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ON TYPE OF PERIODICITY AND ERGODICITY TO A CLASS
OF INTEGRAL EQUATIONS WITH INFINITE DELAY

RAVI P. AGARWAL, BRUNO DE ANDRADE, AND CLAUDIO CUEVAS

Abstract. This work deals with new type of periodicity and ergodicity to a
class of semilinear integral equations with infinite delay.

1. Introduction

Type of periodicity for evolutionary integral equations is one of most attractive
topics in the qualitative theory of integral equations due to its mathematical inter-
est and to their applications in physical science, economics, mathematical biology,
engineering and many others subjects (see [12, 14, 15, 18, 19, 22, 28, 34, 47, 45, 46]).

Recently, to deal with delay equations and related topics, the concept of compact
almost automorphic functions emerged (see [6, 21, 24, 25, 28]). The definition of
compact almost automorphic functions was introduced by Fink [25] after previous
work of Bochner, who introduced the concept of almost automorphic functions (see
[9, 10]). Finally, the definition of pseudo compact almost automorphic functions
was only recently introduced by Lizama and N’Guérérata in [42]. This notion is a
generalization of pseudo almost automorphy introduced by Xiao et al. [41]. They
established a general existence and uniqueness theorem of pseudo almost automor-
phic mild solutions to some abstract differential equations (see [3, 20, 36, 37, 38]).

Firstly, we study the existence of pseudo compact almost automorphic solution
(see Definition 2.4) for the semilinear integral equations with infinite delay of the
form

(1.1) u(t) =
∫ t

−∞
a(t− s)

[
Au(s) + f(s, u(s))

]
ds, t ∈ R,

where a ∈ L1([0,∞)), A : D(A) ⊂ X → X is the generator of an integral resolvent
family defined on a complex Banach space X and f : R × X → X is a pseudo
compact almost automorphic function in the first variable and satisfying suitable
conditions in the second variable. We remark that equations of type (1.1) arise in
the study of heat flow in materials of fading memory type (see [14, 45]); Cuevas and
Lizama in [15] has proven the existence and uniqueness of an almost automorphic
solution to equation (1.1) for each f : R × X → X almost automorphic in t,
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uniformly in x ∈ X, and satisfying diverse Lipschitz type conditions; Lizama and
Henŕıquez in [28] has proven the existence of compact almost automorphic solutions
to (1.1) for each perturbation f(t, x) compact almost automorphic in t and satisfying
suitable conditions in the second variable; the existence of pseudo compact almost
automorphic solutions for abstract integral equations with infinite delay of type
(1.1) remains an untreated topic in the literature; consequently should be widely
investigated. The results obtained in this work can be considered the starting point
toward such a direction. Some of them are extension of the results in [16, 28].

In 1980s, N’Guérérata [33] defined asymptotically almost automorphic functions
as perturbation of almost automorphic functions by functions vanishing at infinite.
Since then, those functions have generated lots of development and applications.
There is an extensive literature on related topics, we refer the reader to [11, 23, 24].
As a general reference we quote the book [32].

Secondly, we use the machinery developed in Section 3 to give results on the
existence of asymptotically compact almost automorphic solutions to the class of
integral equations

(1.2) u(t) =
∫ t

0
a(t− s)

[
Au(s) + f(s, u(s))

]
ds, t ≥ 0,

where a and A are as above, and f : [0,∞)×X → X is an asymptotically compact
almost automorphic function. Observe that (1.1) can be viewed as the limiting
equation of (1.2) see [47, Chapter III, Section 11.5] to obtain details on this assertion.

The literature concerning S-asymptotically ω-periodic functions with values in
Banach spaces is very new and it is of interest in mathematics. Recently some
interesting articles were published by Henŕıquez et al. [29, 30], Nicola and Pierri
[40], Cuevas and de Souza [18, 19], de Andrade and Cuevas [5], de Andrade et al.
[4], Caicedo and Cuevas [12]. In [16], Cuevas and Lizama have studied the existence
of S-asymptotically ω-periodic solution to the semilinear Volterra equation

u′(t) =
∫ t

0
a(t− s)Au(s)ds + F (t, u(t)), t ≥ 0,

u(0) = u0 ∈ X.

Since phase space approach is of interest by itself, among the classical result in
this field one should mention Hino et al. [31]; we study the above problem to the
abstract neutral integro-differential equation

(1.3)
d

dt
D(t, ut) =

∫ t

0
a(t− s)AD(s, us)ds + F (t, ut), t ≥ 0,

(1.4) u0 = φ ∈ B,

where the history ut : (−∞, 0] → X is defined by ut(θ) = u(t + θ), belongs to
some abstract space B defined axiomatically; D(t, ξ) = ξ(0) + G(t, ξ), ξ ∈ B, and
F, G : [0,∞)× B → X are appropriate functions.

We will now present a summary of this work. The second section provides the
definitions and preliminaries results to be used in theorems stated and proved in
this article. In particular in Subsection 2.1, we recall the notion of asymptotically
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compact almost automorphy and pseudo compact almost automorphy. In Subsec-
tion 2.2 we review some of the standard properties of integral resolvent families,
which are of fundamental importance in this work. It is well known that the study
of composition of two functions with special properties is so important for deep
investigations. In Subsection 2.3 we deal with results involving the convolution of
strongly continuous function, associated to equation (1.1), with special type of func-
tions. In subsection 2.4, we give a compactness criterion in Ch(Z) (resp., Ch∗(Z))
(see Lemmas 2.14 and 2.15). In Subsection 2.5 (resp., Subsection 2.6) we present
some of the basic facts on phase space (resp., S-asymptotically ω-periodic functions).

The third section is divided in two parts. In the first part, Subsection 3.1, we
obtain sufficient conditions to existence and uniqueness of a pseudo compact almost
automorphic mild solution of the linear equation

(1.5) u(t) =
∫ t

−∞
a(t− s)

[
Au(s) + f(s)

]
ds, t ∈ R,

provided A is the generator of an integral resolvent family (see Theorem 3.1). We
observe that under the assumptions that a ∈ L1([0,∞))∩L∞([0,∞)) is completely
positive and that

∫∞
0 ta(t)dt < +∞, it was proved by Clément and Da Prato [14]

that problem (1.5) is equivalent to
(1.6)

u(t) +
d

dt

(
αu(t) +

∫ t

−∞
k(t− s)u(s)ds

)
=

(∫ ∞

0
a(τ)dτ

) (
Au(t) + f(t)

)
, t ∈ R,

for some α > 0 and k ∈ L1([0,∞)) nonnegative and nonincreasing. Properties of
the solutions of this linear integro-differential equation have been studied in several
contexts, e. g. existence and regularity [13], maximal regularity [14], compact
almost automorphy [28].

In the second part, we obtain very general results on the existence of pseudo
compact almost automorphic mild solutions to the integral equation (1.1). Finally,
in fourth section, we establish sufficient conditions for the existence of asymptoti-
cally compact almost automorphic (resp., S-asymptotically ω-periodic) solutions to
the equation (1.2) (resp., equation (1.3)-(1.4)). The results in the present work are
a contribution to the study of qualitative properties of the integral equations with
infinite delay and they can open a new line of applications. It is worth noting that
our assumptions are very natural and we have tested in the pratical context. The
reader can see for instance Corollary 3.2, 3.8, 4.3, 4.15 and 4.18 as well as Examples
3.5 and 3.10 and other remarks in some of the authors previous papers.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts which
are used throughout this work. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be two Banach spaces.
The notation B(X, Y ) stands for the space of bounded linear operators from X
into Y endowed with the uniform operator topology, and we abbreviate to B(X),
whenever X = Y .
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2.1. Compact almost automorphic type functions and ergodicity. Let us
describe the basic properties of the class of compact almost automorphic func-
tions. The notation C(R, X) and Cb(R, X) stand for the collection of all contin-
uous functions from R into X and the Banach space of all bounded continuous
functions from R into X endowed with the uniform convergence topology, respec-
tively. C0([0,∞), X) denotes the Banach space of all bounded continuous func-
tions from [0,∞) into X which vanishing at infinity equipped with sup norm in
[0,∞). Similarly, C0([0,∞) × Y, X) denotes the space of all continuous functions
f : [0,∞) × Y → X such that limt→∞ f(t, x) = 0 uniformly for x in any compact
subset of Y .

Definition 2.1. (i) A continuous function f : R→ X is said to be compact almost
automorphic if for every sequence of real numbers (s′n)n∈N there exists a subsequence
(sn)n∈N ⊂ (s′n)n∈N such that

g(t) := lim
n→∞ f(t + sn)

is well defined for each t ∈ R, and

f(t) = lim
n→∞ g(t− sn),

uniformly on compact subsets of R and the collection of such functions will be
denoted by AAc(X).

(ii) A continuous function f : R × Y → X is said to be compact almost auto-
morphic if f(t, x) is compact almost automorphic in t ∈ R uniformly for all x ∈ K,
where K is any bounded subset of Y . Denote by AAc(Y ;X) the set of all such
functions.

Definition 2.2. A continuous function f : [0,∞) → X (resp., f : [0,∞)×Y → X) is
said to be asymptotically compact almost automorphic if it admits a decomposition
f = g+φ on [0,∞) where g ∈ AAc(X) (resp., g ∈ AAc(Y ;X)) and φ ∈ C0([0,∞), X)
(resp., φ ∈ C0([0,∞) × Y ;X)). Denote by AAAc(X) (resp., AAAc(Y ;X)) the set
of all such functions.

Denote by P0(X) the set of all bounded continuous function ξ : R → X which
vanishing mean value, that is,

lim
r→∞

1
2r

∫ r

−r
‖ξ(t)‖dt = 0.

Example 2.3 ([37, Example 2.5])). Let us consider the function φ(t) =
maxk∈Z{e−(t±k2)2}, t ∈ R. We can see that φ ∈ P0(R). In fact, for any r > 0, set
l = [|√r|] + 1. Then we shall calculate the mean value of φ by elementary means

lim
r→∞

1
2r

∫ r

−r
φ(t)dt = lim

r→∞
1
2r

∫ r

−r
max
−l≤k≤l

{e−(t±k2)2}dt

≤ lim
r→∞

l

r

∫ ∞

−∞
e−t2dt

= lim
r→∞

l
√

π

2r
= 0.
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Similarly, we define P0(Y, X) as the collection of all bounded continuous functions
ξ : R× Y → X satisfying

lim
r→∞

1
2r

∫ r

−r
‖ξ(t, y)‖dt = 0,

uniformly for y in any bounded subset of Y .

Definition 2.4. A bounded continuous function f : R→ X (resp., f : R×Y → X)
is said to be pseudo compact almost automorphic if it admits a decomposition
f = g + φ, where g ∈ AAc(X) (resp., g ∈ AAc(Y ;X)) and φ ∈ P0(X) (resp., φ ∈
P0(Y ;X)). Denote by PAAc(X) (resp., PAAc(Y ;X)) the set of all such functions.
PAAc(X) is a Banach space with the sup norm.

We have the following continuous inclusions (see [42])

AAc(X) ⊂ AAAc(X) ⊂ PAAc(X) ⊂ Cb(R, X).

Definition 2.5. A continuous function f : R×Y → X (resp., f : [0,∞)×Y → X)
is called uniformly continuous on bounded sets K of Y uniformly for t ∈ R (resp.,
t ∈ [0,∞)) if for every ε > 0 and every bounded subset K of Y , there exists δε,K > 0
such that ‖f(t, x) − f(t, y)‖ ≤ ε for all t ∈ R (resp., t ∈ [0,∞)) and all x, y ∈ K
such that ‖x− y‖ ≤ δε,K .

Lemma 2.6 ([22]). Let f ∈ AAAc(Y, X) be given and let f(t, y) be uniformly
continuous in any bounded subset K ⊂ Y uniformly for t ∈ [0,∞). If u ∈ AAAc(Y )
then f(·, u(·)) ∈ AAAc(X).

Lemma 2.7. Let f ∈ PAAc(X, X) be given and assume that there exists a constant
Lf > 0 such that

(2.1) ‖f(t, x)− f(t, y)‖ ≤ Lf‖x− y‖, ∀ t ∈ R, ∀ x, y ∈ X.

If h ∈ PAAc(X) then f(·, h(·)) ∈ PAAc(X).

Lemma 2.8. Let f ∈ PAAc(Y, X) be given and let f(t, y) be uniformly continuous
in any bounded subset K ⊂ Y uniformly for t ∈ R. If u ∈ PAAc(Y ) then f(·, u(·)) ∈
PAAc(X).

Proof. Since f ∈ PAAc(Y, X) and u ∈ PAAc(Y ), we have by definition that f =
g + ξ and u = u1 + u2, where g ∈ AAc(Y, X), ξ ∈ P0(Y, X), u1 ∈ AAc(Y ) and
u2 ∈ P0(Y ). Since f is bounded, f(·, u(·)) ∈ Cb(R, X). Now we decompose f as
follows

f(·, u(·)) = g(·, u1(·)) + f(·, u(·))− f(·, u1(·)) + ξ(·, u1(·)).
By [22, Lemma 3.1] and [41, Theorem 2.2], we can see that g(·, u1(·)) ∈ AAc(X).
Thus, to prove our result is sufficient to show that f(·, u(·))−f(·, u1(·)) and ξ(·, u1(·))
belongs to P0(X). The proof of this assertion makes use of a similar argument used
by Liang et al. in [37, Theorem 2.4, p. 1497], which ends the proof. ¤
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2.2. Integral resolvent family. We recall that the Laplace transform of a func-
tion f ∈ L1

loc(R+, X) is given by

L(f)(λ) := f̂(λ) :=
∫ ∞

0
e−λtf(t)dt, Reλ > ω,

where the integral is absolutely convergent for Reλ > ω. Furthermore, the notation
ρ(A) stands for the resolvent set of A. In order to establish an operator theoretical
approach to equation (1.1), we consider the following definition (cf. [43]).

Definition 2.9. Let A be a closed linear operator with domain D(A) ⊆ X. We say
that A is the generator of an integral resolvent if there exist ω ≥ 0 and a strongly
continuous function S : [0,∞) → B(X) such that {1/â(λ) : Reλ > ω} ⊆ ρ(A) and

(
1

â(λ)
I −A)−1x =

∫ ∞

0
e−λtS(t)xdt, Reλ > ω, x ∈ X.

In this case, S(t) is called the integral resolvent family generated by A.

Because of the uniqueness of the Laplace transform, an integral resolvent family
with a(t) ≡ 1 is the same as a C0-semigroup whereas that an integral resolvent
family with a(t) = t corresponds to the concept of sine family, see [8, Section 3.15].

We can establish several relations between the integral resolvent family and its
generator (see [28, Proposition 2.2].

Proposition 2.10. Let S(t) be the integral resolvent family on X with generator
A. Then the following properties hold:

(a) S(t)D(A) ⊆ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0.
(b) Let x ∈ D(A) and t ≥ 0. Then

S(t)x = a(t)x +
∫ t

0
a(t− s)AS(s)xds.

(c) Let x ∈ X and t ≥ 0. Then
∫ t
0 a(t− s)S(s)xds ∈ D(A) and

S(t)x = a(t)x + A

∫ t

0
a(t− s)S(s)xds.

In particular, S(0) = a(0)I.

2.3. Miscellaneous. In this subsection, we present some properties of convolution.
We introduce the following integrability assumption for strongly continuous func-

tions S : [0,∞) → B(X).
(INT) There exists φ ∈ L1([0,∞)) such that ‖S(t)‖ ≤ φ(t) for all t ∈ [0,∞).

Remark 2.11. We note that conditions of type (INT) have been previously consid-
ered in the literature (see [28, 47]).

Lemma 2.12. Let {S(t)}t≥0 ⊂ B(X) be a strongly continuous family of bounded
linear operators that satisfies assumption (INT). If f ∈ PAAc(X) and w : R→ X
is given by

w(t) =
∫ t

−∞
S(t− s)f(s)ds.

Then w ∈ PAAc(X).
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Proof. Let f = g + ξ be the decomposition of f , where g ∈ AAc(X) and ξ ∈ P0(X).
Then we can write

w(t) =
∫ t

−∞
S(t− s)g(s)ds +

∫ t

−∞
S(t− s)ξ(s)ds := G(t) + Ξ(t).

By [28, Lemma 3.1] we have that G ∈ AAc(X). To complete the proof, we show
that Ξ ∈ P0(X). For T > 0 we see that

1
2T

∫ T

−T

∥∥∥∥
∫ ∞

0
S(s)ξ(t− s)ds

∥∥∥∥ dt ≤ 1
2T

∫ T

−T

∫ ∞

0
‖S(s)‖‖ξ(t− s)‖dsdt

≤
∫ ∞

0
φ(s)

(
1

2T

∫ T

−T
‖ξ(t− s)‖dt

)
ds

=
∫ ∞

0
ΨT (s)ds,

where ΨT (s) = 1
2T

∫ T
−T ‖ξ(t− s)‖dt, s ≥ 0. We can see that ΨT (s) → 0 as T →∞.

Next, using the Lebesgue dominated convergence it follows that

1
2T

∫ T

−T
‖Ξ(t)‖dt → 0

as T → 0. This finishes the proof. ¤
Lemma 2.13 ([35]). Let {S(t)}t≥0 ⊂ B(X) be a strongly continuous family of
bounded linear operators that satisfies assumption (INT). If f ∈ AAAc(X) and
w̃ : [0,∞) → X is given by

w̃(t) =
∫ t

0
S(t− s)f(s)ds.

Then w̃ ∈ AAAc(X).

Proof. For the reader’s convenience we give the proof. If f = g + ν, where g ∈
AAc(X) and ν ∈ C0([0,∞), X). Then

w̃(t) =
∫ t

−∞
S(t−s)g(s)ds−

∫ 0

−∞
S(t−s)g(s)ds+

∫ t

0
S(t−s)ν(s)ds := G(t)+H(t),

where G(t) =
∫ t
−∞ S(t − s)g(s)ds and H(t) = − ∫ 0

−∞ S(t − s)g(s)ds +
∫ t
0 S(t −

s)ν(s)ds. By [28, Lemma 3.1], we have that G ∈ AAc(X). Next, let us show
that H ∈ C0([0,∞), X). Given ε > 0 there exists a constant L > 0 such that∫∞
L φ(s)ds ≤ ε and ‖ν(s)‖ ≤ ε for all s ≥ L. Then for all t ≥ 2L, we deduce that

‖H(t)‖ ≤
∫ 0

−∞
‖S(t− s)‖‖g(s)‖ds +

∫ t

0
‖S(t− s)‖‖ν(s)‖ds

≤
∫ 0

−∞
φ(t− s)‖g(s)‖ds +

∫ t

t/2
φ(t− s)‖ν(s)‖ds +

∫ t/2

0
φ(t− s)‖ν(s)‖ds

≤ ‖g‖∞
∫ ∞

t
φ(s)ds + ε

∫ t/2

0
φ(s)ds + ‖ν‖∞

∫ ∞

t/2
φ(s)ds

≤ (‖g‖∞ + ‖φ‖1 + ‖ν‖∞) ε.
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Therefore, limt→∞H(t) = 0, that is H ∈ C0([0,∞), X). This completes the proof.
¤

2.4. Two useful compactness criterion. Let h : R→ R be a continuous function
such that h(t) ≥ 1 for all t ∈ R and h(t) →∞ as |t| → ∞. We consider the space

Ch(X) = {u ∈ C(R, X) : lim
|t|→∞

u(t)
h(t)

= 0}

endowed with the norm ‖u‖h = supt∈R
‖u(t)‖
h(t) .

We need a very detailed knowledge of the relatively compact set in Ch(X). We
use the following result (see [28]).

Lemma 2.14. A subset K ⊆ Ch(X) is a relatively compact set if it verifies the
following conditions:

(c-1) The set K(t) = {u(t) : u ∈ K} is relatively compact in X for each t ∈ R.
(c-2) The set K is equicontinuous.
(c-3) For each ε > 0 there exists L > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ K

and all |t| > L.

Let h∗ : [0,∞) → [1,∞) be a continuous function such that h∗(t) →∞ as t →∞.
We consider the space Ch∗(X) = {u ∈ C([0,∞), X) : limt→∞

u(t)
h∗(t) = 0} endowed

with the norm ‖u‖h∗ = supt≥0
‖u(t)‖
h∗(t) .

Lemma 2.15 ([12]). A subset K ⊆ Ch∗(X) is a relatively compact set if it verifies
the following conditions:
(c-1)∗ The set Kb = {u|[0,b] : u ∈ K} is relatively compact in C([0, b];X) for all

b ≥ 0.
(c-2)∗ limt→∞

‖u(t)‖
h∗(t) = 0 uniformly for all u ∈ K.

2.5. Phase space axiomatic. We employ the axiomatic definition of the phase
space B introduced in Hino et al. [31]. Specifically, B is a linear space of functions
mapping (−∞, 0] into X endowed with a seminorm denoted ‖ . ‖B and such that
the following axioms hold:

(A) If x : (−∞, σ + a) 7→ X, a > 0, σ ∈ R is continuous on [σ, σ + a) and xσ ∈ B,
then for every t ∈ [σ, σ + a) the following hold:

(i) xt ∈ B;
(ii) ‖ x(t) ‖≤ H ‖ xt ‖B;
(iii) ‖ xt ‖B≤ K(t − σ) sup

σ≤s≤t
‖ x(s) ‖ +M(t − σ) ‖ xσ ‖B; where H > 0 is a

constant, K, M : [0,∞) 7−→ [1,∞), K is continuous, M is locally bounded and
H, K, M are independent of x(·).

(A1) If x(·) is the function as in (A), then xt is a B-valued continuous function
on [σ, σ + a).

(B) The space B is complete.
(C) If (ψn)n∈N is a uniformly bounded sequence of continuous functions with

compact support and ψn −→ ψ, n →∞, in the compact-open topology, then ψ ∈ B
and ‖ ψn − ψ ‖B→ 0 as n →∞.
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Remark 2.16. Since B satisfies axiom (C), the space Cb((−∞, 0], X) consisting of
all continuous and bounded functions ψ : (−∞, 0] → X, is continuously included
in B. Thus, there exists a constant L ≥ 0 such that ‖ ψ ‖B≤ L ‖ ψ ‖∞, for every
ψ ∈ Cb((−∞, 0], X) (see [31, Proposition 7.1.1] ).

Definition 2.17. Let S(t) : B →B be the C0-semigroup defined by S(t)ϕ(θ) = ϕ(0)
on [−t, 0] and S(t)ϕ(θ) = ϕ(t+θ) on (−∞,−t]. The phase space B is called a fading
memory space if ‖ S(t)ϕ ‖B→ 0 as t →∞ for every ϕ ∈ B with ϕ(0) = 0.

Remark 2.18. In this work we suppose the existence of a constant K> 0 such that
max{K(t),M(t)} ≤K for each t ≥ 0. Observe that this condition is verified, for
example, if B is a fading memory space , see, e.g. ([31, Proposition 7.1.5] ) for
details.

Example 2.19 (The phase space Cr × Lp(ρ,X)). Let r ≥ 0, 1 ≤ p < ∞ and
let ρ : (−∞,−r] → R be a non-negative mensurable function which satisfies the
conditions (g − 5) − (g − 6) in the terminology of Hino et al. [31]. Briefly, this
means that ρ is locally integrable and there exists a non-negative locally bounded
function γ(·) on (−∞, 0] such that ρ(ξ + θ) ≤ γ(ξ)ρ(θ) for all ξ ≤ 0 and θ ∈
(−∞,−r] \ Nε, where Nε ⊂ (−∞,−r] is a set whose Lebesgue measure zero. We
denote by B=Cr × Lp(g, X) the set of all functions ϕ : (−∞, 0] → X such that ϕ
is continuous in [−r, 0], Lebesgue measurable in (−∞,−r] and ρ ‖ ϕ ‖p is Lebesgue
integrable in (−∞,−r). The seminorm in Cr × Lp(ρ,X) is defined as follows:

‖ ϕ ‖B= sup
θ∈[−r,0]

‖ ϕ(θ) ‖X +




−r∫

−∞
ρ(θ) ‖ ϕ(θ) ‖p

X dθ




1
p

.

From preceding conditions, the space B = Cr × Lp(ρ,X) satisfies axioms (A), (A1)
and (B). Moreover, when r = 0, and p = 2, it is possible to choose H = 1,

K(t) = 1 +

(
0∫
−t

ρ(θ)dθ

) 1
2

and M(t) = γ(−t)
1
2 for t ≥ 0 (see [31, Theorem 1.3.8]).

Note that if conditions (g − 6) − (g − 7) of [31] hold, then B is a fading memory
space (see [31, Example 7.1.8]).

Lemma 2.20 ([22]). If u ∈ AAc(X), then the function s → us belongs to AAc(B).
Moreover, if B is a fading memory space and u ∈ C(R, X) is such that u0 ∈ B and
u|[0,∞) ∈ AAAc(X) then t → ut ∈ AAAc(B).

2.6. S-asymptotically ω-periodic functions.

Definition 2.21 ([29]). A function f ∈ Cb([0,∞);X) is called S-asymptotically
periodic if there exists ω > 0 such that limt→∞

(
f(t+ω)−f(t)

)
= 0. In this case, we

say that ω is an asymptotic period of f and that f is S-asymptotically ω-periodic.
Denote by SAPω(X) the set of all such functions.

We note that SAPω(X) is a Banach space with the supnorm. In [29] is was
shown the surprising fact that the property limt→∞(f(t + ω) − f(t)) = 0 does not
characterize asymptotically ω-periodic functions, that is, bounded and continuous
functions which admits the decomposition f = g + φ, where g is ω-periodic and
limt→∞ φ(t) = 0 (see also [40]).
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Definition 2.22 ([29]). Let X, Y be two Banach spaces. A continuous function
f : [0,∞)×X → Y is said to be uniformly S-asymptotically ω-periodic on bounded
sets if for every bounded subset K of X, the set {f(t, x) : t ≥ 0, x ∈ K} is bounded
and limt→∞

(
f(t + ω, x)− f(t, x)

)
= 0, uniformly in x ∈ K.

Definition 2.23 ([29]). Let X, Y be two Banach spaces. A continuous function
f : [0,∞)×X → Y is said to be asymptotically uniformly continuous on bounded
sets if for every ε > 0 and every bounded subset K of X, there exist Lε, K ≥ 0 and
δε, K > 0 such that ‖f(t, x) − f(t, y)‖ ≤ ε for all t ≥ Lε, K and all x, y ∈ K with
‖x− y‖ ≤ δε, K .

Lemma 2.24 ([29]). Let f : [0,∞) × Y → X be uniformly S-asymptotically ω-
periodic on bounded sets and asymptotically uniformly continuous on bounded sets.
If u : [0,∞) → Y is an S-asymptotically ω-periodic function, then the function
v(t) = f(t, u(t)) ∈ SAPω(X).

Lemma 2.25 ([30]). Assume that B is a fading memory space. Let u : R → X
such that u0 ∈ B and u|[0,∞) ∈ SAPω(X) then t → ut belongs to SAPω(B).

3. Pseudo compact almost automorphic solutions

3.1. The linear case. In this subsection we examine the existence and unique-
ness of pseudo compact almost automorphic solutions to the inhomogeneous linear
integral equation (1.5).

We have the following result.

Theorem 3.1. Let a ∈ L1([0,∞)). Assume that A generates an integral resolvent
family {S(t)}t≥0 satisfying assumption (INT). If f is a pseudo compact almost
automorphic function with values in D(A), then the unique bounded solution of
equation (1.5) is pseudo compact almost automorphic.

Proof. Let u(t) be the function given by

u(t) =
∫ t

−∞
S(t− s)f(s)ds, t ∈ R.

Since the values f(t) ∈ D(A), it follows that u(t) ∈ D(A) for all t ∈ R (see e.g. [47,
Proposition 1.2]). Using Fubini’s theorem and Proposition 2.1 (b) we obtain that

∫ t

−∞
a(t− s)Au(s)ds =

∫ t

−∞

∫ t−τ

0
a(t− τ − s)AS(s)f(τ)dsdτ

= u(t)−
∫ t

−∞
a(t− τ)f(τ)dτ,

which establishes that u(·) is the solution of equation (1.5). Applying Lemma 2.12,
we infer that u is pseudo compact almost automorphic. ¤

We have the following result for the scalar case.
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Corollary 3.2. Let f : R→ R be a pseudo compact almost automorphic function,
a ∈ L1([0,∞)), and let ρ > 0 be a real number. If the solution Sρ(t) of the one-
dimensional equation

(3.1) Sρ(t) = a(t)− ρ

∫ t

0
a(t− s)Sρ(s)ds,

satisfies |Sρ(t)| ≤ φρ(t), with φρ ∈ L1([0,∞)), then the equation

(3.2) u(t) =
∫ t

−∞
a(t− s)[−ρu(s) + f(s)]ds, t ∈ R,

has a unique pseudo compact almost automorphic solution.

Remark 3.3. In [15, Corollary 3.7] or [28, Corollary 3.5] the authors provide a
wide class of kernels a(t) such that |Sρ(t)| ≤ φρ(t), with φρ ∈ L1([0,∞)).

Remark 3.4. We have recovered [15, Corollary 4.3] and [28, Corollary 4.4] as an
immediate consequence of Corollary 3.2.

Example 3.5. Consider a(t) = tα−1

Γ(α)e
−βt, where β > 1 and 1 < α < 2. Then we

can check that Sρ(t) = tα−1Eα,α(−ρt)e−βt is the solution of Eq. (3.1), where Eα,α

denotes the generalized Mittag-Leffler function (see [26]) which is defined by

Eα,β(z) :=
∞∑

n=0

zn

Γ(αn + β)
, α, β > 0, z ∈ C.

Using the explicit description of Sρ(t)eβt given in [7, Corollary 3.7] we can show
that |Sρ(t)| ≤ φρ(t), with φρ ∈ L1([0,∞)). We conclude that the equation

u(t) =
1

Γ(α)

∫ t

−∞
(t− s)α−1e−β(t−s)

(
−ρu(s) + f(s) + max

k∈Z
{e−(s±k2)2}

)
ds, t ∈ R,

has a unique pseudo compact almost automorphic solution, whenever f is compact
almost automorphic.

3.2. The semilinear case. In this section, we are concerned with the study of
existence of pseudo compact almost automorphic solutions for equation (1.1).

Definition 3.6. Let A be the generator of an integral resolvent family {S(t)}t≥0.
A continuous function u : R→ X satisfying the integral equation

(3.3) u(t) =
∫ t

−∞
S(t− s)f(s, u(s))ds, ∀t ∈ R,

is called a mild solution on R to the equation (1.1).

Theorem 3.7. Assume that A generates an integral resolvent family {S(t)}t≥0 that
satisfies the assumption (INT). Let f : R × X → X be a pseudo compact almost
automorphic function that satisfies the Lipschitz condition (2.1) with Lf < ‖φ‖−1

1 .
Then equation (1.1) has a unique pseudo compact almost automorphic mild solution.
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Proof. We define the operator F : PAAc(X) → PAAc(X) by

(3.4) (Fψ)(t) :=
∫ t

−∞
S(t− s)f(s, ψ(s)) ds, t ∈ R.

In view of Lemmas 2.7 and 2.12 the map F is well defined. Moreover, for ψ1, ψ2 ∈
PAAc(X) we have:

‖Fψ1 − Fψ2‖∞ ≤ Lf sup
t∈R

∫ ∞

0
‖S(τ)‖‖ψ1(t− τ)− ψ2(t− τ)‖dτ

≤ Lf‖φ‖1‖ψ1 − ψ2‖∞.

This proves that F is a contraction, so there exists a unique u ∈ PAAc(X) mild
solution of Eq. (1.1). ¤

An immediate consequence of Theorem 3.1 and [15, Corollary 3.7 (a)] is the
following result for the scalar equation.

Corollary 3.8. Let ρ > 0 be a real number. Suppose a ∈ L1([0,∞)) is a positive,
nonincreasing and log-convex function and let f : R× R→ R be a pseudo compact
almost automorphic function that satisfies (2.1) with Lf < ‖Sρ‖−1

1 , where Sρ is the
solution of Eq. (3.1), then the semilinear equation

u(t) =
∫ t

−∞
a(t− s)[−ρu(s) + f(s, u(s))]ds, t ∈ R,

has a unique pseudo compact almost automorphic solution.

Remark 3.9. A similar result as the previous corollary was obtained in [15] (resp.,
[28]) in the case of f to be almost automorphic (resp., compact almost automorphic)
function that satisfies (2.1) with Lf < ‖Sρ‖−1

1 . We note that if a is as above, then
there is Sρ ∈ L1([0,∞)) ∩ C([0,∞)) satisfying the linear equation (3.1).

Example 3.10. We consider g : R → R a pseudo compact almost automorphic
function, ν ∈ R and β ≥ 1. We examine the existence and uniqueness of pseudo
compact almost automorphic solution to the integro-differential equation

(3.5) u(t, x) =
∫ t

−∞

(t− s)β−1

Γ(β)
[
uxx(s, x) + νg(s)u(s, x)

]
ds, t ∈ R, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ R.

To obtain a formulation as an abstract evolutionary integral equation like (1.1), we
choose X = L2[0, 1] and define an operator A by means of Au(x) = uxx(x) with
domain D(A) = {u ∈ X : uxx ∈ X, u(0) = u(1) = 0}. It is well known that A

generates a bounded analytic semigroup with 0 ∈ ρ(A). Since a(t) = tβ−1

Γ(β) , t > 0
satisfies all conditions of [47, Corollary 10.1] it follows that A generates an integral
resolvent family with the property (INT). We define f(s, u) = νg(s)u, u ∈ X; we
can show that f verify (2.1) with Lf = |ν|‖g‖∞. If |ν| is small enough, then Eq.
(3.5) has a unique pseudo compact almost automorphic solution.

In the next three results, we introduce different type of Lipschitz conditions.



ON TYPE OF PERIODICITY AND ERGODICITY 321

Theorem 3.11. Assume that A generates an integral resolvent family {S(t)}t≥0

that satisfies the assumption (INT) with φ a decreasing function and φ0 =∑∞
m=0 φ(m) < +∞. Let f : R ×X → X be a pseudo compact almost automorphic

function that satisfies the following Lipschitz condition

(3.6) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, ∀ x, y ∈ X, ∀ t ∈ R.

where L ∈ Cb(R) is such that

(3.7) ‖L‖M := sup
t∈R

∫ t+1

t
L(s)ds < +∞.

Then equation (1.1) has a unique pseudo compact almost automorphic mild solution
whenever ‖L‖Mφ0 < 1.

Proof. Since φ is a decreasing function such that
∑∞

m=0 φ(m) < ∞ we have that
φ ∈ L1([0,∞)) and hence S(t) is integrable. Let ψ1, ψ2 ∈ PAAc(X), for the operator
F defined by the formulae (3.4) we have

‖Fψ1(t)− Fψ2(t)‖ ≤
( ∞∑

m=0

∫ t−m

t−(m+1)
φ(t− s)L(s)ds

)
‖ψ1 − ψ2‖∞

≤
( ∞∑

m=0

φ(m)
∫ t−m

t−(m+1)
L(s)ds

)
‖ψ1 − ψ2‖∞

≤ ‖L‖Mφ0‖ψ1 − ψ2‖∞.

Therefore, F is a ‖L‖Mφ0-contraction, which finish the proof. ¤

Remark 3.12. We note that conditions of type (3.6) has been previously considered
in the literature in the study of pseudo almost periodic (resp., almost automorphic)
solution of semilinear evolutions equations in [2, 17] (resp., integral equations on
the line [15]). Note that we essentially recover Cuevas and Lizama’s Theorem 4.6
[15] as a corollary of previous result in the case of f to be an almost automorphic
in t uniformly in x ∈ X satisfying (3.6) and (3.7).

An integral resolvent family {S(t)}t≥0 is said to be uniformly bounded if there
exists a constant M > 0 such that ‖S(t)‖ ≤ M for all t ≥ 0.

Theorem 3.13. Assume that A generates an uniformly bounded integral resolvent
family {S(t)}t≥0 that satisfies assumption (INT). Let f : R×X → X be a pseudo
compact almost automorphic function that satisfies (3.6) with L ∈ L1(R) ∩ Cb(R).
Then equation (1.1) has a unique pseudo compact almost automorphic mild solution.

Proof. We define the operator F as in (3.4). Let ψ1, ψ2 be in PAAc(X). We have
the following estimate

‖Fnψ1 − Fnψ2‖∞ ≤ (M ||L||1)n

n!
‖ψ1 − ψ2‖∞.

Since
(M ||L||1)n

n!
< 1 for n sufficiently large, by fixed point iteration method F has

a unique fixed point u ∈ PAAc(X). This completes the proof. ¤
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Remark 3.14. We obtain [28, Theorem 4.5] as a corollary of Theorem 3.13.
We establish a version of Theorem 3.7 which, on one side, enable us to consider

locally Lipschitz perturbations for the equation (1.1) and, on the other side, is an
extension of the results in [28]. We have the following result.

Theorem 3.15. Assume that A generates an integral resolvent family {S(t)}t≥0

that satisfies assumption (INT). Let f : R × X → X be a pseudo compact al-
most automorphic function and assume that there is a nondecreasing function L :
[0,∞) → [0,∞) such that for each positive number R, and x, y ∈ X, ‖x‖ ≤ R,
‖y‖ ≤ R, we have

‖f(t, x)− f(t, y)‖ ≤ L(R)‖x− y‖, ∀ t ∈ R,

with lim supR→∞ ‖φ‖1L(R) < 1. Then Eq. (1.1) has a unique pseudo compact
almost automorphic mild solution.

Proof. We define F by (3.4). We consider R > 0 such that L(R)‖φ‖1R+‖F (0)‖∞ ≤
R. Let BR be the closed ball {ψ ∈ PAAc(X) : ‖ψ‖∞ ≤ R}. A straightforward
computation shows that F : BR → BR is well defined. We claim that F has a
unique fixed point in BR. In fact, let ψ1, ψ2 ∈ BR. Then we obtain that

‖Fψ1(t)− Fψ2(t)‖ ≤
∫ t

−∞
φ(t− s)L(R)‖ψ1(s)− ψ2(s)‖ds

≤ L(R)‖φ‖1‖ψ1 − ψ2‖∞.

Then F is a contraction on the ball BR. This completes the proof. ¤

To establish our next result we consider functions f that satisfies the following
boundedness condition.
(B0) There exists a continuous nondecreasing function W : [0,∞) → [0,∞) such
that ‖f(t, x)‖ ≤ W (‖x‖) for all t ∈ R and x ∈ X.

Theorem 3.16. Assume that A generates an integral resolvent family {S(t)}t≥0

that satisfies assumption (INT). Let f : R ×X → X be a pseudo compact almost
automorphic function that satisfies assumption (B0) and the following conditions:

(B1) f(t, x) is uniformly continuous in any bounded subset K ⊂ X uniformly in
t ∈ R.

(B2) For each ν ≥ 0, lim|t|→∞ 1
h(t)

∫ t
−∞ φ(t− s)W (νh(s))ds = 0, where h is given

in Lemma 2.14.
(B3) For each ε > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ‖v−u‖h ≤ δ

implies that
∫ t

−∞
φ(t− s)‖f(s, v(s))− f(s, u(s))‖ds ≤ ε

for all t ∈ R. We set

β(ν) :=
∥∥∥∥
∫ ·

−∞
φ(· − s)W (νh(s))ds

∥∥∥∥
h

.

(B4) lim infξ→∞ ξ
β(ξ) > 1.
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(B5) For all a, b ∈ R, a ≤ b, and r > 0, the set {f(s, x) : a ≤ s ≤ b, x ∈ X, ‖x‖ ≤
r} is relatively compact in X.

Then equation (1.1) has a pseudo compact almost automorphic mild solution.

Proof. For the sake of brevity we give just a sketch of proof (see [28] for details).
We define the operator F on Ch(X) as in (3.4). It follows from condition (B2)
that F is well defined. Using (B3) we have that the map F is continuous. Let
V = F (Br(Ch(X))), where Br(Z) denotes the closed ball with center in 0 and
radius r in the space Z. Taking into account The Mean Value Theorem for the
Bochner’s integral (see [39, Lemma 2.13]) and condition (B5), for each ε > 0 we can
choose a ≥ 0 and a relatively compact set K such that

V (t) ⊆ ac0(K) + Bε(X),

where c0(K) denotes the convex hull of K and V (t) is defined as Lemma 2.14 (c-1).
Hence V (t) is a relatively compact subset of X for each t ∈ R. Put now v = F (u),
u ∈ Br(Ch(X)). Condition (B5) and the following formulae

v(t + s)− v(t) =
∫ s

0
S(ξ)f(t + s− ξ, u(t + s− ξ))dξ

+
∫ a

0
(S(ξ + s)− S(ξ))f(t− ξ, u(t− ξ))dξ

+
∫ ∞

a
(S(ξ + s)− S(ξ))f(t− ξ, u(t− ξ))dξ.

Imply that V is equicontinuous. Applying condition (B2), we can show that
lim|t|→∞

v(t)
h(t) = 0 uniformly for u ∈ Br(Ch(X)). Hence V satisfies (c-1), (c-2) and

(c-3) of Lemma 2.14, which completes the proof that V is relatively compact in
Ch(X). Hence F is a completely continuous map.

If uλ(·) is a solution of equation uλ = λF (uλ) for some 0 < λ < 1, from the
estimate ‖uλ‖h ≤ β(‖uλ‖h), which is established by elementary means and under
condition (B4), we conclude that the set {uλ : uλ = λF (uλ), λ ∈ (0, 1)} is bounded.
It follows from Lemma 2.8 and 2.12 that F (PAAc(X)) ⊆ PAAc(X) and, conse-
quently, we have that F : PAAc(X) → PAAc(X) is completely continuous. Ap-
plying the Leray-Schauder alternative theorem ([27, Theorem 6.5.4]), we completes
the proof. ¤
Remark 3.17. We note that conditions like of the preceding result has been previ-
ously considered in the literature (cf. [1, 2, 12, 16, 20, 28]).

Corollary 3.18. Assume that A generates an integral resolvent family {S(t)}t≥0

satisfying assumption (INT). Let f : R × X → X be a pseudo compact almost
automorphic function that satisfies the Hölder type condition

‖f(t, x)− f(t, y)‖ ≤ C‖x− y‖α, 0 < α < 1,

for all x, y ∈ X, t ∈ R, where C > 0 is a constant. Moreover, assume the following
conditions:

(i) f(t, 0) = q.
(ii) supt∈R

∫ t
−∞ φ(t− s)h(s)αds < +∞, where h is given in Lemma 2.14.
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(iii) For all a, b ∈ R, a ≤ b, and r > 0, the set {f(s, x) : a ≤ s ≤ b, x ∈ X, ‖x‖ ≤
r} is relatively compact in X.
Then Eq. (1.1) has a pseudo compact almost automorphic mild solution.

4. Asymptotically compact almost automorphic solutions

Initially in this Section , we examine sufficient conditions for the existence of
asymptotically compact almost automorphic solution of Eq. (1.2). The reader can
perceive that, repeating most parts of our proofs, the same type of results as the
preceding theorems hold for the semilinear integral equation (1.2). We note that a
key ingredient to proof the results are the Lemmas 2.6 and 2.13. For convenience, we
will give the statements of results some of them without proof. The straightforward
changes in the details may safely be left to the reader.

Definition 4.1. Let A be the generator of an integral resolvent family {S(t)}t≥0.
A continuous function u : [0,∞) → X satisfying the integral equation

(4.1) u(t) =
∫ t

0
S(t− s)f(s, u(s))ds, ∀ t ≥ 0,

is called a mild solution to equation (1.2).

Theorem 4.2. Assume that A generates an integral resolvent family {S(t)}t≥0

that satisfies assumption (INT). Let f : [0,∞) × X → X be an asymptotically
compact almost automorphic function that satisfies the Lipschitz condition (2.1) for
all t ∈ [0,∞) with Lf < ‖φ‖−1

1 . Then equation (1.2) has a unique asymptotically
compact almost automorphic mild solution.

The following result is of more practical use and it follows from [47, Corollary
10.1].

Corollary 4.3. Suppose a(t) is completely monotonic and satisfies a(∞) =
limt→∞ a(t) > 0. Assume that A generates a bounded analytic C0-semigroup and
0 ∈ ρ(A). Let f : [0,∞)×X → X be an asymptotically compact almost automorphic
function that satisfies a Lf -Lipschitz condition with Lf small enough. Then Eq.
(1.2) has a unique asymptotically compact almost automorphic mild solution.

Remark 4.4. Let a(t) = tβ−1

Γ(β) , t > 0. Then a(t) satisfies the hypotheses of the
previous corollary if β ≥ 1.

Theorem 4.5. Assume that A generates an uniformly bounded integral resolvent
family {S(t)}t≥0 that satisfies assumption (INT). Let f : [0,∞) × X → X be
an asymptotically compact almost automorphic function that satisfies the Lipschitz
condition (3.6) for all t ≥ 0 with L ∈ Cb([0,∞)) ∩ L1([0,∞)). Then equation (1.2)
has a unique asymptotically compact almost automorphic mild solution.

Proof. We define the operator F : AAAc(X) → AAAc(X) by

(4.2) (Fψ)(t) =
∫ t

0
S(t− s)f(s, ψ(s))ds, t ≥ 0.
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In view of Lemmas 2.6 and 2.13, F is well defined. Define a new norm ‖|ψ‖| :=
supt≥0{v(t)‖ψ(t)‖}, where v(t) := e−k

R t
0 L(s)ds and k is a fixed positive constant

greather tham M = supt≥0 ‖S(t)‖. Let ψ1, ψ2 ∈ AAAc(X), then we have that

v(t)‖Fψ1(t)− Fψ2(t)‖ ≤ M

∫ t

0
v(t)L(s)‖ψ1(s)− ψ2(s)‖ds

≤ M

∫ t

0
v(t)v(s)−1L(s)v(s)‖ψ1(s)− ψ2(s)‖ds

≤ M‖|ψ1 − ψ2‖|
∫ t

0
v(t)v(s)−1L(s)ds

=
M

k
‖|ψ1 − ψ2‖|

∫ t

0
kek

R s
t L(τ)dτL(s)ds

=
M

k
‖|ψ1 − ψ2‖|

∫ t

0

d

ds

(
ek
R s

t L(τ)dτ
)

ds

=
M

k
[1− e−k

R t
0 L(τ)dτ ]‖|ψ1 − ψ2‖|

≤ M

k
‖|ψ1 − ψ2‖|.

Hence, since M/k < 1, F has a unique fixed point in AAAc(X). ¤

Remark 4.6. We can use the same argument of proof of the previous result to
prove Theorem 3.13 by defining a new norm ‖|φ‖| = supt∈R{v(t)‖φ(t)‖}, where v(t)
is given in the proof of Theorem 4.5.

Similarly to the previous section for situations where the perturbation f is not
Lipschitz continuous we need the following boundedness condition.
(B∗

0) There exists a continuous nondecreasing function W : [0,∞) → [0,∞) such
that ‖f(t, x)‖ ≤ W (‖x‖) for all t ≥ 0 and x ∈ X.

Theorem 4.7. Assume that A generates an integral resolvent family {S(t)}t≥0 that
satisfies assumption (INT). Let f : [0,∞)×X → X be an asymptotically compact
almost automorphic function that satisfies assumption (B∗

0) and the following con-
ditions:

(B∗
1) f(t, x) is uniformly continuous in any bounded subset K ⊂ X uniformly in

t ≥ 0.
(B∗

2) For each ν ≥ 0, limt→∞ 1
h∗(t)

∫ t
0 φ(t− s)W (νh∗(s))ds = 0, where h∗ is given

in Lemma 2.15.
(B∗

3) For each ε > 0 there is δ > 0 such that for every u, v ∈ Ch∗(X), ‖v−u‖h∗ ≤
δ implies that

∫ t

0
φ(t− s)‖f(s, v(s))− f(s, u(s))‖ds ≤ ε, ∀ t ≥ 0.

We set

β∗(C) := ‖
∫ ·

0
φ(· − s)W (Ch∗(s))ds‖h∗ .

(B∗
4) lim infr→∞ r

β∗(r) > 1.
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(B∗
5) For all a, b ∈ [0,∞), a ≤ b, and r > 0, the set {f(s, x) : a ≤ s ≤ b, x ∈

X, ‖x‖ ≤ r} is relatively compact in X.
Then equation (1.2) has an asymptotically compact almost automorphic mild solu-
tion.

Corollary 4.8. Assume that A generates an integral resolvent family {S(t)}t≥0

satisfying assumption (INT). Let f : [0,∞)×X → X be an asymptotically compact
almost automorphic function that satisfies the Hölder type condition

‖f(t, x)− f(t, y)‖ ≤ C‖x− y‖α, 0 < α < 1,

for all x, y ∈ X, t ≥ 0, where C > 0 is a constant. Moreover, assume the following
conditions:

(i) f(t, 0) = q.
(ii) supt∈[0,∞)

∫ t
0 φ(t− s)h∗(s)αds < +∞, where h∗ is given in Lemma 2.15.

(iii) For all a, b ∈ [0,∞), a ≤ b, and r > 0, the set {f(s, x) : a ≤ s ≤ b, x ∈
X, ‖x‖ ≤ r} is relatively compact in X.
Then Eq. (1.1) has an asymptotically compact almost automorphic mild solution.

4.1. About the problem (1.3)-(1.4). Next, we concentrate in discuss the ex-
istence of S-asymptotically ω-periodic solution to the problem (1.3)-(1.4). The
considerations in [16] motivates the following definition.

Definition 4.9. Let A be the generator of a solution operator {S(t)}t≥0 (cf. [16,
Definition 2.1]). A continuous function u : R → X is called a mild solution of
(1.3)-(1.4) if u0 = φ and

u(t) = S(t)(φ(0) + G(0, φ))−G(t, ut) +
∫ t

0
S(t− s)F (s, us)ds, t ≥ 0.

Definition 4.10 ([47]). A strongly mensurable family of operators {T (t)}t≥0 ⊂
B(X) is called uniformly integrable if ‖T‖1 =

∫∞
0 ‖T (t)‖dt < +∞.

We also recall the following concept, studied for resolvent families in [44].

Definition 4.11. A strongly continuous family of operators {T (t)}t≥0 ⊂ B(X) is
called uniformly stable if ‖T (t)‖ → 0 as t →∞.

Definition 4.12 ([29]). A strongly continuous family of operators {T (t)}t≥0 ⊂
B(X) is said to be strongly S-asymptotically ω-periodic if there is ω > 0 such that
T (·)x is S-asymptotically ω-periodic for all x ∈ X.

Lemma 4.13 ([16]). Suppose that A generates an uniformly integrable solution
operator {S(t)}t≥0 and let f ∈ SAPω(X) . Then

∫ t

0
S(t− s)f(s)ds ∈ SAPω(X).

Theorem 4.14. Suppose A generates an uniformly integrable solution operator
{S(t)}t≥0, which is in addition strongly S-asymptotically ω-periodic and that B is
a fading memory space. Let F, G : [0,∞) × B → X be two functions uniformly
S-asymptotically ω-periodic on bounded sets such that

(4.3) ‖G(t, φ)−G(t, ψ)‖ ≤ LG‖φ− ψ‖B, φ, ψ ∈ B, t ≥ 0,
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(4.4) ‖F (t, φ)− F (t, ψ)‖ ≤ LF ‖φ− ψ‖B, φ, ψ ∈ B, t ≥ 0.

If (LG + ‖S‖1LF )K < 1, where K is the constant given in Remark 2.18, then (1.3)-
(1.4) has a unique S-asymptotically ω-periodic mild solution.

Proof. We set SAPω,0(X) = {x ∈ SAPω(X) : x(0) = 0}. It is clear that SAPω,0(X)
is a closed subspace of SAPω(X). We next identify the elements x ∈ SAPω,0(X)
with its extension to R given by x(θ) = 0 for θ ≤ 0. Moreover, we denote by y(·)
the function defined by y0 = φ and y(t) = S(t)φ(0) for t ≥ 0. We observe that by
hypothese y|[0,∞) ∈ SAPω(X). Since B is a fading memory space, it follows from
Lemma 2.25 that the function t → yt belongs to SAPω(B). Next, we define the map
Γ on the space SAPω,0(X) by (Γx)0 = 0 and

(4.5) (Γx)(t) = S(t)G(0, φ)−G(t, xt + yt) +
∫ t

0
S(t− s)F (s, xs + ys)ds, t ≥ 0.

We observe that S(·)G(0, φ) ∈ SAPω(X). Again taking in account that B is a
fading memory space and Lemma 2.25, we have that the function s → xs + ys

belongs to SAPω(B). In view of F and G are asymptotically uniformly continuous
on bounded sets, by Lemma 2.24, we conclude that the functions s → F (s, xs + ys)
and t → G(t, xt + yt) belong to SAPω(X). From Lemma 4.13, we infer that Γ is a
map from SAPω,0(X) into SAPω,0(X). Furthermore, we have the estimate

‖Γx(t)− Γz(t)‖ ≤ LG‖zt − xt‖B + LF

∫ t

0
‖S(t− s)‖‖xs − zs‖Bds

≤
(

LG + LF

∫ t

0
‖S(s)‖ds

)
K‖x− z‖∞

≤ (LG + ‖S‖1LF )K‖x− z‖∞,

which proves that Γ is a contraction. We conclude that Γ has a unique fixed point
x ∈ SAPω,0(X). Defining u(t) = y(t) + x(t) for t ∈ R, we can confirm that
u ∈ SAPω(X) is a mild solution of (1.3)-(1.4). This completes the proof. ¤
Corollary 4.15. Suppose that a(t) is 1-regular (see [16, Definition 2.8]) and A
generates a parabolic (see [16, Definition 3.3]) and uniformly integrable solution
operator {S(t)}t≥0 and B is a fading memory space. Let F : [0,∞) × B → X
be uniformly S-asymptotically ω-periodic on bounded sets such that condition (4.4)
holds with LF < (‖S‖1K)−1, where K is the constant given in Remark 2.18, then
the problem

(4.6) u′(t) =
∫ t

0
a(t− s)Au(s)ds + F (t, ut), t ≥ 0,

(4.7) u0 = φ,

has a unique S-asymptotically ω-periodic mild solution.

Proof. Since a(t) is 1-regular and A generates a parabolic and uniformly integrable
solution operator, we obtain by main result in [44] that {S(t)}t≥0 is uniformly stable.
In particular, {S(t)}t≥0 is S-asymptotically ω-periodic for any ω > 0. The result is
now a consequence of Theorem 4.14. ¤
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Corollary 4.16. Suppose that a(t) is 1-regular and A generates a parabolic and
uniformly integrable solution operator {S(t)}t≥0 and B is a fading memory space.
Let F : [0,∞) × B → X be an asymptotically compact almost automorphic func-
tion such that (4.4) holds with LF < (‖S‖1K)−1, then (4.6)-(4.7) has a unique
asymptotically compact almost automorphic mild solution.

We need introduce the following condition:
Condition (S1): The functions F, G : [0,∞)×B → X are uniformly S-asymptotically
ω-periodic on bounded sets and assume that there are continuous and nondecreas-
ing functions LF , LG : [0,∞) → [0,∞) such that for each positive number R, and
φ, ψ ∈ B, ‖φ‖B ≤ R, ‖ψ‖B ≤ R, we have

(4.8) ‖G(t, φ)−G(t, ψ)‖ ≤ LG(R)‖φ− ψ‖B, t ≥ 0,

(4.9) ‖F (t, φ)− F (t, ψ)‖ ≤ LF (R)‖φ− ψ‖B, t ≥ 0,

where LF (0) = LG(0) = 0 and F (t, 0) = G(t, 0) = 0 for every t ≥ 0.
We have the following result.

Theorem 4.17. Suppose that A generates an uniformly bounded and integrable so-
lution operator {S(t)}t≥0, which is in addition strongly S-asymptotically ω-periodic;
B is a fading memory space and that (S1) is fulfilled, then there is ε > 0 such that
for each φ satisfying ‖φ‖B ≤ ε, there is a unique S-asymptotically ω-periodic mild
solution of (1.3)-(1.4).

Proof. One can easily take R > 0 and λ ∈ (0, 1) so that

H := ‖S‖∞LG(λR)λ + LG((1 + (‖S‖∞H + 1)λ)KR)(1 + (‖S‖∞H + 1)λ)K
+ ‖S‖1LF ((1 + (‖S‖∞H + 1)λ)KR)(1 + (‖S‖∞H + 1)λ)K < 1,

where K is the constant appearing in Remark 2.18. We affirm that the assertion
holds for ε = λR. In fact, let φ be such that ‖φ‖B ≤ ε. Again we identify the
elements x ∈ SAPω,0(X) with its extension to R given by x0 = 0 and we define the
space

DR := {x ∈ SAPω,0(X) : ‖x‖∞ ≤ R}
endowed with the metric defined by d(u, v) = ‖u−v‖∞. We also define the operator
Γ on the space DR by (Γx)0 = 0 and (4.5). In a similar way as proof of Theorem
4.14 it follows that Γ is well defined. Moreover, we have the estimate

‖(Γx)(t)‖ ≤ ‖S‖∞LG(λR)λR

+ LG((1 + (‖S‖∞H + 1)λ)KR)(1 + (‖S‖∞H + 1)λ)KR

+ ‖S‖1LF ((1 + (‖S‖∞H + 1)λ)KR)(1 + (‖S‖∞H + 1)λ)KR

= HR ≤ R.

Therefore Γ(DR) ⊂ DR. on the other hand, for x, z ∈ DR, we see that

‖(Γx)(t)− (Γz)(t)‖ ≤ H − ‖S‖∞LG(λR)λ
1 + (‖S‖∞H + 1)λ

‖z − x‖∞
≤ H‖z − x‖∞,

which shows that Γ is a contraction from DR into DR. The assertion is now a
consequence of the contraction mapping principle. ¤
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Corollary 4.18. Suppose that a(t) is 1-regular and that A generates a parabolic
and uniformly integrable solution operator {S(t)}t≥0 and that B is a fading memory
space. Let F : [0,∞) × B → X be an asymptotically compact almost automorphic
function so that (4.9) holds with LF (0) = 0 and F (t, 0) = 0 for every t ≥ 0,
then for each φ satisfying ‖φ‖ ≤ ε there is a unique asymptotically compact almost
automorphic mild solution of (4.6)-(4.7).

We need to introduce the following condition:
Condition (S1)∗: The functions F, G : [0,∞)×B → X are uniformly S-asymptotically
ω-periodic on bounded sets and assume that there are nondecreasing functions
LF , LG : [0,∞) → [0,∞) such that for each positive number R, and ψ1, ψ2 ∈ B,
‖φ1‖B ≤ R, ‖ψ2‖B ≤ R, we have (4.8) and (4.9) with

lim sup
R→∞

KLG(K(R+(‖S‖∞H +1)‖φ‖B)+K‖S‖1LF (K(R+(‖S‖∞H +1)‖φ‖B) < 1,

where K is the constant appearing in Remark 2.18.

Theorem 4.19. Suppose that A generates an uniformly bounded and integrable so-
lution operator {S(t)}t≥0, which is in addition strongly S-asymptotically ω-periodic;
B is a fading memory space and (S1)∗ is fulfilled. Then there is a unique S-
asymptotically ω-periodic mild solution of (1.3)-(1.4).

Theorem 4.20. Suppose that A generates an uniformly bounded and integrable
solution operator {S(t)}t≥0, which is strongly S-asymptotically ω-periodic and that
B is a fading memory space. In addition the following conditions hold.

(a) The functions F, G : [0,∞) × B → X are uniformly S-asymptotically ω-
periodic on bounded sets and F is asymptotically uniformly continuous on bounded
sets.

(b) There is a continuous nondecreasing function W : [0,∞) → [0,∞) such that
‖F (t, ψ)‖ ≤ W (‖ψ‖B) for all t ≥ 0 and ψ ∈ B.

(c) There is a constant LG > 0 such that

‖G(t, h#(t)ψ1)−G(t, h#(t)ψ2)‖ ≤ LG‖ψ1 − ψ2‖B,

for all t ≥ 0 and ψ1, ψ2 ∈ B, where h∗ is as Lemma 2.15 and h#(t) = sup0≤τ≤t h∗(τ).
(d) For each ν > 0,

lim
t→∞

1
h∗(t)

∫ t

0
‖S(t− s)‖W (νh#(s))ds = 0.

(e) For each ε > 0 there is δ > 0 such that for every u, v ∈ C∗
h(X), ‖u− v‖h∗ ≤ δ

implies ∫ t

0
‖S(t− s)‖‖F (s, us)− F (s, vs)‖ds ≤ ε,

for all t ≥ 0.
(f) For all a, b ∈ [0,∞), a ≤ b and r > 0 the set {F (s, ψ) : s ∈ [a, b], ψ ∈

B, ‖ψ‖B ≤ r} is relatively compact in X.

We set ν(ξ) :=K(ξ+(‖S‖∞H+1)‖ϕ‖B) and β(ξ) :=
∥∥∥∥
·∫

0

‖S(·− s)‖W (ν(ξ)h#(s))ds

∥∥∥∥
h∗

,

where H and K are the constants given in Axiom (A) and Remark 2.18, respectively.
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(g) LGK + lim infξ→∞
β(ξ)

ξ < 1.

Then the problem (1.3)-(1.4) has an S-asymptotically ω-periodic mild solution.

Proof. We identify the elements v ∈ Ch∗(X) with its extension to R given by v(θ) =
0 for θ ≤ 0. We define the operator Γ on Ch∗(X) by (Γx)0 = 0 and (4.5); we consider
the decomposition Γ = Γ1 + Γ2, where Γ1u(t) = S(t)G(0, ϕ) −G(t, ut + yt), t ≥ 0,

(Γ1u)0 = 0, Γ2u(t) =
∫ t
0 S(t− s)F (s, us + ys)ds, t ≥ 0, (Γ2u)0 = 0, where y(·) is the

function defined in the proof of Theorem 4.14. For u ∈ Ch∗(X), we have that

‖ Γ1u(t) ‖≤ ‖S‖∞ ‖ G(0, ϕ) ‖ +LGK(‖ u ‖h∗ +(‖S‖∞H +1) ‖ ϕ ‖B)+ ‖ G(·, 0) ‖∞,

hence Γ1 is Ch∗(X)-valued. On the other hand Γ1 is a LGK-contraction. We next
show that Γ2 is Ch∗(X)-valued. For u ∈ Ch∗(X), we have that

‖ Γ2u(t) ‖
h∗(t)

≤ 1
h∗(t)

t∫

0

‖S(t− s)‖W (ν(‖ u ‖h∗)h#(s))ds.

It follows from condition (d) that Γ2 : Ch∗(X) → Ch∗(X). Using (e) we have that
the map Γ2 is continuous. We next show that Γ2 is completely continuous. Let
V = Γ2(Br(Ch∗(X))) and v = Γ2u for u ∈ Br(Ch∗(X)). Initially, we prove that
Vb(t) is relatively compact subset of X for each t ∈ [0, b]. We get v(t) ∈ tc0(K),
where K = {S(s)F (ξ, h#(ξ)ψ) : 0 ≤ s ≤ t, 0 ≤ ξ ≤ t; ‖ ψ ‖B≤ ν(r)}. Using the fact
that S(·) is strongly continuous and the condition (f), we infer that c0(K) is a
relatively compact set, which establishes our assertion. The following decomposition
is responsible for that fact that Vb is equicontinuous.

v(t + s)− v(t) =

t+s∫

t

S(t + s− ξ)F (ξ, uξ + yξ)dξ

+

t∫

0

(S(ξ + s)− S(ξ))F (t− ξ, ut−ξ + yt−ξ)dξ.

Finally, applying condition (d), we can show that

lim
t→∞

‖ v(t) ‖
h∗(t)

= 0,

and this convergence is independent of u ∈ Br(Ch∗(X)). Hence V satisfies con-
ditions (c-1)∗ and (c-2)∗ of Lemma 2.15, which completes the proof that V is
a relatively compact set in Ch∗(X). Hence Γ2 is completely continuous. Tak-
ing into account condition (a). It follows from Lemmas 2.24, 2.25 and 4.13 that
Γi(SAPω,0(X)) ⊆ SAPω,0(X), i=1,2, where we identify the elements x ∈ SAPω,0(X)
with its extension to R given by x0 = 0. Hence Γ(SAPω,0(X)) ⊆ SAPω,0(X)
and Γ2 : SAPω,0(X) → SAPω,0(̄X) is completely continuous. Putting Br :=
Br(SAPω,0(X)). We claim that there is r > 0 such that Γ(Br) ⊆ Br. In fact,
if we assume that this assertion is false, then for all r > 0, we can choose ur ∈ Br
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and tr ≥ 0 such that ‖Γur(tr)‖
h∗(tr) > r. Observe that a standard computation yields

‖ Γur(tr) ‖ ≤ ‖S‖∞ ‖ G(0, ϕ) ‖ +LGµ(r) + ||G(·, 0)||∞

+

tr∫

0

‖S(tr − s)‖W (ν(r)h#(s))ds.

Thus 1 ≤ LGK+ lim infr→∞
β(r)

r , which is contrary to condition (g). We have that
Γ1 is a contraction on Br and Γ2(Br) is a compact set. It follows from [39, Corollary
4.3.2] that Γ has a fixed point u ∈ SAPω,0(X). Let (un)n be sequence in SAPω,0(X)
that converges to u. We see that (Γun)n converges to Γu = u uniformly in [0,∞).
This implies that u ∈ SAPω,0(X), and this finishes the proof. ¤

Remark 4.21. A natural expectation is that most of the results discussed in this
subsection to be valid for a large class of equations of type (1.3) with nonlocal
conditions. For the sake of brevity we leave the details as an exercise to the reader.
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