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AN ESTIMATION OF EXACT PENALTY IN CONSTRAINED
OPTIMIZATION
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Abstract. We use the penalty approach in order to study constrained min-
imization problems in infinite dimensional spaces. A penalty function is said
to have the exact penalty property if there is a penalty coefficient for which a
solution of an unconstrained penalized problem is a solution of the correspond-
ing constrained problem. In our recent work we established the exact penalty
property for a large class of inequality-constrained minimization problems. In
the present paper we improve this result and obtain an estimation of the exact
penalty.

1. Introduction

Penalty methods are an important and useful tool in constrained optimization.
See, for example, [1-12, 14-28] and the references mentioned there. In this paper
we use the penalty approach in order to study constrained minimization problems
in infinite dimensional spaces. A penalty function is said to have the exact penalty
property [3, 5, 11, 17] if there is a penalty coefficient for which a solution of an
unconstrained penalized problem is a solution of the corresponding constrained
problem.

The notion of exact penalization was introduced by Eremin [14] and Zangwill [26]
for use in the development of algorithms for nonlinear constrained optimization.
Since that time, exact penalty functions have continued to play a key role in the
theory of mathematical programming [4, 6, 16, 18-21]. For a detailed historical
review of the literature on exact penalization see [3, 5, 11].

In [28] and here we study the exact penalty property for a large class of inequality-
constrained minimization problems

f(x) → min subject to x ∈ A

where
A = {x ∈ X : gi(x) ≤ ci for i = 1, . . . , n}.

Here X is a Banach space, ci, i = 1, . . . , n are real numbers, the constraint functions
gi, i = 1, . . . , n are convex and lower semicontinuous and the objective function f
belongs to a class of functions described in Section 2. It is shown in [28] that this
class of objective functions is a convex cone in the vector space of all functions on
X. It includes the set of all convex bounded from below semicontinuous functions
f : X → R1 which satisfy the growth condition lim||x||→∞ f(x) = ∞ and the set
of all functions f on X which satisfy the growth condition above and which are
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Lipschitzian on all bounded subsets of X. It should be mentioned that if f belongs
to this class of functions and g : R1 → R1 is an increasing Lipschitzian function,
then g ◦ f also belongs to it.

We associate with the inequality-constrained minimization problem above the
corresponding family of unconstrained minimization problems

f(z) + γ

n∑

i=1

max{gi(z)− ci, 0} → min, z ∈ X

where γ > 0 is a penalty. In [28] we established the existence of a penalty coefficient
for which approximate solutions of the unconstrained penalized problem are close
enough to approximate solutions of the corresponding constrained problem. This is
a novel approach in the penalty type methods.

Consider a minimization problem h(z) → min, z ∈ X where h : X → R1 is a lower
semicontinuous bounded from below function. If the space X is infinite-dimensional,
then the existence of solutions of the problem is not guaranteed and in this situation
we consider δ-approximate solutions. Namely, x ∈ X is a δ-approximate solution of
the problem h(z) → min, z ∈ X, where δ > 0, if h(x) ≤ inf{h(z) : z ∈ X}+ δ.

Since in this paper and in [28] we consider minimization problems in a general
Banach space the existence of their solutions is not guaranteed. Therefore we are
interested in approximate solutions of the unconstrained penalized problem and in
approximate solutions of the corresponding constrained problem. In [28] under a
mild assumption (see (2.5)) we establish (see Theorem 2.1 of the present paper) the
existence of a constant Λ0 > 0 such that the following property holds:

For each ε > 0 there exists δ(ε) > 0 which depends only on ε such that if x is
a δ(ε)-approximate solution of the unconstrained penalized problem whose penalty
coefficient is larger than Λ0, then there exists an ε-approximate solution y of the
corresponding constrained problem such that ||y − x|| ≤ ε.

It was shown in [28] that this property implies that any exact solution of the
unconstrained penalized problem whose penalty coefficient is larger than Λ0, is
an exact solution of the corresponding constrained problem. Therefore the result
obtained in [28] also includes the classical penalty result as a special case. In the
present paper we improve the main result of [28] and obtain an estimation of the
exact penalty Λ0.

2. The main result

We use the convention that λ · ∞ = ∞ for all λ ∈ (0,∞), λ + ∞ = ∞ and
max{λ,∞} = ∞ for any real number λ and that supremum over empty set is −∞.
For each real number λ put λ+ = max{λ, 0}.

We use the following notation and definitions.
Let (X, || · ||) be a Banach space. For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ||x− y|| ≤ r}.
For each function f : X → R1 ∪ {∞} and each nonempty set A ⊂ X put

dom(f) = {x ∈ X : f(x) < ∞},
inf(f) = inf{f(z) : z ∈ X}
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and
inf(f ;A) = inf{f(z) : z ∈ A}.

For each x ∈ X and each B ⊂ X set

(2.1) d(x,B) = inf{||x− y|| : y ∈ B}.
Let n be a natural number. For each κ ∈ (0, 1) denote by Ωκ the set of all γ =
(γ1, . . . , γn) ∈ Rn such that

(2.2) κ ≤ min{γi : i = 1, . . . , n} and max{γi : i = 1, . . . , n} = 1.

Let gi : X → R1 ∪ {∞}, i = 1, . . . , n be convex lower semicontinuous functions
and c = (c1, . . . , cn) ∈ Rn. Set

(2.3) A = {x ∈ X : gi(x) ≤ ci for all i = 1, . . . , n}.
Let f : X → R1 ∪ {∞} be a bounded from below lower semicontinuous function
which satisfies the following growth condition

(2.4) lim
||x||→∞

f(x) = ∞.

We suppose that there is x̃ ∈ X such that

(2.5) gj(x̃) < cj for all j = 1, . . . , n and f(x̃) < ∞.

In this paper we consider the following constrained minimization problem

(P ) f(x) → min subject to x ∈ A.

In view of (2.5) A 6= ∅ and inf(f ;A) < ∞.
For each vector γ = (γ1, . . . , γn) ∈ (0,∞)n define

(2.6) ψγ(z) = f(z) +
n∑

i=1

γi max{gi(z)− ci, 0}, z ∈ X.

Clearly for each γ ∈ (0,∞)n the function ψγ : X → R1∪{∞} is bounded from below
and lower semicontinuous and satisfies inf(ψγ) < ∞. We associate with problem
(P) the corresponding family of unconstrained minimization problems

(Pγ) ψγ(z) → min, z ∈ X

where γ ∈ (0,∞)n.
In this paper we assume that there exists a function h : X×dom(f) → R1∪{∞}

such that the following assumptions hold:
(A1) h(z, y) is finite for each y, z ∈ dom(f) and h(y, y) = 0 for each y ∈ dom(f).
(A2) For each y ∈ dom(f) the function h(·, y) → R1 ∪ {∞} is convex.
(A3) For each z ∈ dom(f) and each r > 0

sup{h(z, y) : y ∈ dom(f) ∩B(0, r)} < ∞.

(A4) For each M > 0 there exists M1 > 0 such that for each y ∈ X satisfying
f(y) ≤ M there exists a neighborhood V of y in X such that if z ∈ V , then

f(z)− f(y) ≤ M1h(z, y).
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Remark 2.1. Note that if f is convex, then assumptions (A1)-(A4) hold with h(z, y) =
f(z)− f(y), z ∈ X, y ∈ dom(f). In this case M1 = 1 for all M > 0. If the function
f is finite-valued and Lipschitzian on all bounded subsets of X, then assumptions
(A1)-(A4) hold with h(z, y) = ||z − y|| for all z, y ∈ X.

Let κ ∈ (0, 1). The main result of [28] (Theorem 2.1 stated below) imply that if
λ is sufficiently large, then any solution of problem (Pλγ) with γ ∈ Ωκ is a solution
of problem (P ). Note that if the space X is infinite-dimensional, then the existence
of solutions of problems (Pλγ) and (P ) is not guaranteed. In this case Theorem 2.1
implies that for each ε > 0 there exists δ(ε) > 0 which depends only on ε such that
the following property holds:

If λ ≥ Λ0, γ ∈ Ωκ and if x is a δ-approximate solution of (Pλγ), then there exists
an ε-approximate solution y of (P ) such that ||y − x|| ≤ ε.

Here Λ0 is a positive constant which does not depend on ε.
It should be mentioned that we deal with penalty functions whose penalty pa-

rameters for constraints g1, . . . , gn are λγ1, . . . , λγn respectively, where λ > 0 and
(γ1, . . . , γn) ∈ Ωκ for a given κ ∈ (0, 1). Note that the vector (1, 1, . . . , 1) ∈ Ωκ

for any κ ∈ (0, 1). Therefore our results also includes the case γ1 = · · · = γn = 1
where one single parameter λ is used for all constraints. Note that sometimes it is
an advantage from numerical consideration to use penalty coefficients λγ1, . . . , λγn

with different parameters γi, i = 1, . . . , n. For example, in the case when some of
the constrained functions are very “small” and some of the constraint functions are
very “large”.

The next theorem is the main result of [28].

Theorem 2.1. Let κ ∈ (0, 1). Then there exists a positive number Λ0 such that for
each ε > 0 there exists δ ∈ (0, ε) such that the following assertion holds:

If γ ∈ Ωκ, λ ≥ Λ0 and if x ∈ X satisfies

ψλγ(x) ≤ inf(ψλγ) + δ,

then there exists y ∈ A such that

||y − x|| ≤ ε and f(y) ≤ inf(f ;A) + ε.

Note that Theorem 2.1 is just an existence result and it does not provide any
estimation of the constant Λ0. In the present paper we improve Theorem 2.1 and
obtain an estimation of the exact penalty Λ0.

By (2.4) and (2.5) there is M > 0 such that

(2.7) if y ∈ X satisfies f(y) ≤ |f(x̃)|+ 1, then ||y|| < M.

In view of (2.7),

(2.8) ||x̃|| < M.

By (A4) there is M1 > 0 such that the following property holds:
(P1) for each y ∈ X satisfying f(y) ≤ |f(x̃)|+ 1 there is a neighborhood V of y

in X such that f(z)− f(y) ≤ M1h(z, y) for all z ∈ V .
It follows from (2.4), (2.5) and (A3) that there is M2 > 0 such that

sup{h(x̃, z) : z ∈ X and f(z) ≤ f(x̃) + 1} ≤ M2.
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Remark 2.2. If the function f is convex, then in view of Remark 2.1, we choose
h(z, y) = f(z)− f(y) for all z ∈ X and all y ∈ dom(f) with M1 = 1 for all M > 0
and then

sup{h(x̃, z) : z ∈ X and f(z) ≤ f(x̃) + 1}
≤ sup{f(x̃)− f(z) : z ∈ X and f(z) ≤ f(x̃) + 1} = f(x̃)− inf(f).

Thus in this case M2 can be any positive number such that M2 ≥ f(x̃)− inf(f).

If the function f is finite-valued and Lipschitzian on bounded subests of X, then
in view of Remark 2.1, we choose h(z, y) = ||z − y|| for all z, y ∈ X and M1 is a
Lipschitz constant of the restriction of f to B(0,M). In this case

sup{h(x̃, z) : z ∈ X and f(z) ≤ f(x̃) + 1} ≤ sup{||x̃− z|| : z ∈ B(0,M)} ≤ 2M

and M2 = M .
Let κ ∈ (0, 1) Choose Λ0 > 1 such that

(2.9) κ

n∑

i=1

(ci − gi(x̃)) > max{2Λ−1
0 M1M2, 8Λ−2

0 M2}.

We will prove the following result.

Theorem 2.2. For each ε > 0 there exists δ ∈ (0, ε) such that the following asser-
tion holds:

If γ ∈ Ωκ, λ ≥ Λ0 and if x ∈ X satisfies

ψλγ(x) ≤ inf(ψλγ) + δ,

then there exists y ∈ A such that

||y − x|| ≤ ε and f(y) ≤ inf(f ;A) + ε.

3. Proof of Theorem 2.2

We show that the following property holds:
(P2) For each ε ∈ (0, 1) there exists δ ∈ (0, ε) such that for each λ ≥ Λ0, each

γ ∈ Ωκ and each x ∈ X which satisfies

ψλγ(x) ≤ inf(ψλγ) + δ

there is y ∈ A for which

||y − x|| ≤ ε and ψλγ(y) ≤ ψλγ(x).

(It is easy to see that (P2) implies the validity of Theorem 2.2).
Assume the contrary. Then there exist

(3.1) ε ∈ (0, 1), γ = (γ1, . . . , γn) ∈ Ωκ, λ ≥ Λ0 and x̄ ∈ X

such that

(3.2) ψλγ(x̄) ≤ inf(ψλγ) + 2−1εΛ−1
0

and

(3.3) {y ∈ B(x̄, ε) ∩A : ψλγ(y) ≤ ψλγ(x̄)} = ∅.
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It follows from (3.2) and Ekeland’s variational principle [13] that there is ȳ ∈ X
such that

(3.4) ψλγ(ȳ) ≤ ψλγ(x̄),

(3.5) ||ȳ − x̄|| ≤ 2−1ε

and

(3.6) ψλγ(ȳ) ≤ ψλγ(z) + Λ−1
0 ||z − ȳ|| for all z ∈ X.

By (3.3)-(3.5),

(3.7) ȳ 6∈ A.

Set

(3.8) I1 = {i ∈ {1, . . . , n} : gi(ȳ) > ci},

I2 = {i ∈ {1, . . . , n} : gi(ȳ) = ci},
I3 = {i ∈ {1, . . . , n} : gi(ȳ) < ci}.

In view of (3.7) and (3.8),

(3.9) I1 6= ∅.
It follows from (2.3), (2.6), (3.1), (3.2), (3.4), (3.8) and (3.9) that

inf{f(z) : z ∈ A} = inf{ψλγ(z) : z ∈ A} ≥ inf(ψλγ)

(3.10) ≥ ψλγ(x̄)− 1 ≥ ψλγ(ȳ)− 1 = f(ȳ) +
∑

i∈I1

λγi(gi(ȳ)− ci)− 1.

Together with (3.8) and (2.5) this relation implies that

(3.11) f(ȳ) ≤ inf{f(z) : z ∈ A}+ 1 ≤ f(x̃) + 1.

By (3.11) and (2.7),

(3.12) ||ȳ|| < M.

It follows from (P1), (3.11) and (3.12) that there exists an open neighborhood V of
ȳ in X such that

(3.13) V ⊂ B(0,M),

(3.14) f(z)− f(ȳ) ≤ M1h(z, ȳ) for each z ∈ V.

Since the functions gi, i = 1, . . . , n are lower semicontinuous it follows from (3.8)
that there exists a positive number r < 1 such that for each y ∈ B(ȳ, r)

(3.15) gi(y) > ci for each i ∈ I1.
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It follows from (3.11), (2.5), (3.4), (3.2), (3.15) and (3.6) that for each z ∈ B(ȳ, r)∩
dom(f)

∑

i∈I1

λγi(gi(z)− ci) +
∑

i∈I2∪I3

λγi max{gi(z)− ci, 0}

−
∑

i∈I1

λγi(gi(ȳ)− ci)−
∑

i∈I2∪I3

λγi max{gi(ȳ)− ci, 0}

= ψλγ(z)− ψλγ(ȳ)− f(z) + f(ȳ) ≥ −Λ−1
0 ||ȳ − z|| − f(z) + f(ȳ).

This inequality implies that for each z ∈ B(ȳ, r)
∑

i∈I1

γigi(z) +
∑

i∈I2∪I3

γi max{gi(z)− ci, 0}

−
∑

i∈I1

γigi(ȳ)−
∑

i∈I2∪I3

γi max{gi(ȳ)− ci, 0}

+ λ−1(f(z)− f(ȳ)) ≥ −Λ−2
0 ||ȳ − z||.

In view of this inequality, (3.13) and (3.14) for each z ∈ B(ȳ, r) ∩ V

(3.16)
∑

i∈I1

γigi(z) +
∑

i∈I2∪I3

γi max{gi(z)− ci, 0}+ λ−1M1h(z, ȳ) + Λ−2
0 ||z − ȳ||

≥
∑

i∈I1

γigi(ȳ) +
∑

i∈I2∪I3

γi max{gi(ȳ)− ci, 0}.

By (A2) the function
∑

i∈I1

γigi(z) +
∑

i∈I2∪I3

γi max{gi(z)− ci, 0}+ λ−1M1h(z, ȳ) + Λ−2
0 ||z − ȳ||, z ∈ X

is convex. Together with the equality h(ȳ, ȳ) = 0 (see (A1)) this implies that (3.16)
is true for all z ∈ X.

Since (3.16) holds for z = x̃ it follows from (2.5), (3.1), (2.2), (3.1) and (3.8) that
∑

i∈I1

γigi(x̃) + λ−1M1h(x̃, ȳ) + Λ−2
0 ||x̃− ȳ|| ≥

∑

i∈I1

γigi(ȳ) >
∑

i∈I1

γici.

Together with (3.11), (2.8), (3.12), (3.1), (2.2) and the choice of M2 (see Section 2)
this implies that

4Λ−2
0 M2 + Λ−1

0 M1 sup{h(x̃, z) : z ∈ X and f(z) ≤ f(x̃) + 1}

≥ Λ−2
0 4M2 + Λ−1

0 M1(h(x̃, ȳ)+) ≥
∑

i∈I1

γi(ci − gi(x̃))

≥ κ
n∑

i=1

(ci − gi(x̃))

and

κ

n∑

i=1

(ci − gi(x̃)) ≤ 4Λ−2
0 M2 + Λ−1

0 M1M2.

This contradicts (2.9). The contradiction we have reached proves Theorem 2.2.
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