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STRONGLY CONVERGENT ITERATIVE ALGORITHMS FOR

SOLVING A CLASS OF VARIATIONAL INEQUALITIES

FENGHUI WANG AND HONG-KUN XU∗

Abstract. The paper is concerned with the problem of finding a common solu-
tion of a variational inequality problem governed by inverse strongly monotone
operators and of a fixed point problem of nonexpansive mappings. Two new
iterative algorithms are introduced to solve the problem. Moreover, it is proved
the sequence generated by each of the algorithms converges in norm to a solution
closest to the anchor from the common solution set. Applications to strict pseu-
docontractions, the split feasibility problem, and the convexly constrained linear
inverse problem are included.

1. Introduction

A variational inequality problem (VIP) is formulated as a problem of finding a
point x∗ with the property:

(1.1) x∗ ∈ C, ⟨Ax∗, z − x∗⟩ ≥ 0, z ∈ C,

where C is a nonempty closed convex subset of a real Hilbert spaceH and A : C → H
is an operator. We will denote the solution set of VIP (1.1) by Ω(A;C).

VIP (1.1) is said to be a monotone VIP if the governing operator A is a monotone
operator. In this paper we will consider a special case of a monotone VIP where
the governing operator A : C → H is inverse strongly monotone (ism) (i.e., there
exists a constant ν > 0 such that ⟨Ax−Ay, x− y⟩ ≥ ν∥Ax−Ay∥2 for all x, y ∈ C).

A fixed point problem (FPP) is to find a point x̂ with the property:

(1.2) x̂ ∈ C, Sx̂ = x̂,

where S : C → C is a nonlinear mapping and C is, as above, a nonempty closed
convex subset of a real Hilbert space H. The set of fixed points of S is denoted as
Fix(S).

The problem under consideration in this article is to find a common solution of
VIP (1.1) and of FPP (1.2). Namely, we seek a point x∗ such that

x∗ ∈ Fix(S) ∩ Ω(A;C).(1.3)

To solve Problem (1.3), Takahashi and Toyoda [22] introduced an algorithm which
generates a sequence (xn) by the iterative procedure:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), n ≥ 0,(1.4)

2010 Mathematics Subject Classification. Primary 47J20, 49J40; Secondary 47H05, 47H10,
47H09.

Key words and phrases. Inverse strongly monotone operator, nonexpansive mapping, variational
inequality problem, iterative algorithms, pseudocontraction, projection, fixed point, split feasibility
problem, constrained minimization, constrained linear inverse problem.

∗H. K. Xu was supported in part by NSC 97-2628-M-110-003-MY3; Corresponding author.



408 F. WANG AND H.-K. XU

where PC is the projection of C onto H.
Iiduka and Takahashi [14] introduced another algorithm which generates a se-

quence (xn) by the iterative procedure:

xn+1 = αnx+ (1− αn)SPC(xn − λnAxn), n ≥ 0.(1.5)

In both algorithms (1.4) and (1.5), the sequence (αn) is chosen from the interval
[0, 1]. Under certain assumptions, the sequence (xn) generated by algorithm (1.4)
(resp., (1.5)) can be weakly (resp., strongly) convergent to a solution of problem
(1.3) (see [22, 14]).

Recently, some other algorithms, which are connected with Korpelevich’s extra-
gradient method [15], were studied (see e.g. [18, 28]). We mention that the main
tool for the convergence analysis used in these articles is the maximal monotone
operator T defined by

(1.6) Tv =

{
Av +NCv, v ∈ C,
∅, v ̸∈ C,

where NCv = {w ∈ H : ⟨v − u,w⟩ ≥ 0, u ∈ C} is the normal cone to C at v ∈ C.
In this way, VIP (1.1) is equivalent to finding a zero of the maximal monotone T
defined by (1.6) (see [21]).

It is the aim of this paper to introduce two new iterative algorithms to solve prob-
lem (1.3). Our approach to the the convergence analysis uses averaged operators
which is different from the existing methods of using maximal monotone operators.
The paper is organized as follows. In the next section, some useful lemmas are
given. In Section 3, we prove strong convergence of our new algorithms. In Section
4, we include applications of our algorithms in solving fixed point problems of strict
pseudocontractions, the split feasibility problem, the convexly constrained linear
problem, as well as the convexly constrained minimization problem.

2. Preliminary and notation

Let H be a real Hilbert space and C a nonempty closed convex subset of H. We
use PC to denote the projection from H onto C; namely, for x ∈ H, PCx is the
unique point in C with the property:

∥x− PCx∥ = min
y∈C

∥x− y∥.

It is well-known that PCx is characterized by the inequality:

PCx ∈ C, ⟨x− PCx, z − PCx⟩ ≤ 0, z ∈ C.(2.1)

We will use the following notions on nonlinear operators T : C → H.

(i) T is nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, x, y ∈ C.

(ii) T is firmly nonexpansive if

⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2, x, y ∈ C

(Projections are firmly nonexpansive; hence nonexpansive.)
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(iii) T is α-averaged if there exist a constant α ∈ (0, 1) and a nonexpansive
mapping S such that T = (1 − α)I + αS, where I is the identity operator
on H. (Projections are 1

2 -averaged.)
(iv) T is ν-inverse strongly monotone (ν-ism) if there is a constant ν > 0 such

that
⟨Tx− Ty, x− y⟩ ≥ ν∥Tx− Ty∥2, x, y ∈ C.

(Projections are 1-ism.)

Some of the basic properties of the above-stated operators are collected below.

Lemma 2.1 ([5]). The following assertions hold.

(a) T is nonexpansive if and only if I − T is 1
2 -ism;

(b) T is averaged if and only if I − T is ν-ism for some ν > 1/2;
(c) T is firmly nonexpansive if and only if I − T is 1-ism;
(d) T is firmly nonexpansive if and only if T is 1

2 -averaged;
(e) If T is ν-ism for ν > 0 and if γ > 0, then γT is (ν/γ)-ism.

We shall use the following notation:

• xn → x: strong convergence of (xn) to x;
• xn ⇀ x: weak convergence of (xn) to x;
• ωw(xn): the set of the cluster points of (xn) in the weak topology (i.e., the
set {x : ∃xnj ⇀ x}, where (xnj ) means a subsequence of (xn)).

The lemma below is referred to as the demiclosedness principle for nonexpansive
mappings (see [12]).

Lemma 2.2 (Demiclosedness principle). Let C be a nonempty closed convex subset
of H and T : C → H a nonexpansive mapping with Fix(T ) ̸= ∅. If (xn) is a sequence
in C such that xn ⇀ x and (I − T )xn → y, then (I − T )x = y. In particular, if
y = 0, then x ∈ Fix(T ).

Averaged operators will play an important role in the convergence analysis of
our algorithms (to be introduced in Section 3). We therefore collect some useful
properties of averaged mappings.

Lemma 2.3 ([5, 7]). Let νA and νB be constants in (0, 1). Assume that A is
νA-averaged and B is νB-averaged. Then the following hold.

(i) If Fix(A) ∩ Fix(B) ̸= ∅, then Fix(AB) = Fix(A) ∩ Fix(B);
(ii) The composition AB is νAB-averaged with

νAB =
2

1 + 1/(νA ∨ νB)
;

(iii) For any z ∈ Fix(A), there holds the following inequality:

∥Ax− z∥2 ≤ ∥x− z∥2 − 1− νA
νA

∥Ax− x∥2.

The assumption below will be used in the subsequent section.

Assumption 2.4. Let ν > 0 and b ≥ a > 0.

(a) The sequence (λn) is chosen so that
(i) 0 < a ≤ λn ≤ b < 2ν;
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(i)
∑∞

n=0 |λn+1 − λn| < ∞.
(b) The sequence (αn) is chosen in (0, 1) so that

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞ |αn+1 − αn|/αn = 0.

Finally, we present a sufficient condition for a real sequence to converge to zero.

Lemma 2.5 ([24]). Let (an) be a nonnegative real sequence satisfying

an+1 ≤ (1− γn)an + γnµn,

where the sequences (γn) ⊂ (0, 1) and (µn) satisfy the conditions:

(i)
∑∞

n=0 γn = ∞;
(ii) limn→∞ γn = 0;
(iii) either

∑∞
n=0 |γnµn| < ∞ or limn→∞ µn ≤ 0.

Then limn→∞ an = 0.

3. Algorithms and Their Convergence

In this section, we will introduce two iterative algorithms and prove their strong
convergence to a solution of Problem (1.3). We begin with the following lemma.

Lemma 3.1. Assume that A : C → H is ν-ism for some ν > 0. Given a real
number λ such that 0 < λ < 2ν. Set V = I − 2νA and Vβ = (1 − β)I + βV with
β = λ/2ν. Then the following assertions hold.

(a) Fix(PCV ) = Fix(PCVβ) = Ω(A;C);
(b) Vβ is β-averaged and also Vβ = I − λA;
(c) For z ∈ Ω(A;C), there holds the following estimate:

∥PCVβx− z∥2 ≤ ∥x− z∥2 − 1− γ

γ
∥PCVβx− x∥2,(3.1)

where γ := 2/[1 + 1/(1/2 ∨ β)] < 1;
(d) For any given x ∈ H, there holds the inequality:

∥PCVβx− x∥ ≤ ∥PCVβ′x− x∥,

where 0 < β < β′ < 1.

Proof. (a) Observing that, for any z ∈ C,

⟨x− Vβx, x− z⟩ ≤ 0 ⇔ ⟨x− V x, x− z⟩ ≤ 0

⇔ ⟨Ax, x− z⟩ ≤ 0,

one can easily check that (a) holds.
(b) Since A is ν-ism, 2νA is 1

2 -ism; thus V = I − 2νA is nonexpansive in view of
Lemma 2.1. Consequently Vβ is β-averaged. The relation Vβ = I −λA follows from
simple computations.

(c) Since PC is 1
2 -averaged, it follows from Lemma 2.3(ii) that PCVβ is γ-averaged,

where

γ :=
2

1 + 1/(max{1/2, β})
.
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This together with Lemma 2.3(iii) immediately yields

∥PCVβx− z∥2 ≤ ∥x− z∥2 − 1− γ

γ
∥PCVβx− x∥2,

where z ∈ Ω(A;C) = Fix(PCVβ).
(d) By definition of projections, it follows that

∥Vβx− PCVβx∥2 ≤ ∥Vβx− PCVβ′x∥2,
which implies that

∥(x− PCVβx) + β(V x− x)∥2 ≤ ∥(x− PCVβ′x) + β(V x− x)∥2.
Expanding the above square-norms and by monotonicity of PC , we arrive at

∥x− PCVβ′x∥2 ≥ ∥x− PCVβx∥2 + 2β⟨PCVβ′x− PCVβx, V x− x⟩

= ∥x− PCVβx∥2 +
2β

β′ − β
⟨PCVβ′x− PCVβx, Vβ′x− Vβx⟩

≥ ∥x− PCVβx∥2,
which completes the proof. �

We now introduce our first iterative algorithm. Take an initial guess x0 ∈ C and
another point x ∈ C called an anchor; choose a sequence (αn) in the interval [0, 1];
and define a sequence (xn) by the iterative procedure:

xn+1 = S[αnx+ (1− αn)PC(xn − λnAxn)], n ≥ 0.(3.2)

Below is the convergence of this algorithm.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A : C → H be ν-ism for some ν > 0 and S : C → C nonexpansive. Suppose
Fix(S)∩Ω(A;C) ̸= ∅ and Assumption 2.4 holds. Then the sequence (xn) generated
by the iterative algorithm (3.2) converges strongly to the solution x∗ of Problem
(1.3) closest to x from the solution set; namely, x∗ = PFix(S)∩Ωx.

Proof. Set yn = PC(xn − λnAxn). By Lemma 3.1, we can write

yn = PCVβnxn = PC [(1− βn)xn + βnV xn],

where βn = λn/(2ν) ∈ (0, 1) satisfying a/(2ν) ≤ βn ≤ b/(2ν) and
∞∑
n=0

|βn+1 − βn| < ∞.(3.3)

We divide our proof into several steps.

Step 1. The sequence (xn) is bounded.
Taking any z ∈ Fix(S) ∩ Ω(A;C) (thus z = PCVβnz by Lemma 3.1), we deduce

that

∥xn+1 − z∥ ≤ ∥αnx+ (1− αn)yn − z∥
≤ αn∥x− z∥+ (1− αn)∥xn − z∥
≤ max{∥x− z∥, ∥xn − z∥}.
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By induction, we can easily show that

∥xn − z∥ ≤ max{∥x0 − z∥, ∥x− z∥}

for all n ≥ 0. In particular, (xn) is bounded.

Step 2. limn→∞ ∥yn − xn∥ = 0.
By Algorithm (3.2), we estimate that

∥xn+1 − xn∥ ≤ ∥[αnx+ (1− αn)yn]− [αn−1x+ (1− αn−1)yn−1]∥
= ∥(αn − αn−1)(x− yn−1) + (1− αn)(yn − yn−1)∥
≤ |αn − αn−1|∥x− yn−1∥+ (1− αn)∥yn − yn−1∥(3.4)

and also that

∥yn − yn−1∥ = ∥PCVβnxn − PCVn−1xn−1∥
≤ ∥Vβnxn − Vβn−1xn−1∥
≤ ∥Vβnxn − Vβnxn−1∥+ ∥Vβnxn−1 − Vβn−1xn−1∥
≤ ∥xn − xn−1∥+ |βn − βn−1|∥V xn−1 − xn−1∥.(3.5)

Substituting (3.5) into (3.4), we arrive at

(3.6) ∥xn+1 − xn∥ ≤ (1− αn)∥xn − xn−1∥+M(|αn − αn−1|+ |βn − βn−1|),

where M is a suitable positive constant. By virtue of Assumption 2.4 and the condi-
tion (3.3), we can apply Lemma 2.5 to (3.6) to obtain xn+1−xn → 0. Consequently
we also have

(3.7) lim
n→∞

∥xn − yn∥ = 0.

In fact, it follows from Lemma 3.1 that PCVβn is γn-averaged, where

γn :=
2

1 + 1/(max{1/2, βn})
.

We therefore derive from (3.1) that

∥xn+1 − z∥2 ≤ ∥αnx+ (1− αn)yn − z∥2

≤ αn∥x− z∥2 + (1− αn)∥yn − z∥2

≤ αn∥x− z∥2 + ∥PCVβnxn − z∥2

≤ αn∥x− z∥2 + ∥xn − z∥2 − 1− γn
γn

∥PCVβnxn − xn∥2

= αn∥x− z∥2 + ∥xn − z∥2 − 1− γn
γn

∥yn − xn∥2.

It turns out that

1− γn
γn

∥yn − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + αn∥x− z∥2

≤ L(∥xn − xn+1∥+ αn),(3.8)
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where L is a suitable positive constant. Since it is not hard to check that

inf
n≥0

1− γn
γn

> 0,

we see that (3.7) follows from (3.8) by sending n → ∞.

Step 3. If x′ ∈ ωw(xn), then x′ ∈ Fix(S) ∩ Ω(A;C).
To see this, we set zn = αnx+ (1− αn)yn. Then we conclude that

∥yn − zn∥ = αn∥x− yn∥ → 0,

and also that

∥Szn − zn∥ = ∥xn+1 − zn∥
≤ ∥xn+1 − xn∥+ ∥xn − yn∥+ ∥yn − zn∥
→ 0 (as n → ∞).

Take a subsequence (xnk
) of (xn) such that xnk

⇀ x′; hence znk
⇀ x′ as well. By

the demiclosedness principle (Lemma 2.2), we conclude that x′ ∈ Fix(S).
To show x′ ∈ Ω(A;C), set Vβ = (1 − β)I + βV with β = a/(2ν). In view of

Lemma 3.1, we have

∥PCVβxn − xn∥ ≤ ∥PCVβnxn − xn∥ = ∥yn − xn∥ → 0 (as n → ∞).

Applying the demiclosedness principle again, we get x′ ∈ Fix(PCVβ) = Ω(A;C),
where the equality follows from Lemma 3.1(a).

Step 4. xn → x∗ := PFix(S)∩Ω(A;C)x.
To see this we first claim that the following estimate holds:

(3.9) lim
n→∞

⟨yn − x∗, x− x∗⟩ ≤ 0.

In fact, by Steps 2 and 3, we get

lim
n→∞

⟨yn − x∗, x− x∗⟩ = lim
n→∞

(⟨xn − x∗, x− x∗⟩+ ⟨yn − xn, x− x∗⟩)

= lim
n→∞

⟨xn − x∗, x− x∗⟩ = lim
n′→∞

⟨xn′ − x∗, x− x∗⟩

= ⟨x′ − x∗, x− x∗⟩ ≤ 0,(3.10)

where (xn′) is an appropriately chosen subsequence of (xn) converging weakly to x′

and where the last inequality follows because x∗ is the projection of the anchor x
onto Fix(S) ∩ Ω(A;C).

Finally we prove xn → x∗. As a matter of fact, we have

∥xn+1 − x∗∥2 = ∥S(αnx+ (1− αn)yn)− Sx∗∥2

≤ ∥αnx+ (1− αn)yn − x∗∥2

= (1− αn)
2∥yn − x∗∥2 + α2

n∥x− x∗∥2

+ 2αn(1− αn)⟨yn − x∗, x− x∗⟩
= (1− αn)

2∥PCVβnxn − x∗∥2 + α2
n∥x− x∗∥2

+ 2αn(1− αn)⟨yn − x∗, x− x∗⟩
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≤ (1− αn)∥xn − x∗∥2 + α2
n∥x− x∗∥2

+ 2αn(1− αn)⟨yn − x∗, x− x∗⟩
≤ (1− αn)∥xn − x∗∥2 + αnδn,(3.11)

where
δn := 2(1− αn)⟨yn − x∗, x− x∗⟩+ αn∥x− x∗∥2

satisfies the property (due to (3.9)):

lim
n→∞

δn ≤ 0.

Therefore, applying Lemma 2.5 to (3.11) gives that ∥xn − x∗∥ → 0, which is the
required result. �

Before moving on to our second algorithm, we present a lemma below.

Lemma 3.3. Let the conditions in Lemma 3.1 hold. If A−1(0) ̸= ∅, then Ω(A;C) =
Fix(V ).

Proof. By definitions of V and Vβ, it is obvious that

(3.12) A−1(0) = Fix(V ) = Fix(Vβ) ⊆ C.

However, since

Fix(PC) ∩ Fix(Vβ) = C ∩A−1(0) = A−1(0) ̸= ∅,
it follows from Lemmas 3.1 and 2.3 that

Ω(A;C) = Fix(PCVβ) = C ∩ Fix(Vβ).

Now Ω(A;C) = Fix(V ) follows from (3.12). �
Remark 3.4. If the domain of A is the whole space H, then the assumption A−1(0) ̸=
∅ should be replaced by C ∩A−1(0) ̸= ∅.

Our second iterative algorithm generates a sequence (xn) according to the recur-
sion:

xn+1 = SPC [αnx+ (1− αn)(xn − λnAxn)], n ≥ 0,(3.13)

where the initial guess x0 ∈ C and the anchor x ∈ C are chosen in C arbitrarily, and
the sequence (αn) is selected in the interval [0, 1]. The convergence of this algorithm
is given below.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let A : C → H be ν-ism for some ν > 0 and S : C → C nonexpansive. Suppose
Fix(S) ∩A−1(0) ̸= ∅ and Assumption 2.4 holds. Then the sequence (xn) generated
by the algorithm (3.13) converges strongly to the solution x∗ of Problem (1.3) closest
to x from the solution set; namely, x∗ = PFix(S)∩Ω(A;C)x.

Proof. Set yn = xn − λnAxn. Then by Lemma 3.1, we can write

yn = Vβnxn = (1− βn)xn + βnV xn,

where βn = λn/(2ν) ∈ (0, 1) satisfying condition (3.3). Again we divide our proof
into several steps.
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Step 1. The sequence (xn) is bounded.
Take z ∈ Fix(S) ∩ Ω(A;C). It follows from Lemma 3.3 that

z ∈ Fix(S) ∩ Ω(A;C) = Fix(S) ∩ Fix(V ) ⊆ C.(3.14)

Repeating the argument of Step 1 in the proof of Theorem 3.2, we can obtain that
the sequence (xn) is bounded.

Step 2. limn→∞ ∥yn − xn∥ = 0.
By Algorithm (3.13), we estimate that

∥xn+1 − xn∥ ≤ ∥αnx+ (1− αn)yn − [αn−1x+ (1− αn−1)yn−1]∥
= ∥(αn − αn−1)(x− yn−1) + (1− αn)(yn − yn−1)∥
≤ |αn − αn−1|∥x− yn−1∥+ (1− αn)∥yn − yn−1∥(3.15)

and also that

∥yn − yn−1∥ = ∥Vβnxn − Vβn−1xn−1∥
≤ ∥Vβnxn − Vβnxn−1∥+ ∥Vβnxn−1 − Vβn−1xn−1∥
≤ ∥xn − xn−1∥+ |βn − βn−1|∥V xn−1 − xn−1∥.(3.16)

Substituting (3.16) into (3.15) yields

∥xn+1 − xn∥ ≤ (1− αn)∥xn − xn−1∥
+M(|αn − αn−1|+ |βn − βn−1|),

(3.17)

where M is a suitable positive constant. Now we can apply Lemma 2.5 to (3.17) to
obtain xn+1 − xn → 0.

On the other hand, we deduce by (3.14) that

∥xn+1 − z∥2 = ∥SPC [αnx+ (1− αn)yn]− z∥2

≤ ∥αnx+ (1− αn)yn − z∥2

≤ (1− αn)∥yn − z∥2 + αn∥x− z∥2

≤ ∥(1− βn)xn + βnV xn − z∥2 + αn∥x− z∥2

= (1− βn)∥xn − z∥2 + βn∥V xn − z∥2

+ αn∥x− z∥2 − βn(1− βn)∥xn − V xn∥2

≤ ∥xn − z∥2 + αn∥x− z∥2 − βn(1− βn)∥xn − V xn∥2.
It turns out that

βn(1− βn)∥xn − V xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + αn∥x− z∥2

≤ L(∥xn+1 − xn∥+ αn),(3.18)

where L is a suitable positive constant. Now since 0 < a/(2ν) ≤ βn ≤ b/(2ν) < 1
for all n and since ∥xn+1 − xn∥ → 0, it follows from (3.18) that

∥xn − V xn∥ → 0 as n → ∞.(3.19)

However ∥xn − yn∥ = βn∥V xn − xn∥. Therefore, xn − yn → 0 as n → ∞.

Step 3. If x′ ∈ ωw(xn), then x′ ∈ Fix(S) ∩ Ω(A;C).
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Take a subsequence (xnk
) of (xn) such that xnk

⇀ x′. Thus, by (3.19) and the
demiclosedness principle (Lemma 2.2), x′ ∈ Fix(V ) = Ω(A;C).

To see x′ ∈ Fix(S), let zn = PC [αnx+ (1− αn)yn]. It is obvious that xn ∈ C for
every n ≥ 0 and thus

∥xn − zn∥ = ∥PCxn − PC [αnx+ (1− αn)yn]∥
≤ αn∥xn − x∥+ ∥xn − yn∥ → 0,

which implies that znk
⇀ x′. On the other hand,

∥Szn − zn∥ = ∥xn+1 − zn∥ ≤ ∥xn+1 − xn∥+ ∥xn − zn∥ → 0.

Applying again the demiclosedness principle (Lemma 2.2) gives us that x′ ∈ Fix(S).

Step 4. xn → x∗ := PFix(S)∩Ω(A;C)x.
To see this, we first repeat the proof of (3.10) to get the following estimate:

(3.20) lim
n→∞

⟨yn − x∗, x− x∗⟩ ≤ 0.

Next we compute from (3.13) that

∥xn+1 − x∗∥2 = ∥SPC [αnx+ (1− αn)yn]− x∗∥2

≤ ∥αnx+ (1− αn)yn − x∗∥2

= (1− αn)
2∥yn − x∗∥2 + α2

n∥x− x∗∥2

+ 2αn(1− αn)⟨yn − x∗, x− x∗⟩
= (1− αn)

2∥Vβnxn − x∗∥2 + α2
n∥x− x∗∥2

+ 2αn(1− αn)⟨yn − x∗, x− x∗⟩
≤ (1− αn)∥xn − x∗∥2 + α2

n∥x− x∗∥2

+ 2αn(1− αn)⟨yn − x∗, x− x∗⟩
= (1− αn)∥xn − x∗∥2 + αnδn,(3.21)

where

δn = 2(1− αn)⟨yn − x∗, x− x∗⟩+ αn∥x− x∗∥2

satisfies the property (due to (3.20)):

lim
n→∞

δn ≤ 0.

Applying Lemma 2.5 to (3.21) yields that ∥xn − x∗∥ → 0. This completes the
proof. �

4. Applications

We present in this section several applications of the results obtained in Section
3.
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4.1. Strictly pseudocontractive mapping. We first consider a problem for find-
ing a common fixed point of a nonexpansive mapping and of a strictly pseudo-
contractive mapping. Recall that an operator T : C → C is called strictly κ-
pseudocontractive if there is constant κ ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + κ∥(I − T )x− (I − T )y∥2

for all x, y ∈ C. It is known that if T is strictly κ-pseudocontractive, then A = I−T
is 1−κ

2 -ism (see [3]).

Corollary 4.1. Let T : C → C be strictly κ-pseudocontractive and S : C → C
nonexpansive. Suppose that Assumption 2.4 holds and Fix(S)∩Fix(T ) ̸= ∅. Then,
for any given x, x0 ∈ C, the sequence (xn) generated by the algorithm

xn+1 = S[αnx+ (1− αn)((1− λn)xn + λnTxn)], n ≥ 0

converges strongly to the point PFix(S)∩Fix(T )x.

Proof. Set A = I − T . Then A is 1−κ
2 -ism. Also Fix(T ) = Ω(A;C) and PC(xn −

λnAxn) = (1 − λn)xn + λnTxn. Applying Theorem 3.2 yields the result of the
lemma. �

4.2. Convexly constrained minimization problem. Consider the optimization
problem of finding a point x∗ with the property:

(4.1) x∗ ∈ argmin
x∈C

f(x),

where f : H → R is a convex and differentiable function. A classical method to solve
Problem (4.1) is the well-known gradient projection algorithm, which generates a
sequence (xn) by the iterative procedure:

(4.2) xn+1 = PC(xn − γ∇f(xn)), n ≥ 0,

where x0 ∈ H, and γ is a positive parameter. If, in addition, ∇f(x) is 1
ν -Lipschitz

continuous, i.e.,

∥∇f(x)−∇f(y)∥ ≤ 1

ν
∥x− y∥, x, y ∈ H,

then the sequence (xn), generated by (4.2) with 0 < γ < 2ν, converges weakly
to a minimizer of f relative to the set C, whenever such minimizers exist (see for
example [5, Corollary 4.1]).

Corollary 4.2. Let f : H → R be a convex and differentiable function. Suppose
that ∇f(x) is 1

ν -Lipschitz continuous and that Assumption 2.4 holds. Then, for any
given x, x0 ∈ H, the sequence (xn) generated by the algorithm

xn+1 = αnx+ (1− αn)PC(xn − λn∇f(xn))

converges strongly to a minimizer of f relative to C, whenever such minimizers
exist.

Proof. Denote by Ω(f ;C) the solution set of the variational inequality

x ∈ C, ⟨∇f(x), x− z⟩ ≥ 0, z ∈ C.
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According to [10, Lemma 5.13], we have Ω(f ;C) = argminx∈C f(x). Further, if
∇f is (1/ν)-Lipschitz continuous, then it is also ν-ism (see [2, Corollary 10]) and
therefore, Theorem 3.2 applies by letting A = ∇f . �

Corollary 4.3. Let the conditions in Corollary 4.2 hold. If, in addition,

C ∩∇f−1(0) ̸= ∅,

where f−1(0) = {x : ∇f(x) = 0}, then, for any given x, x0 ∈ H, the sequence (xn)
generated by the algorithm

xn+1 = PC [αnx+ (1− αn)(xn − λn∇f(xn))]

converges strongly to a minimizer of f relative to C, whenever such minimizers
exist.

Proof. Applying Theorem 3.5 obtains the result. �

4.3. Split feasibility problem. Let C and Q be nonempty closed convex subsets
of real Hilbert spaces H and K, respectively. The split feasibility problem (SFP) [6]
is formulated as finding a point x satisfying the property:

x ∈ C and Ax ∈ Q,(4.3)

where A : H → K is a bounded linear operator. SFP (4.3) attracts many authors’
attention due to its application in signal processing [6]. To solve SFP (4.3), it is
very useful to investigate the following convexly constrained minimization problem
(CCMP):

min
x∈C

f(x) :=
1

2
∥(I − PQ)Ax∥2.(4.4)

Generally speaking, SFP (4.3) and CCMP (4.4) are not fully equivalent: every
solution of SFP (4.3) is evidently a minimizer of CCMP (4.4); however a solution
to CCMP (4.4) does not necessarily satisfy SFP (4.3). Further, if the solution set
of SFP (4.3) is nonempty, i.e.,

C ∩A−1(Q) := C ∩ {x : Ax ∈ Q} ̸= ∅,

then it follows from [23, Lemma 4.2] that

C ∩∇f−1(0) = C ∩A−1(Q) ̸= ∅,

where f is defined by (4.4).
Various algorithms have been invented to solve SFP (4.3) (see [4, 5, 20, 25, 26, 27]

and reference therein). In particular, Byrne [4] introduced the CQ algorithm: For
any initial guess x0 ∈ H, define (xn) recursively as

xn+1 = PC(I − λA∗(I − PQ)A)xn,(4.5)

where 0 < λ < 2ν with ν = 1/∥A∥2. The CQ algorithm is known to have only weak
convergence in infinite-dimensional spaces [11], since it is in fact a special case for
the Mann iteration [17].
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Corollary 4.4. Suppose that Assumption 2.4 holds. Then, for any given x ∈ H,
the sequence (xn), generated by the algorithm

xn+1 = αnx+ (1− αn)PC [xn − λnA
∗(I − PQ)Axn]

converges strongly to a solution of SFP (4.3), whenever its solution set is nonempty.

Proof. Let f be defined by (4.4). According to [5, p. 113] (see also [1]), we have

∇f = A∗(I − PQ)A,

which is (1/ν)-Lipschitz continuous with ν = 1/∥A∥2. Thus Corollary 4.2 applies
and the result follows immediately. �

Remark 4.5. Corollary 4.4 recovers the result of [25, Corollary 3.7], which considered
the special case where λn ≡ λ for all n.

Corollary 4.6. Suppose that Assumption 2.4 holds. Then, for any given x ∈ H,
the sequence (xn), generated by the algorithm

xn+1 = PC [αnx+ (1− αn)(xn − λnA
∗(I − PQ)Axn)]

converges strongly to a solution of SFP (4.3), whenever its solution set is nonempty.

Proof. This is a straightforward consequence of Corollary 4.3. �

Remark 4.7. Corollary 4.6 recovers the result of [23, Theorem 4.3], which considered
the special case where x = 0 and λn ≡ λ for all n.

4.4. Convexly constrained linear inverse problem. The convexly constrained
linear inverse problem is to solve the constrained linear system (cf. [9, 19]){

Ax = b
x ∈ C

(4.6)

where A : H → K is a bounded linear operator and b ∈ K. A classical way to deal
with this problem is the well-known projected Landweber method (see [9]): For any
initial guess x0 ∈ H, define (xn) recursively by

xn+1 = PC [xn − λA∗(Axn − b)],(4.7)

where 0 < λ < 2ν with ν = 1/∥A∥2. An counterexample in [8, Remark 5.12] shows
that the projected Landweber iteration converges weakly in infinite-dimensional
spaces, in general. To get strong convergence, we have the following result.

Corollary 4.8. Suppose that Assumption 2.4 holds. Then, for any given x ∈ H,
the sequence (xn) generated by the algorithm

xn+1 = αnx+ (1− αn)PC [xn − λnA
∗(Axn − b)]

converges strongly to a solution of Problem (4.6), whenever its solution set is
nonempty.

Proof. This is a direct consequence of Corollary 4.4 by taking Q = {b}. �
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Corollary 4.9. Suppose that Assumption 2.4 holds. Then, for any given x ∈ H,
the sequence (xn) generated by the algorithm

xn+1 = PC [αnx+ (1− αn)(xn − λnA
∗(Axn − b))]

converges strongly to a solution of Problem (4.6), whenever its solution set is
nonempty.

Proof. This is a direct consequence of Corollary 4.6 by taking Q = {b}. �
Remark 4.10. Corollary 4.9 recovers the result of [9, Theorem 3.9], which considered
the special case where x = 0 and λn = (1 + n−α)−1 with 0 < α < 1.
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