ̂,ε, β = βσ,δ = βσ̂,δ,
γ = γτ = γτ̂−1 and T = Tσ,τ .

[Step 1] Put ψ(x) = γ
(
ε(x, x) + β δ(x)

)
for all x ∈ X. We first observe that

Tg ∈ ∆g,ψ. Take x ∈ X. Since τ(g(x) ⋄ g(x)) = τ(τ̂(g(x))) = g(x), we use (3.12) to
see

d
(
(Tf)(x), g(x)

)
= d

(
τ(f(σx)), g(x)

)
= d

(
τ(f(x ◦ x)), τ(g(x) ⋄ g(x))

)
≤ γ

(
f(x ◦ x), g(x) ⋄ g(x)

)
≤ γ ε(x, x).

(3.17)

While the computation (3.7) using (3.13) implies d
(
(Tf)(x), (Tg)(x)

)
≤ γβ δ(x).

Hence

d
(
(Tg)(x), g(x)

)
≤ d

(
(Tg)(x), (Tf)(x)

)
+d

(
(Tf)(x), g(x)

)
≤ γβ δ(x)+γ ε(x, x) = ψ(x).

Therefore, Tg ∈ ∆g,ψ and ρg,ψ(Tg, g) ≤ 1.
Next, we estimate the quantity βσ,ψ. For any x ∈ X, we have

ψ(σx) = γ
(
ε(σx, σx) + β δ(σx)

)
≤ γ

(
α ε(x, x) + β2 δ(x)

)
≤ γ max{α, β}

(
ε(x, x) + β δ(x)

)
= max{α, β}ψ(x).

Hence βσ,ψ ≤ max{α, β} <∞ and βσ,ψγτ ≤ γmax{α, β} < 1.
Thus we can apply Proposition 2.1. Consequently, T has a unique fixed point

g∞ ∈ ∆g,ψ and

lim
n→∞

d
(
(Tng)(x), g∞(x)

)
= 0,(3.18)

d
(
g(x), g∞(x)

)
≤
ρg,ψ(Tg, g)

1− βσ,ψγτ
ψ(x) ≤

γ
(
ε(x, x) + β δ(x)

)
1− γmax{α, β}

(3.19)

for all x ∈ X.

[Step 2] Put φ(x) = γ ε(x, x)+ δ(x) for all x ∈ X. By (3.17) and (3.13), we have

d
(
(Tf)(x), f(x)

)
≤ d

(
(Tf)(x), g(x)

)
+ d

(
g(x), f(x)

)
≤ γ ε(x, x) + δ(x) = φ(x)

for all x ∈ X. Hence Tf ∈ ∆f,φ and ρf,φ(Tf, f) ≤ 1. Also, we can easily see that
φ(σx) ≤ max{α, β}φ(x) for all x ∈ X. Therefore, βσ,φ ≤ max{α, β} < ∞ and
βσ,φγτ ≤ γmax{α, β} < 1. Thus we can apply Proposition 2.1 and see that T has
a unique fixed point f∞ ∈ ∆f,φ and

lim
n→∞

d
(
(Tnf)(x), f∞(x)

)
= 0,(3.20)

d
(
f(x), f∞(x)

)
≤
ρf,φ(Tf, f)

1− βσ,φγτ
φ(x) ≤ γ ε(x, x) + δ(x)

1− γmax{α, β}
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for all x ∈ X. The last inequality is (3.15).

[Step 3] Repeating the argument in the same part of the proof of Theorem 3.1,
we can show from (3.20), (3.18) and (3.12) that

(3.21) f∞(x ◦ x′) = g∞(x) ⋄ g∞(x′) (x, x′ ∈ X).

[Step 4] Using (3.21), we see that

f∞(x) = (Tf∞)(x) = τ(f∞(σx))

= τ(f∞(x ◦ x)) = τ(g∞(x) ⋄ g∞(x))

= τ(τ̂(g∞(x))) = g∞(x)

for all x ∈ X. Hence (3.21) and (3.19) become (3.14) and (3.16), respectively.

[Step 5] We can check the uniqueness of f∞ in the same way as in Step 5 of the
proof of Theorem 3.1. �

Considering the case δ = 0 or the case ε = 0 in Theorem 3.4, we obtain the
following two corollaries:

Corollary 3.5. Let X, ◦, σ̂ and (Y, d), ⋄, τ̂ be as in Theorem 3.4. Take a nonneg-
ative function ε on X ×X. Suppose that ασ̂,ε <∞, γτ̂−1 <∞ and ασ̂,εγτ̂−1 < 1. If
a mapping f : X → Y satisfies d

(
f(x ◦x′), f(x) ⋄ f(x′)

)
≤ ε(x, x′) for all x, x′ ∈ X,

then there exists a unique mapping f∞ : X → Y such that

f∞(x ◦ x′) = f∞(x) ⋄ f∞(x′) and d
(
f(x), f∞(x)

)
≤ γτ̂−1

1− ασ̂,εγτ̂−1

ε(x, x).

for all x, x′ ∈ X.

Corollary 3.6. Let X, ◦, σ̂ and (Y, d), ⋄, τ̂ be as in Theorem 3.4. Take a nonneg-
ative function δ on X. Suppose that βσ̂,δ <∞, γτ̂−1 <∞ and βσ̂,δγτ̂−1 < 1. If two
mappings f, g : X → Y satisfy f(x ◦ x′) = g(x) ⋄ g(x′) and d

(
f(x), g(x)

)
≤ δ(x) for

all x, x′ ∈ X, then there exists a unique mapping f∞ : X → Y such that

f∞(x ◦ x′) = f∞(x) ⋄ f∞(x′),

d
(
f(x), f∞(x)

)
≤ 1

1− βσ̂,δγτ̂−1

δ(x) and d
(
g(x), f∞(x)

)
≤

βσ̂,δγτ̂−1

1− βσ̂,δγτ̂−1

δ(x)

for all x, x′ ∈ X.

4. A stability problem for commutative diagram (B)

We turn our attention to the commutative diagram of the from (B). Its Hyers-
Ulam-Aoki-Rassias stability is obtained as an application of the preceding section.

Theorem 4.1. Let X be a set and σ a bijective selfmap of X. Let (Y, d) be a
complete metric space and τ be a continuous selfmap of Y . Fix two nonnegative
functions ε, δ on X. Suppose that

βσ−1,ε <∞, βσ−1,δ <∞, γτ <∞ and γτ max{βσ−1,ε, βσ−1,δ} < 1.

If two mappings f, g : X → Y satisfy

d
(
f(σx), τ(g(x))

)
≤ ε(x) and d

(
f(x), g(x)

)
≤ δ(x) (x ∈ X),
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then there exists a unique mapping f∞ : X → Y such that

f∞(σx) = τ(f∞(x))

d
(
f(x), f∞(x)

)
≤
βσ−1,ε ε(x) + βσ−1,δγτ δ(x)

1− γτ max{βσ−1,ε, βσ−1,δ}

d
(
g(x), f∞(x)

)
≤

βσ−1,ε ε(x) + δ(x)

1− γτ max{βσ−1,ε, βσ−1,δ}

(x ∈ X).

Proof. Define a binary operation ◦ on X by x ◦ x′ = σx for all x, x′ ∈ X. Then
x ◦ x = σx holds for all x ∈ X, and so σ is the square operator on X, Also, σ is
an automorphism of X, because σ(x ◦ x′) = σ(σx) = (σx) ◦ (σx′) for all x, x′ ∈ X.
Next, we define a binary operation ⋄ on Y by y ⋄y′ = τy for all y, y′ ∈ Y . Clearly, ⋄
is continuous. Since y ⋄ y = τy for all y ∈ Y , τ is the square operator on Y . Also, τ
is an endomorphism of Y , because τ(y ⋄ y′) = τ(τy) = (τy) ⋄ (τy′) for all y, y′ ∈ Y .
Finally, we set ε̃(x, x′) = ε(x) for all x, x′ ∈ X. Then ασ−1,ε̃ = βσ−1,ε. Thus we
can apply Theorem 3.1 with replacing σ̂ by σ, τ̂ by τ and ε by ε̃. The theorem is
obtained immediately. �

In particular, if δ = 0, then we have the following corollary:

Corollary 4.2. Let X, σ and (Y, d), τ be as in Theorem 4.1. Take a nonnegative
function ε on X. Suppose that βσ−1,ε <∞, γτ <∞ and βσ−1,εγτ < 1. If a mapping

f : X → Y satisfies d
(
f(σx), τ(f(x))

)
≤ ε(x) for all x ∈ X, then there exists a

unique mapping f∞ : X → Y such that

f∞(σx) = τ(f∞(x)) and d
(
f(x), f∞(x)

)
≤

βσ−1,ε

1− βσ−1,εγτ
ε(x)

for all x ∈ X.

The next theorem is the consequence of Theorem 3.4.

Theorem 4.3. Let X be a set and σ a selfmap of X. Let (Y, d) be a complete
metric space and τ be a bijective continuous selfmap of Y . Fix two nonnegative
functions ε, δ on X. Suppose that

βσ,ε <∞, βσ,δ <∞, γτ−1 <∞ and γτ−1 max{βσ,ε, βσ,δ} < 1.

If two mappings f, g : X → Y satisfy

d
(
f(σx), τ(g(x))

)
≤ ε(x) and d

(
f(x), g(x)

)
≤ δ(x) (x ∈ X),

then there exists a unique mapping f∞ : X → Y such that

f∞(σx) = τ(f∞(x))

d
(
f(x), f∞(x)

)
≤ γτ−1 ε(x) + δ(x)

1− γτ−1 max{βσ,ε, βσ,δ}

d
(
g(x), f∞(x)

)
≤

γτ−1

(
ε(x) + βσ,δ δ(x)

)
1− γτ−1 max{βσ,ε, βσ,δ}

(x ∈ X).

Proof. Define a binary operation ◦ on X by x◦x′ = σx for all x, x′ ∈ X. As we saw
in the proof of Theorem 4.1, σ is the square operator on X and an endomorphism
of X. Next, we define a binary operation ⋄ on Y by y ⋄ y′ = τy for all y, y′ ∈ Y .
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Similarly, we see that ⋄ is continuous and that τ is the square operator on Y and
an automorphism of Y . Finally, we set ε̃(x, x′) = ε(x) for all x, x′ ∈ X. Then
ασ,ε̃ = βσ,ε. Thus we can apply Theorem 3.4, replacing σ̂ by σ, τ̂ by τ and ε by ε̃.
The theorem is obtained immediately. �

In case δ = 0, we have the following:

Corollary 4.4. Let X, σ and (Y, d), τ be as in Theorem 4.3. Take a nonnegative
function ε on X. Suppose that βσ,ε <∞, γτ−1 <∞ and βσ,εγτ−1 < 1. If a mapping
f : X → Y satisfies d

(
f(σx), τ(f(x))

)
≤ ε(x) for all x ∈ X, then there exists a

unique mapping f∞ : X → Y such that

f∞(σx) = τ(f∞(x)) and d
(
f(x), f∞(x)

)
≤ γτ−1

1− βσ,εγτ−1

ε(x)

for all x ∈ X.

5. Application to Banach module, I

In Sections 4 and 5, we consider the case that X and Y are Banach modules, and
we take up the mapping f : X → Y satisfying f(ax+ bx′) = c f(x) + d f(x′) for all
x, x′ ∈ X.

Theorem 5.1. Let A be a unital commutative Banach algebra and X a normed
A-module. Let B be a commutative Banach algebra and Y a Banach B-module. Fix
a, b ∈ A, c, d ∈ B, p, q, r ∈ R and λ, κ ≥ 0. Suppose that a+ b is invertible and

(5.1) ∥c+ d∥ max
t=p,q,r

∥(a+ b)−1∥t < 1.

If two mappings f, g : X → Y satisfy

∥f(ax+ bx′)− c g(x)− d g(x′)∥ ≤ λ
(
∥x∥p + ∥x′∥q

)
(x, x′ ∈ X),(5.2)

∥f(x)− g(x)∥ ≤ κ ∥x∥r (x ∈ X),(5.3)

then there exists a unique mapping f∞ : X → Y such that

f∞(ax+ bx′) = c f∞(x) + d f∞(x′) (x, x′ ∈ X),

(5.4)

∥f(x)−f∞(x)∥ ≤
λ max
t=p,q

∥(a+b)−1∥t
(
∥x∥p+∥x∥q

)
+ κ ∥(a+b)−1∥r∥c+d∥ ∥x∥r

1− ∥c+ d∥ max
t=p,q,r

∥(a+ b)−1∥t
,

∥g(x)−f∞(x)∥ ≤
λ max
t=p,q

∥(a+ b)−1∥t
(
∥x∥p + ∥x∥q

)
+ κ∥x∥r

1− ∥c+ d∥ max
t=p,q,r

∥(a+ b)−1∥t
(x ∈ X).

If the mapping f∞ : X → Y satisfy (5.4), then we say that f∞ is an (a, b, c, d)-
module homomorphism from X to Y .
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Proof. Define binary operations ◦ on X and ⋄ on Y by

(5.5) x ◦ x′ = ax+ bx′ (x, x′ ∈ X) and y ⋄ y′ = cy + dy′ (y, y′ ∈ Y ).

Obviously, ◦ and ⋄ are continuous. Also, the corresponding square operators σ̂ and
τ̂ are given by

(5.6) σ̂x = x ◦ x = (a+ b)x (x ∈ X) and τ̂ y = y ⋄ y = (c+ d)y (y ∈ Y ).

Hence the easy computation shows that σ̂ and τ̂ are endomorphisms of X and Y
respectively. In particular, σ̂ is an automorphism of X, because a + b is invertible
and σ̂−1x = (a+ b)−1x for all x ∈ X. Next, we put

(5.7) ε(x, x′) = λ
(
∥x∥p + ∥x′∥q

)
and δ(x) = κ ∥x∥r (x, x′ ∈ X).

Under these circumstances, we have

ε(σ̂−1x, σ̂−1x′) = λ
(
∥(a+b)−1x∥p + ∥(a+b)−1x′∥q

)
≤ λ

(
∥(a+b)−1∥p∥x∥p + ∥(a+b)−1∥q∥x′∥q

)
≤ λ max

t=p,q
∥(a+b)−1∥t

(
∥x∥p + ∥x′∥q

)
= max

t=p,q
∥(a+b)−1∥t ε(x, x′)

for all x, x′ ∈ X, and hence

(5.8) ασ̂−1,ε ≤ max
t=p,q

∥(a+ b)−1∥t.

Similarly, we easily see that

(5.9) βσ̂−1,δ ≤ ∥(a+ b)−1∥r and γτ̂ ≤ ∥c+ d∥.
Hence the inequalities (5.8), (5.9) and (5.1) imply γτ̂ max{ασ̂−1,ε, βσ̂−1,δ} < 1. Ap-
plying Theorem 3.1, we get the theorem at once. �

The next two corollaries describe the case κ = 0 or the case λ = 0 in Theorem
5.1:

Corollary 5.2. Let A, X and B, Y be as in Theorem 5.1. Fix a, b ∈ A, c, d ∈ B,
p, q ∈ R and λ ≥ 0. Suppose that a + b is invertible and ∥c + d∥ maxt=p,q ∥(a +
b)−1∥t < 1. If a mapping f : X → Y satisfies ∥f(ax + bx′) − c f(x) − d f(x′)∥ ≤
λ
(
∥x∥p + ∥x′∥q

)
for all x, x′ ∈ X, then there exists a unique (a, b, c, d)-module

homomorphism f∞ : X → Y such that

∥f(x)− f∞(x)∥ ≤ λ maxt=p,q ∥(a+ b)−1∥t

1− ∥c+ d∥ maxt=p,q ∥(a+ b)−1∥t
(
∥x∥p + ∥x∥q

)
(x ∈ X).

Corollary 5.3. Let A, X and B, Y be as in Theorem 5.1. Fix a, b ∈ A, c, d ∈ B,
r ∈ R and κ ≥ 0, Suppose that a+b is invertible and ∥(a+b)−1∥r ∥c+d∥ < 1. If two
mappings f, g : X → Y satisfy f(ax + bx′) = c g(x) + d g(x′) and ∥f(x) − g(x)∥ ≤
κ ∥x∥r for all x, x′ ∈ X, then there exists a unique (a, b, c, d)-module homomorphism
f∞ : X → Y such that

∥f(x)− f∞(x)∥ ≤ κ ∥(a+ b)−1∥r∥c+ d∥
1− ∥(a+ b)−1∥r∥c+ d∥

∥x∥r

∥g(x)− f∞(x)∥ ≤ κ

1− ∥(a+ b)−1∥r∥c+ d∥
∥x∥r

(x ∈ X).
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The next theorem holds similarly.

Theorem 5.4. Let A be a commutative Banach algebra and X a normed A-module.
Let B be a unital commutative Banach algebra and Y a Banach B-module. Fix
a, b ∈ A, c, d ∈ B, p, q, r ∈ R and λ, κ ≥ 0. Suppose that c+ d is invertible and

max
t=p,q,r

∥a+ b∥t < 1

∥(c+ d)−1∥
.

If two mappings f, g : X → Y satisfy (5.2) and (5.3), then there exists a unique
(a, b, c, d)-module homomorphism f∞ : X → Y such that

∥f(x)−f∞(x)∥ ≤
λ ∥(c+ d)−1∥

(
∥x∥p + ∥x∥q

)
+ κ ∥x∥r

1− ∥(c+ d)−1∥ max
t=p,q,r

∥a+ b∥t

∥g(x)−f∞(x)∥ ≤
∥(c+ d)−1∥

[
λ
(
∥x∥p + ∥x∥q

)
+ κ ∥a+ b∥r∥x∥r

]
1− ∥(c+ d)−1∥ max

t=p,q,r
∥a+ b∥t

(x ∈ X).

Proof. Recall the proof of Theorem 5.1. If we define two continuous binary opera-
tions ◦ on X and ⋄ on Y by (5.5), then the corresponding square operators σ̂ and τ̂
are given by (5.6) and become endomorphisms of X and Y respectively. This time,
τ̂ is an automorphism of Y with the inverse τ̂−1y = (c+ d)−1y for all y ∈ Y . If we
define ε and δ by (5.7), then we have

ασ̂,ε ≤ max
t=p,q

∥a+ b∥t, βσ̂,δ ≤ ∥a+ b∥r and γτ̂−1 ≤ ∥(c+ d)−1∥.

Applying Theorem 3.4 instead of Theorem 3.1. we arrive at the theorem. �

The next two corollaries describe the case κ = 0 or the case λ = 0 in Theorem
5.4:

Corollary 5.5. Let A, X and B, Y be as in Theorem 5.4. Fix a, b ∈ A, c, d ∈ B,
p, q ∈ R and λ ≥ 0, Suppose that c + d is invertible and maxt=p,q ∥a + b∥t <
1/∥(c+ d)−1∥. If a mapping f : X → Y satisfies ∥f(ax+ bx′)− c f(x)− d f(x′)∥ ≤
λ
(
∥x∥p + ∥x′∥q

)
for all x, x′ ∈ X, then there exists a unique (a, b, c, d)-module

homomorphism f∞ : X → Y such that

∥f(x)− f∞(x)∥ ≤ λ ∥(c+ d)−1∥
1− ∥(c+ d)−1∥ maxt=p,q ∥a+ b∥t

(
∥x∥p + ∥x∥q

)
(x ∈ X).

Corollary 5.6. Let A, X and B, Y be as in Theorem 5.4. Fix a, b ∈ A, c, d ∈ B,
r ∈ R and κ ≥ 0, Suppose that c+d is invertible and ∥a+b∥r∥(c+d)−1∥ < 1. If two
mappings f, g : X → Y satisfy f(ax + bx′) = c g(x) + d g(x′) and ∥f(x) − g(x)∥ ≤
κ ∥x∥r for all x, x′ ∈ X, then there exists a unique (a, b, c, d)-module homomorphism
f∞ : X → Y such that

∥f(x)− f∞(x)∥ ≤ κ

1− ∥a+ b∥r∥(c+ d)−1∥
∥x∥r

∥g(x)− f∞(x)∥ ≤ κ ∥a+ b∥r∥(c+ d)−1∥
1− ∥a+ b∥r∥(c+ d)−1∥

∥x∥r
(x ∈ X).
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Let us consider the case that A = B = C and a = b = c = d = 1 and p = q.
Then Corollary 5.2 leads to the result of Z. Gajda [7] : If p > 1 and if ∥f(x+ x′)−
f(x)−f(x′)∥ ≤ λ

(
∥x∥p+∥x′∥p

)
for all x, x′ ∈ X, then there exists a unique additive

mapping f∞ such that

∥f(x)− f∞(x)∥ ≤ λ

2p−1 − 1
∥x∥p (x ∈ X).

Also, Corollary 5.5 yields the following result: If p < 1 and if ∥f(x + x′) − f(x) −
f(x′)∥ ≤ λ

(
∥x∥p + ∥x′∥p

)
for all x, x′ ∈ X, then there exists a unique additive

mapping f∞ such that

∥f(x)− f∞(x)∥ ≤ λ

1− 2p−1
∥x∥p (x ∈ X).

This is due to D. H. Hyers [8] if p = 0, due to T. Aoki [2] or Th. M. Rassias [15] if
0 < p < 1, and due to Miura, Hirasawa and Takahasi [14] if p < 0.

6. Application to Banach module, II

Even if we change the term ∥x∥p+∥x′∥q into ∥x∥p∥x′∥q in Section 4, we can discuss
in the same way. The easy modification yields two theorems and two corollaries
below.

Theorem 6.1. Let A, X, B, Y , a, b, c, d, p, q, r and λ, κ be as in Theorem 5.1.
Suppose that a+ b is invertible and

∥c+ d∥ max
t=p+q,r

∥(a+ b)−1∥t < 1.

If two mappings f, g : X → Y satisfy

∥f(ax+ bx′)− c g(x)− d g(x′)∥ ≤ λ ∥x∥p∥x′∥q (x, x′ ∈ X),(6.1)

∥f(x)− g(x)∥ ≤ κ ∥x∥r (x ∈ X),(6.2)

then there exists a unique (a, b, c, d)-module homomorphism f∞ : X → Y such that

∥f(x)−f∞(x)∥ ≤ λ ∥(a+b)−1∥p+q∥x∥p+q + κ∥(a+b)−1∥r∥c+d∥∥x∥r

1− ∥c+ d∥ max
t=p+q,r

∥(a+ b)−1∥t

∥g(x)−f∞(x)∥ ≤ λ ∥(a+ b)−1∥p+q∥x∥p+q + κ ∥x∥r

1− ∥c+ d∥ max
t=p+q,r

∥(a+ b)−1∥t
(x ∈ X).

Proof. Modify the proof of Theorem 5.1. In (5.7), we replace the first equation
by ε(x, x′) = λ ∥x∥p∥x′∥q for all x, x′ ∈ X. Then the inequality (5.8) changes into
ασ̂−1,ε ≤ ∥(a+ b)−1∥p+q. Thus the theorem follows in the same way. �

Corollary 6.2. Let A, X, B, Y , a, b, c, d, p, q and λ be as in Corollary 5.2. Suppose
that a + b is invertible and ∥(a + b)−1∥p+q∥c + d∥ < 1. If a mapping f : X → Y
satisfies ∥f(ax+ bx′)− c f(x)− d f(x′)∥ ≤ λ ∥x∥p∥x′∥q for all x, x′ ∈ X, then there
exists a unique (a, b, c, d)-module homomorphism f∞ : X → Y such that

∥f(x)− f∞(x)∥ ≤ λ ∥(a+ b)−1∥p+q

1− ∥(a+ b)−1∥p+q∥c+ d∥
∥x∥p+q (x ∈ X).
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Theorem 6.3. Let A, X, B, Y , a, b, c, d, p, q, r and λ, κ be as in Theorem 5.4.
Suppose that c+ d is invertible and

max
t=p+q,r

∥(a+ b)∥t < 1

∥(c+ d)−1∥
.

If two mappings f, g : X → Y satisfy (6.1) and (6.2), then there exists a unique
(a, b, c, d)-module homomorphism f∞ : X → Y such that

∥f(x)−f∞(x)∥ ≤ λ ∥(c+ d)−1∥ ∥x∥p+q + κ ∥x∥r

1− ∥(c+ d)−1∥ max
t=p+q,r

∥a+ b∥t

∥g(x)−f∞(x)∥ ≤
∥(c+ d)−1∥

[
λ ∥x∥p+q + κ ∥a+ b∥r∥x∥r

]
1− ∥(c+ d)−1∥ max

t=p+q,r
∥a+ b∥t

(x ∈ X).

Corollary 6.4. Let A, X, B, Y , a, b, c, d, p, q and λ be as in Corollary 5.5. Suppose
that c + d is invertible and ∥a + b∥p+q < 1/∥(c + d)−1∥. If a mapping f : X → Y
satisfies ∥f(ax+ bx′)− c f(x)− d f(x′)∥ ≤ λ ∥x∥p∥x′∥q for all x, x′ ∈ X, then there
exists a unique (a, b, c, d)-module homomorphism f∞ : X → Y such that

∥f(x)− f∞(x)∥ ≤ λ ∥(c+ d)−1∥
1− ∥a+ b∥p+q∥(c+ d)−1∥

∥x∥p+q (x ∈ X).

Let us consider the case that A = B = C and a = b = c = d = 1. Then Corollary
6.2 leads to the following result: If p + q > 1 and if ∥f(x + x′) − f(x) − f(x′)∥ ≤
λ ∥x∥p∥x′∥q for all x, x′ ∈ X, then there exists a unique additive mapping f∞ such
that

∥f(x)− f∞(x)∥ ≤ λ

2p+q − 2
∥x∥p+q (x ∈ X).

Also, Corollary 6.4 yields the following result: If p+q < 1 and if ∥f(x+x′)−f(x)−
f(x′)∥ ≤ λ ∥x∥p∥x′∥q for all x, x′ ∈ X, then there exists a unique additive mapping
f∞ such that

∥f(x)− f∞(x)∥ ≤ λ

2− 2p+q
∥x∥p+q (x ∈ X).

7. The other applications

Finally, we record two simple corollaries of Theorem 3.4.

Corollary 7.1. Let X be a set with a binary operation ◦ satisfying (x◦x)◦(x′◦x′) =
(x◦x′) ◦ (x◦x′) for all x, x′ ∈ X. Write [1,∞) = {x ∈ R : x ≥ 1} and take ε, δ ≥ 0.
If two functions f, g : X → [1,∞) satisfy

|f(x ◦ x′)− g(x)g(x′)| ≤ ε and |f(s)− g(s)| ≤ δ (x, x′ ∈ X),

then there exists a unique function f∞ : X → [1,∞) such that

f∞(x ◦ x′) = f∞(x) f∞(x′) (x, x′ ∈ X),

|f(x)− f∞(x)| ≤ ε+ 2δ and |g(x)− f∞(x)| ≤ ε+ δ (x ∈ X).
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Proof. By the property of ◦, the square operator σ̂ : x 7→ x◦x is an endomorphism of
X. If we put y⋄y′ = yy′ for all y, y′ ∈ [1,∞), then ⋄ is a continuous binary operation
on [0,∞), and the square operator τ̂ : y 7→ y ⋄ y = y2 is an automorphism of [1,∞)
with the inverse τ̂−1y =

√
y. Also, we understand ε and δ to be the constant

functions on S × S and S, respectively. Then we can easily see that ασ̂,ε ≤ 1,
βσ̂,δ ≤ 1 and

γτ̂−1 = sup

{
|τ̂−1y − τ̂−1y′|

|y − y′|
:
y, y′ ∈ [1,∞)

y ̸= y′

}
= sup

{
1

√
y +

√
y′

:
y, y′ ∈ [1,∞)

y ̸= y′

}
=

1

2
.

These imply that γτ̂−1 max{ασ̂,ε, βσ̂,δ} ≤ 1/2 < 1. Thus the corollary follows from
Theorem 3.4. �
Corollary 7.2. Let X be a set with a binary operation ◦ satisfying (x◦x)◦(x′◦x′) =
(x ◦ x′) ◦ (x ◦ x′) for all x, x′ ∈ X. Take ε, δ ≥ 0. If two complex functions f , g on
X satisfy

|f(x ◦ x′)− g(x)− g(x′)| ≤ ε and |f(x)− g(x)| ≤ δ (x, x′ ∈ X),

then there exists a unique complex function f∞ on X such that

f∞(x ◦ x′) = f∞(x) + f∞(x′) (x, x′ ∈ X),

|f(x)− f∞(x)| ≤ ε+ 2δ and |g(x)− f∞(x)| ≤ ε+ δ (x ∈ X).

Proof. Take a binary operation ⋄ on C as the usual addition + on C. Then the
square operator τ̂ : y 7→ y ⋄ y = y + y = 2y on C is clearly an automorphism of
(C,+) and its inverse is given by τ̂−1y = y/2. Employing the argument in the proof
of Corollary 7.1, we obtain the desired result. �
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