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Abstract. In this paper, we first prove the strong convergence of viscosity ap-
proximation method for a modified Mann iteration process for asymptotically
strict pseudocontractive mappings in intermediate sense, and then prove the
strong convergence of general CQ algorithm for asymptotically strict pseudocon-
tractive mappings in intermediate sense. We extend the concept of asymptotically
strict pseudocontractive mappings in intermediate sense to Banach space setting,
called nearly asymptotically κ-strict pseudocontractive mapping in intermediate
sense. We establish the weak convergence theorems for a fixed point of a nearly
asymptotically κ-strict pseudocontractive mapping in intermediate sense which
is not necessarily Lipschitzian.

1. Introduction

The concept of an asymptotically nonexpansive mapping is introduced by Goebel
and Kirk [13] as an important generalization of nonexpansive mappings. They
proved that every asymptotically nonexpansive mapping defined on a nonempty
closed convex bounded subset of a uniformly convex Banach space has a fixed point.
An iterative method for the approximation of fixed points of asymptotically non-
expansive mappings is developed by Schu [27]. He established the following weak
convergence theorem.

Theorem 1.1 ([27]). Let C be a nonempty closed convex bounded subset of a Hilbert
space H and T : C → C be an asymptotically nonexpansive mapping with sequence

{kn} such that
∞∑

n=1

(kn − 1) < ∞. Let {αn} be a sequence in [0, 1] such that δ ≤

αn ≤ 1 − δ for all n ≥ 1 and for some δ > 0. Then the sequence {xn} generated
from arbitrary x1 ∈ C by

(1.1) xn+1 = (1− αn)xn + αnT
nxn, ∀n ≥ 1,
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converges weakly to a fixed point of T .

Several iterative methods for approximation of fixed points of asymptotically
nonexpansive mappings have been further studied in the recent past; See for example
[7, 6, 5, 9, 10, 20, 27, 28, 29] and references therein.

The class of asymptotically nonexpansive mappings in the intermediate sense was
introduced by Bruck et al. [2] and iterative methods for the approximation of fixed
points of such types of non-Lipschitzian mappings have been studied by Agarwal et
al. [1], Bruck et al. [2], Chidume et al. [11], Kim and Kim [16] and several others.
Recently, Kim and Xu [18] introduced the following concept of asymptotically κ-
strict pseudocontractive mappings in the setting of Hilbert spaces.

Definition 1.2. Let C be a nonempty subset of a Hilbert space H. A mapping
T : C → C is said to be an asymptotically κ-strict pseudocontractive mapping with
sequence {γn} if there exists a constant κ ∈ [0, 1) and a sequence {γn} in [0,∞)
with lim

n→∞
γn = 0 such that

(1.2) ‖Tnx− Tny‖2 ≤ (1 + γn)‖x− y‖2 + κ‖x− Tnx− (y − Tny)‖2,

for all n ≥ 1 and for all x, y ∈ C.

They studied weak and strong convergence theorems for this class of mappings.
It is important to note that every asymptotically κ-strict pseudocontractive
mapping with sequence {γn} is a uniformly L-Lipschitzian mapping with L =

sup
{

κ+
√

1+(1−κ)γn

1+κ : n ≥ 1
}

.

Very recently, Sahu et al. [26] defined the following concept of asymptotically κ-
strict pseudocontractive mappings in intermediate sense, which are not necessarily
Lipschitzian.

Definition 1.3. A mapping T : C → C is said to be an asymptotically κ-strict
pseudocontractive mapping in the intermediate sense with sequence {γn} if there
exist a constant κ ∈ [0, 1) and a sequence {γn} in [0,∞) with lim

n→∞
γn = 0 such that

(1.3)
lim sup

n→∞
sup

x,y∈C

(
‖Tnx− Tny‖2 − (1 + γn)‖x− y‖2 − κ‖x− Tnx− (y − Tny)‖2

)
≤ 0.

Letting

cn :=

max

{
0, sup

x,y∈C
(‖Tnx− Tny‖2 − (1 + γn)‖x− y‖2 − κ‖x− Tnx− (y − Tny)‖2)

}
.

Then cn ≥ 0 (∀n ≥ 1), cn → 0 (n→∞) and (1.3) becomes

(1.4) ‖Tnx−Tny‖2 ≤ (1+ γn)‖x− y‖2 +κ‖x−Tnx− (y−Tny)‖2 + cn, ∀n ≥ 1,

for all x, y ∈ C.
Whenever cn = 0 for all n ≥ 1 in (1.4), then T is an asymptotically κ-strict

pseudocontractive mapping with sequence {γn}.
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The weak convergence of modified Mann iteration process (1.1) and strong con-
vergence of further modification of (1.1), that is, the following CQ method for (1.1),
for asymptotically κ-strict pseudocontractive mappings in intermediate sense have
been studied in [26].
The CQ method:

u = x1 ∈ C chosen arbitrary,
yn = (1− αn)xn + αnT

nxn,
Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ C : 〈xn − z, u− xn〉 ≥ 0},
xn+1 = PCn∩Qn(u), ∀n ≥ 1,

where F (T ) is assumed to be nonempty and bounded, θn = cn + γn∆n and ∆n =
sup{‖xn − z‖2 : z ∈ F (T )} <∞.

Furthermore, Martinez-Yanes and Xu [22] derived the strong convergence result
of CQ method for Halpern iteration process for a nonexpansive mapping defined on
a nonempty closed convex subset of a real Hilbert space.

On the other hand, the viscosity approximation method for finding a fixed point
of a given nonexpansive mapping is initiated by Moudafi [23]. He proved the strong
convergence of the sequence generated by his method to a unique solution of some
variational inequality. It is further studied by several authors; See for example
[4, 33] and references therein. Some related methods for variational inequalities and
fixed points can be found in [3, 5, 8] and references therein.

The paper is organized as follows: In Section 2, we recall the useful definitions
and lemmas. In Section 3, we study the strong convergence of the viscosity ap-
proximation method for the modified Mann iteration process (1.1) for the class of
asymptotically κ-strict pseudocontractive mappings in intermediate sense. In Sec-
tion 4, CQ algorithm is extended to develop the general CQ algorithm by Halpern
iteration method. The strong convergence of the sequence generated by this general
CQ algorithm is also studied. In Section 5, we extend the concept of asymptotically
strict pseudocontractive mappings in intermediate sense to Banach space setting,
called nearly asymptotically κ-strict pseudocontractive mapping in intermediate
sense. We first extend demiclosedness principle for nearly asymptotically κ-strict
pseudocontractive mappings in intermediate sense in the setting of Banach spaces,
and then establish the weak convergence theorems for a fixed point of a nearly
asymptotically κ-strict pseudocontractive mapping in intermediate sense which is
not necessarily Lipschitzian.

2. Preliminaries

Let X be a real Banach space with norm ‖ · ‖ and its dual is denoted by X∗. The
normalized duality mapping J from X into the family of nonempty weak∗ compact
subsets of X∗ is defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X,
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where 〈·, ·〉 denotes the generalized duality pairing. Recall that the norm of X is
Gâteaux differentiable (and X is said to be smooth) if the limit

(2.1) lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ X : ‖x‖ = 1}. X is smooth if and
only if J is single-valued. In this case, J : X → X∗ is continuous from the strong
topology of X to the weak∗ topology of X∗, that is, norm-to-weak∗ continuous. The
norm is called uniformly Gâteaux differentiable if for each y ∈ U , the limit (2.1) is
attained uniformly for x ∈ U . Furthermore, the norm is called uniformly Fréchet
differentiable (and X is said to be uniformly smooth) if the limit in (2.1) is attained
uniformly for (x, y) ∈ U × U . Recall that if for every ε > 0 with 0 ≤ ε ≤ 2, the
modulus δX(ε) of convexity of a Banach space X is defined by

δX(ε) = inf
{

1− ‖x+ y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

A Banach space X is said to be uniformly convex if δX(ε) > 0 for every ε > 0. A
Banach space X is said to be strictly convex if ‖(x + y)/2‖ < 1 for each x, y ∈ U
with x 6= y. Since the dual X∗ of X is uniformly convex if and only if the norm of
X is uniformly Fréchet differentiable, every Banach space with a uniformly convex
dual is reflexive and has a uniformly Gâteaux differentiable norm. A uniformly
convex Banach space is strictly convex and reflexive. The converse implication is
false. A discussion on these and related concepts can be found in [12].

Recall that a gauge is a continuous strictly increasing function ϕ : [0,∞) → [0,∞)
such that ϕ(0) = 0 and ϕ(t) →∞ as t→∞. Associated to a gauge ϕ, the duality
map Jϕ : X → 2X∗

is defined by

Jϕ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)} , ∀x ∈ X.

We say that a Banach space X has a weakly continuous duality map if there ex-
ists a gauge ϕ for which the duality map Jϕ is single-valued and weak-to-weak∗

sequentially continuous (that is, if {xn} is a sequence in X weakly convergent to
a point x, then the sequence {Jϕ(xn)} converges weak∗ly to Jϕ(x)). For instance,
for each 1 < p < ∞, the space lp has a weakly continuous duality map with gauge
ϕ(t) = tp−1; See [19] for more details.

In the case where ϕ(t) = t for all t ∈ [0,∞), the associated duality reduces to the
normalized duality map J . Now, set

Φ(t) =
∫ t

0
ϕ(τ)dτ, ∀t ≥ 0.

Then it can be easily seen that Φ is convex. It is also known that Jϕ(x) is the
subdifferential ∂Φ(‖x‖) of the convex function Φ(‖ · ‖) at x, that is,

Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ X.

We adopt the following notations:
(i) ⇀ stands for weak convergence and → for strong convergence;
(ii) ωw({xn}) = {x ∈ X : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn};



STRONG AND WEAK CONVERGENCE THEOREMS 287

(iii) F (T ) = {x ∈ C : Tx = x} denotes the set of fixed points of a self-mapping
T on a set C.

Lemma 2.1 ([31]). Let X be a uniformly convex Banach space and r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0, 2r] → R
such that g(0) = 0 and

(2.2) ‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖),
for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ X : ‖z‖ ≤ r}. In particular, in the
case when X = H a Hilbert space and g(t) = t2, ∀t ∈ [0,∞), then

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,

for all x, y ∈ H and t ∈ [0, 1].

The first part of the following lemma is an immediate consequence of the subd-
ifferential inequality, and the proof of the second part can be found in [19].

Lemma 2.2. Let X be a real Banach space and Jϕ be the duality map associated
with the gauge ϕ.

(i) For all x, y ∈ X and j ∈ Jϕ(x+ y),

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, j〉.
In particular, for all x, y ∈ X and j ∈ J(x+ y),

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j〉.
(ii) Assume that Jϕ is weakly continuous. Then for any sequence {xn} in X

which converges weakly to a point x̂, we have for all y ∈ X,

(2.3) lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x̂‖) + Φ(‖y − x̂‖).

In this case, X satisfies Opial’s condition; that is, the weak convergence to x̂ of
{xn} implies that

lim sup
n→∞

‖xn − y‖ > lim sup
n→∞

‖xn − x̂‖, ∀y ∈ X, y 6= x̂.

We need some facts and tools which are listed as lemmas below:

Lemma 2.3 ([25, 28]). Let {δn}, {βn} and {γn} be three sequences of nonnegative
numbers satisfying the recursive inequality:

δn+1 ≤ βnδn + γn, ∀n ≥ 1.

If βn ≥ 1,
∞∑

n=1

(βn − 1) <∞ and
∞∑

n=1

γn <∞, then lim
n→∞

δn exists.

Lemma 2.4 ([32]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− ᾱn)sn + ᾱnβ̄n + rn, ∀n ≥ 1,

where {ᾱn}, {β̄n} and {rn} satisfy the conditions: {ᾱn} ⊂ [0, 1],
∞∑

n=1

ᾱn = ∞,

lim sup
n→∞

β̄n ≤ 0 and rn ≥ 0,
∞∑

n=1

rn <∞. Then, lim
n→∞

sn = 0.
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Lemma 2.5 ([1, Proposition 2.4]). Let {xn} be a bounded sequence in a reflexive
Banach space X. If ωw({xn}) = {x}, then xn ⇀ x.

Let H be a real Hilbert space with inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H. For every
point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.
PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C. It is also known that PC satisfies

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H.
The following lemma can be found in any standard book on functional analysis.

Lemma 2.6. Let C be a nonempty closed convex subset of a Hilbert space H. Given
x ∈ H and y ∈ C. Then y = PCx if and only if

〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

Lemma 2.7. Let H be a real Hilbert space. Then the following statements hold:
(a) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 for all x, y ∈ H;
(b) ‖(1− t)x+ ty‖2 = (1− t)‖x‖2 + t‖y‖2− t(1− t)‖x− y‖2 for all t ∈ [0, 1] and

for all x, y ∈ H;
(c) If {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − x‖2 + ‖x− y‖2, ∀y ∈ H.

Lemma 2.8 ([22]). Let H be a real Hilbert space. Given a nonempty closed convex
subset of H and points x, y, z ∈ H and given also a real number a ∈ R, the set

{v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a}
is convex (and closed).

Lemma 2.9 ([26, Lemma 2.6]). Let C be a nonempty subset of a Hilbert space
H and T : C → C be an asymptotically κ-strict pseudocontractive mapping in
intermediate sense with sequence {γn}. Then

‖Tnx− Tny‖ ≤ 1
1− κ

(
κ‖x− y‖+

√
(1 + (1− κ)γn)‖x− y‖2 + (1− κ)cn

)
for all x, y ∈ C and n ≥ 1.

Lemma 2.10 ([26, Lemma 2.7]). Let C be a nonempty subset of a Hilbert space H
and T : C → C be a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in intermediate sense with sequence {γn}. Let {xn} be a sequence in C
such that ‖xn−xn+1‖ → 0 and ‖xn−Tnxn‖ → 0 as n→∞. Then ‖xn−Txn‖ → 0
as n→∞.

Lemma 2.11 ([14, Demiclosedness Principle]). Let H be a Hilbert space, C be a
nonempty closed convex subset of H, and S : C → C be a nonexpansive mapping
with F (S) 6= ∅. If {xn} is a sequence in C weakly converging to x and {(I − S)xn}
converges strongly to y, then (I − S)x = y.
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The following proposition is a generalization of for asymptotically κ-strict pseu-
docontractive mappings in intermediate sense in the setting of Hilbert spaces.

Proposition 2.12 (Demiclosedness Principle [26, Proposition 3.1]). Let C be a
nonempty closed convex subset of a Hilbert space H and T : C → C be a contin-
uous asymptotically κ-strict pseudocontractive mapping in intermediate sense with
sequence {γn}. Then I − T is demiclosed at zero in the sense that if {xn} is a
sequence in C such that xn ⇀ x ∈ C and lim sup

m→∞
lim sup

n→∞
‖xn − Tmxn‖ = 0, then

(I − T )x = 0.

Proposition 2.13 ([26, Proposition 3.2]). Let C be a nonempty closed convex subset
of a Hilbert space H and T : C → C be a continuous asymptotically κ-strict pseudo-
contractive mapping in intermediate sense with sequence {γn} such that F (T ) 6= ∅.
Then F (T ) is closed and convex.

Remark 2.14. Propositions 2.12 and 2.13 give some basic properties of an asymptot-
ically κ-strict pseudocontractive mapping in the intermediate sense with sequence
{γn}. Moreover, Proposition 2.12 extends the demiclosedness principles studied for
certain classes of nonlinear mappings in Gornicki [15], Kim and Xu [18], Marino
and Xu [21] and Xu [31].

3. Hybrid viscosity approximation method for modified Mann
iteration process

In this section, we prove the strong convergence of viscosity approximation method
for modified Mann iteration process (1.1) for an asymptotically κ-strict pseudocon-
tractive mapping in intermediate sense with sequence {γn}.
Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let
f : C → C be a contraction mapping with contractive constant α ∈ (0, 1), S : C → C
a nonexpansive mapping, and T : C → C a uniformly continuous asymptotically κ-
strict pseudocontractive mapping in intermediate sense with sequence {γn} such that

F (S) ∩ F (T ) 6= ∅ and
∞∑

n=1

γn < ∞. Let {αn}, {βn} be two sequences in [0, 1] such

that 0 < δ ≤ βn ≤ 1− κ,
∞∑

n=1

βncn <∞,

∞∑
n=1

αn = ∞, and αn → 0.

Let {xn} be a sequence in C generated by the following viscosity approximation
method for Mann iteration process:

(3.1)

 x1 ∈ C chosen arbitrary,
yn = (1− βn)xn + βnT

nxn,
xn+1 = αnf(yn) + (1− αn)Syn, ∀n ≥ 1.

If ‖xn+1 − xn‖ → 0 and ‖yn − Syn‖ → 0, then {xn} converges strongly to a unique
solution x̃ in F (S) ∩ F (T ) to the following variational inequality:

(3.2) 〈(I − f)x̃, x− x̃〉 ≥ 0, ∀x ∈ F (S) ∩ F (T ).

In other words, x̃ = PF (S)∩F (T )f(x̃).
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Proof. Let p be an arbitrary element in F (S) ∩ F (T ). Using Lemma 2.7 (b), we
obtain
(3.3)
‖yn − p‖2 = ‖(1− βn)(xn − p) + βn(Tnxn − p)‖2

= (1− βn)‖xn − p‖2 + βn‖Tnxn − p‖2 − βn(1− βn)‖xn − Tnxn‖2

≤ (1− βn)‖xn − p‖2 + βn[(1 + γn)‖xn − p‖2 + κ‖xn − Tnxn‖2 + cn]
−βn(1− βn)‖xn − Tnxn‖2

≤ (1 + γn)‖xn − p‖2 − βn(1− βn − κ)‖xn − Tnxn‖2 + βncn
≤ (1 + γn)‖xn − p‖2 + βncn.

For the rest of the proof we divide it into several steps.
Step 1. We claim that both the sequences {xn} and {yn} are bounded. Indeed,

observe that

(3.4)

‖xn+1 − p‖2 = ‖αn(f(yn)− p) + (1− αn)(Syn − p)‖2

≤ (1− αn)‖Syn − p‖2 + αn‖f(yn)− p‖2

≤ (1− αn)‖yn − p‖2 + αn (‖f(yn)− f(p)‖+ ‖f(p)− p‖)2

≤ (1− αn)‖yn − p‖2 + αn (α‖yn − p‖+ ‖f(p)− p‖)2

= (1− αn)‖yn − p‖2 + αn

(
α‖yn − p‖+ (1− α)‖f(p)−p‖

1−α

)2

≤ (1− αn)‖yn − p‖2 + αn

(
α‖yn − p‖2 + ‖f(p)−p‖2

1−α

)
= (1− (1− α)αn)‖yn − p‖2 + αn

‖f(p)−p‖2
1−α

≤ max
{
‖yn − p‖2, ‖f(p)−p‖2

(1−α)2

}
.

We claim that for all n ≥ 1

(3.5) ‖xn+1 − p‖2 ≤

 n∏
j=1

(1 + γj)

( n∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})
.

As a matter of fact, whenever n = 1, from (3.3) and (3.4) we have

‖x2 − p‖2 ≤ max
{
‖y1 − p‖2, ‖f(p)−p‖2

(1−α)2

}
≤ max

{
(1 + γ1)‖x1 − p‖2 + β1c1,

‖f(p)−p‖2
(1−α)2

}
≤ max

{
(1 + γ1)‖x1 − p‖2 + β1c1, (1 + γ1)

‖f(p)−p‖2
(1−α)2

+ β1c1

}
= (1 + γ1) max

{
‖x1 − p‖2, ‖f(p)−p‖2

(1−α)2

}
+ β1c1

≤ (1 + γ1)
(
max

{
‖x1 − p‖2, ‖f(p)−p‖2

(1−α)2

}
+ β1c1

)
=

 1∏
j=1

(1 + γj)

( 1∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})
.
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Assume that (3.5) holds for some n ≥ 1. Consider the case of n + 1. From (3.3)
and (3.4), we obtain

‖xn+2 − p‖2

≤ max
{
‖yn+1 − p‖2, ‖f(p)−p‖2

(1−α)2

}
≤ max

{
(1 + γn+1)‖xn+1 − p‖2 + βn+1cn+1,

‖f(p)−p‖2
(1−α)2

}
≤ max

{
(1 + γn+1)

 n∏
j=1

(1 + γj)

( n∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})
+βn+1cn+1,

‖f(p)−p‖2
(1−α)2

}
= max

{n+1∏
j=1

(1 + γj)

( n∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})
+βn+1cn+1,

‖f(p)−p‖2
(1−α)2

}
≤ max


n+1∏

j=1

(1 + γj)

(n+1∑
i=1

βici + max{‖x1 − p‖2,
‖f(p)− p‖2

(1− α)2
}

)
, ‖f(p)−p‖2

(1−α)2


≤ max

{n+1∏
j=1

(1 + γj)

(n+1∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})
,n+1∏

j=1

(1 + γj)

(n+1∑
i=1

βici +
‖f(p)− p‖2

(1− α)2

)}

=

n+1∏
j=1

(1 + γj)

(n+1∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})
.

This shows that (3.5) holds for the case of n + 1. By induction, (3.5) holds for all

n ≥ 1. Since
∞∑

n=1

γn < ∞ and
∞∑

n=1

βncn < ∞, from (3.5) we deduce that for all

n ≥ 1,

‖xn+1 − p‖2 ≤

 n∏
j=1

(1 + γj)

( n∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})

≤ exp

 n∑
j=1

γj

( n∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})

≤ exp

 ∞∑
j=1

γj

( ∞∑
i=1

βici + max
{
‖x1 − p‖2,

‖f(p)− p‖2

(1− α)2

})
.

This implies that {xn} is bounded and so is {yn} by virtue of (3.3).
Step 2. We claim that ‖xn − Txn‖ → 0. Indeed, it follows from (3.1) that

‖xn+1−yn‖ = ‖αn(f(yn)−yn)+(1−αn)(Syn−yn)‖ ≤ αn‖f(yn)−yn‖+‖Syn−yn‖.
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Since f, S : C → C are Lipschitzian, ‖Syn − yn‖ → 0 and αn → 0, from the
boundedness of {yn} we conclude that

(3.6) lim
n→∞

‖xn+1 − yn‖ = 0.

Since
‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖.

and ‖xn+1 − xn‖ → 0, it follows from (3.6) that

(3.7) lim
n→∞

‖yn − xn‖ = 0.

Since

‖Tnxn − xn‖ =
1
βn
‖yn − xn‖ ≤

1
δ
‖yn − xn‖,

from (3.7), we have

(3.8) lim
n→∞

‖Tnxn − xn‖ = 0.

Since ‖xn+1 − xn‖ → 0, ‖xn − Tnxn‖ → 0 as n → ∞ and T : C → C is uniformly
continuous, we obtain from Lemma 2.10 that ‖xn − Txn‖ → 0 as n→∞.

Step 3. We claim that

(3.9) lim sup
n→∞

〈x̃− yn, x̃− f(x̃)〉 ≤ 0,

where x̃ = PF (S)∩F (T )f(x̃).
Indeed, by Proposition 2.13, F (T ) is closed and convex, and so is F (S) ∩ F (T ).

Since f : C → C is a contraction with contractive constant α ∈ (0, 1) and PF (S)∩F (T ) :
H → F (S)∩F (T ) is a nonexpansive mapping, the composite mapping PF (S)∩F (T )f :
C → F (S) ∩ F (T ) (⊆ C) is a contraction with contractive constant α ∈ (0, 1).
By Banach contraction principle, there exists a unique x̃ ∈ C such that x̃ =
PF (S)∩F (T )f(x̃), equivalently, x̃ is the unique solution in F (S)∩F (T ) to the following
variational inequality:

〈(I − f)x̃, x− x̃〉 ≥ 0, ∀x ∈ F (S) ∩ F (T ).

Take a subsequence {ynk
} of {yn} such that

(3.10) lim sup
n→∞

〈x̃− yn, x̃− f(x̃)〉 = lim
k→∞

〈x̃− ynk
, x̃− f(x̃)〉.

We may assume that ynk
⇀ x̄. It follows from Lemma 2.11 and ‖yn − Syn‖ → 0

that x̄ ∈ F (S). From (3.7) and ynk
⇀ x̄ it follows that xnk

⇀ x̄. Since T is
uniformly continuous and ‖xn − Txn‖ → 0 by Step 2, we have ‖xn − Tmxn‖ → 0
for all m ≥ 1. By Proposition 2.12, we obtain x̄ ∈ F (T ). Consequently, we deduce
that x̄ ∈ F (S) ∩ F (T ) and so from (3.2) we obtain

〈(I − f)x̃, x̄− x̃〉 ≥ 0.

Therefore, we derive from (3.10)

lim sup
n→∞

〈x̃− yn, x̃− f(x̃)〉 = lim
k→∞

〈x̃− ynk
, x̃− f(x̃)〉 = 〈x̃− x̄, x̃− f(x̃)〉 ≤ 0

as required.
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Step 4. We claim that ‖xn − x̃‖ → 0 as n→∞. Indeed, observe that

(3.11)

‖xn+1 − x̃‖2 = ‖(1− αn)(Syn − x̃) + αn(f(yn)− x̃)‖2

= (1− αn)2‖Syn − x̃‖2 + α2
n‖f(yn)− x̃‖2

+2αn(1− αn)〈Syn − x̃, f(yn)− x̃〉
≤ (1− 2αn + α2

n)‖yn − x̃‖2 + α2
n‖f(yn)− x̃‖2

+2αn(1− αn)〈Syn − x̃, f(yn)− f(x̃)〉
+2αn(1− αn)〈Syn − x̃, f(x̃)− x̃〉
≤
(
1− 2αn + α2

n + 2ααn(1− αn)
)
‖yn − x̃‖2

+αn

[
2(1− αn)〈Syn − x̃, f(x̃)− x̃〉+ αn‖f(yn)− x̃‖2

]
= (1− ᾱn)‖yn − x̃‖2 + ᾱnβ̄n,

where ᾱn = αn(2− αn − 2α(1− αn)) and

β̄n =
2(1− αn)〈Syn − x̃, f(x̃)− x̃〉+ αn‖f(yn)− x̃‖2

2− αn − 2α(1− αn)
.

It is readily seen that ᾱn → 0,
∞∑

n=1

ᾱn = ∞, and lim sup
n→∞

β̄n ≤ 0 by virtue of (3.9).

On the other hand, from (3.3) and (3.10), we get

‖xn+1 − x̃‖2 ≤ (1− ᾱn)‖yn − x̃‖2 + ᾱnβ̄n

≤ (1− ᾱn)
[
(1 + γn)‖xn − x̃‖2 + βncn

]
+ ᾱnβ̄n

≤ (1− ᾱn)‖xn − x̃‖2 + ᾱnβ̄n + γn‖xn − x̃‖2 + βncn
= (1− ᾱn)‖xn − x̃‖2 + ᾱnβ̄n + rn,

where rn = γn‖xn − x̃‖2 + βncn for all n ≥ 1. Since
∞∑

n=1

γn <∞,
∞∑

n=1

βncn <∞ and

{xn} is bounded, we know that
∞∑

n=1

rn <∞. Therefore, in terms of Lemma 2.4, we

conclude that lim
n→∞

‖xn − x̃‖ = 0. �

As a consequence of Theorem 3.1, we derive the following corollaries.

Corollary 3.2. Let C be a nonempty closed convex subset of a Hilbert space H.
Let f : C → C be a contraction mapping with contractive constant α ∈ (0, 1),
S : C → C a nonexpansive mapping, and T : C → C a uniformly continuous
asymptotically κ-strict pseudocontractive mapping in intermediate sense (in this
case, γn = 0, ∀n ≥ 1) such that F (S) ∩ F (T ) 6= ∅. Let {αn}, {βn} be two sequences
in [0, 1] such that 0 < δ ≤ βn ≤ 1− κ,

∞∑
n=1

βncn <∞,

∞∑
n=1

αn = ∞, and αn → 0.

Let {xn} be a sequence in C generated by (3.1). If ‖xn+1 − xn‖ → 0 and ‖yn −
Syn‖ → 0, then {xn} converges strongly to a unique solution x̃ in F (S) ∩ F (T ) to
the variational inequality (3.2).

Corollary 3.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let
f : C → C be a contraction mapping with contractive constant α ∈ (0, 1) and T :
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C → C be a uniformly continuous asymptotically κ-strict pseudocontractive mapping

in intermediate sense with sequence {γn} such that F (T ) 6= ∅ and
∞∑

n=1

γn <∞. Let

{αn} and {βn} be two sequences in [0, 1] such that 0 < δ ≤ βn ≤ 1− κ,
∞∑

n=1

βncn <∞,

∞∑
n=1

αn = ∞, and αn → 0.

Let {xn} be a sequence in C generated by the following viscosity approximation
method for Mann iteration process:

(3.12)

 x1 ∈ C chosen arbitrary,
yn = (1− βn)xn + βnT

nxn,
xn+1 = αnf(yn) + (1− αn)yn, ∀n ≥ 1.

If ‖xn+1 − xn‖ → 0, then {xn} converges strongly to a unique solution x̃ in F (T )
to the following variational inequality

(3.13) 〈(I − f)x̃, x− x̃〉 ≥ 0, ∀x ∈ F (T ).

In particular, whenever f ≡ u (∈ C) a constant, {xn} converges strongly to PF (T )(u).

Corollary 3.4. Let C be a nonempty closed convex subset of a Hilbert space H.
Let f : C → C be a contraction with contractive constant α ∈ (0, 1) and T : C → C
be a uniformly continuous asymptotically κ-strict pseudocontractive mapping with
sequence {γn} such that F (T ) 6= ∅ and

∑∞
n=1 γn < ∞. Let {αn}, {βn} be two

sequences in [0, 1] such that 0 < δ ≤ βn ≤ 1−κ,
∞∑

n=1

αn = ∞ and αn → 0. Let {xn}

be a sequence in C generated by (3.12). If ‖xn+1 − xn‖ → 0, then {xn} converges
strongly to a unique solution x̃ in F (T ) to the variational inequality (3.13).

Example 3.5. Let

H = `2 =

{aj}∞j=1 : {aj}∞j=1 is a real sequence satisfying
∞∑

j=1

a2
j <∞

 .

with its inner product 〈., .〉 and norm ‖ · ‖ are defined as

〈x, y〉 =
∞∑

j=1

ajbj and ‖x‖ =

 ∞∑
j=1

a2
j

 1
2

,

for all x, y ∈ H with x = {aj}∞j=1 and y = {bj}∞j=1. Then `2 is a real Hilbert space.
Also, let C = `2 and

R∞ =
{
{aj}∞j=1 ∈ l2 : ∃j0 ≥ 1 such that aj = 0,∀j ≥ j0 + 1

}
.

Then 0 = {0, 0, ...} ∈ R∞ and the closed hull of R∞ is equal to `2, that is, R∞ = l2.
Furthermore, define the mappings f, S, T : C → C by

f(x) = αx, Sx = x
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and
Tx = T ({a1, a2, a3, ...}) = {a2, a3, ...}

for some α ∈ (0, 1) and all x ∈ `2 where x = {aj}∞j=1. Then T is a nonexpansive
mapping and hence an asymptotically κ-strictly pseudocontractive mapping in in-
termediate sense with sequences γn = 0 and cn = 0 for all n ≥ 0 where κ = 0. It is
easy to see that 0 = {0, 0, ...} is a unique fixed point of T in H and that

Tnx = {an+1, an+2, an+3, ...}.
Now, take x1 ∈ R∞ arbitrarily. Then there exists an integer j0 ≥ 1 such that
x1 =

{
a

(1)
1 , a

(1)
2 , ..., a

(1)
j0
, 0, ...

}
. In this case, from the iterative scheme (3.1) in

Theorem 3.1 we have{
yn = (1− βn)xn + βnT

nxn,
xn+1 = αnαyn + (1− αn)yn, ∀n ≥ 1.

Since x1 =
{
a

(1)
1 , a

(1)
2 , ..., a

(1)
j0
, 0, ...

}
, we know that Tnxn = 0 for all n ≥ j0. Thus it

follows that for all n ≥ j0

xn+1 = (1− (1− α)αn)yn

= (1− (1− α)αn)[(1− βn)xn + βnT
nxn]

= (1− (1− α)αn)(1− βn)xn,

and hence for 0 < δ ≤ βn ≤ 1

‖xn+1‖ = ‖(1− (1− α)αn)(1− βn)xn‖
≤ (1− βn)‖xn‖ ≤ (1− δ)‖xn‖ ≤ ... ≤ (1− δ)n−j0+1‖xj0‖.

So, {xn} converges strongly to 0 = {0, 0, ...} ∈ {0} = F (T ) = F (S) ∩ F (T ). There
is no doubt that 0 = {0, 0, ...} is a unique solution in F (S) ∩ F (T ) to the following
variational inequality:

〈(I − f)x̃, x− x̃〉 ≥ 0, ∀x ∈ F (S) ∩ F (T ).

In other words, x̃ = PF (S)∩F (T )f(x̃).
On the other hand, in terms of Theorem 3.4 of [26], we know that the sequence

{xn} generated by the modified Mann iteration process

xn+1 = (1− αn)xn + αnT
nxn, ∀n ≥ 1,

converges weakly to 0 = {0, 0, ...} ∈ {0} = F (T ), where 0 < δ ≤ αn ≤ 1− δ < 1.

Remark 3.6. (a) Compare with the corresponding results studied by Kim and Xu
[18], Marino and Xu [21], Sahu et al. [26] and Schu [27] , Theorem 3.1 is a strong
convergence result.
(b) Compared with Theorem 3.4 of [26], Theorem 3.1 is more general in the following
ways:

(i) Theorem 3.1 is a strong convergence one, but Theorem 3.4 of [26] is a weak
convergence one;

(ii) Our problem of finding an element of F (S) ∩ F (T ) is more general than the
one of finding an element of F (T ) in [26, Theorem 3.4];

(iii) Our method for proving the boundedness and strong convergence of {xn} is
very different from the one of proof in [26, Theorem 3.4], and hence is nontrivial;
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(iv) The condition 0 < δ ≤ αn ≤ 1 − κ − δ < 1 in [26, Theorem 3.4] is replaced
by our weaker one 0 < δ ≤ βn ≤ 1− κ in Theorem 3.1.

If F (S) ⊂ F (T ) and T is not necessarily uniformly continuous but asymptoti-
cally κ-strict pseudocontractive mapping in intermediate sense, then we have the
following result.

Theorem 3.7. Let C be a nonempty closed convex bounded subset of a Hilbert
space H. Let f : C → C be a contraction with contractive constant α ∈ (0, 1),
S : C → C be a nonexpansive mapping, and T : C → C be an asymptotically
κ-strict pseudocontractive mapping in intermediate sense with sequence {γn} such

that F (T ) ⊃ F (S) and
∞∑

n=1

γn < ∞. Let {αn}, {βn} be two sequences in [0, 1] such

that 0 ≤ βn ≤ 1− κ,
∞∑

n=1

βncn <∞,

∞∑
n=1

αn = ∞, αn → 0 and βn → 0.

If ‖xn+1 − xn‖ → 0, then the sequence {xn} generated by (3.1) converges strongly
to a unique solution x̃ in F (S) to the following variational inequality:

(3.14) 〈(I − f)x̃, x− x̃〉 ≥ 0, ∀x ∈ F (S).

In other words, x̃ = PF (S)f(x̃).

Proof. Since C is a nonempty closed convex bounded subset of a real Hilbert space
H, it is clear that the concept of asymptotically κ-strict pseudocontractive mapping
in the intermediate sense with sequence {γn} is equivalent to the one of nearly
asymptotically κ-strict pseudocontractive mapping in the intermediate sense with
sequence {γn}. In this case, we know that cn = θn and g(t) = t2, ∀t ∈ [0,∞).

Let p be an arbitrary element in F (S). AS in the proof of Theorem 3.1, by using
Lemma 2.7 (ii) and the assumption F (S) ⊂ F (T ), we obtain

(3.15) ‖yn − p‖2 ≤ (1 + γn)‖xn − p‖2 + βncn, ∀n ≥ 1.

We claim that
‖yn − Syn‖ → 0.

Indeed, it follows from (3.1) that

(3.16)
‖yn − Syn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − Syn‖

≤ ‖yn − xn‖+ ‖xn − xn+1‖+ ‖xn+1 − Syn‖
= βn‖Tnxn − xn‖+ ‖xn − xn+1‖+ αn‖f(yn)− Syn‖.

Since C is bounded, and f : C → C, S : C → C and T : C → C all are self-
mappings, {f(yn)}, {Syn} and {Tnxn} all are bounded. Hence, from (3.16) and
αn → 0, βn → 0, ‖xn+1 − xn‖ → 0, we obtain ‖yn − Syn‖ → 0.

As in Step 3 in the proof of Theorem 3.1, we have

lim sup
n→∞

〈x̃− yn, x̃− f(x̃)〉 ≤ 0, (4.5)

where x̃ = PF (S)f(x̃).
Finally, as in Step 4 in the proof of Theorem 3.1, we obatin xn → x̃. �
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From Theorem 3.7, we derive the following corollaries.

Corollary 3.8. Let C be a nonempty closed convex bounded subset of a Hilbert
space H. Let f : C → C be a contraction with contractive constant α ∈ (0, 1),
S : C → C be a nonexpansive mapping, and T : C → C be an asymptotically κ-
strict pseudocontractive mapping with sequence {γn} such that F (T ) ⊃ F (S) and
∞∑

n=1

γn <∞. Let {αn}, {βn} be two sequences in [0, 1] such that 0 ≤ βn ≤ 1− κ,

∞∑
n=1

αn = ∞, αn → 0 and βn → 0.

If ‖xn+1 − xn‖ → 0, then the sequence {xn} generated by (3.1) converges strongly
to a unique solution x̃ in F (S) to the variational inequality (3.14).

Proof. Note that every asymptotically κ-strict pseudocontractive mapping with se-
quence {γn} must be an asymptotically κ-strict pseudocontractive mapping in in-
termediate sense with sequence {γn}. In this case, cn = 0 for all n ≥ 1. Thus, from
Theorem 3.7 we immediately obtain the desired result. �

Corollary 3.9. Let C be a nonempty closed convex bounded subset of a Hilbert
space H. Let f : C → C be a contraction with contractive constant α ∈ (0, 1),
S : C → C be a nonexpansive mapping, and T : C → C be an asymptotically
nonexpansive mapping with sequence {kn} ⊂ [1,∞) such that F (T ) ⊃ F (S) and
∞∑

n=1

(kn − 1) <∞. Let {αn}, {βn} be two sequences in [0, 1] such that

∞∑
n=1

αn = ∞, αn → 0 and βn → 0.

If ‖xn+1 − xn‖ → 0, then the sequence {xn} generated by (3.1) converges strongly
to a unique solution x̃ in F (S) to the variational inequality (3.14).

Corollary 3.10. Let C be a nonempty closed convex bounded subset of a Hilbert
space H. Let f : C → C be a contraction with contractive constant α ∈ (0, 1),
and S, T : C → C be two nonexpansive mappings such that F (T ) ⊃ F (S). Let
{αn}, {βn} be two sequences in [0, 1] such that

∞∑
n=1

αn = ∞, αn → 0 and βn → 0.

If ‖xn+1 − xn‖ → 0, then the sequence {xn} generated by (3.1) converges strongly
to a unique solution x̃ in F (S) to the variational inequality (3.14).

4. CQ method for modified Mann iteration process

Recall that in [26, Theorem 4.1], Sahu et al. established the strong convergence
criteria on CQ method for modified Mann iteration process for an asymptotically
κ-strict pseudocontractive mapping in intermediate sense with sequence {γn} in a
real Hilbert space H. In this section, CQ algorithm is extended to develop a general
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CQ algorithm by virtue of Halpern iteration method. The main result of this section
is the following which is more general than Theorem 4.1 in [26].

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let S : C → C be a nonexpansive mapping, and T : C → C be a uniformly
continuous asymptotically κ-strict pseudocontractive mapping in intermediate sense
with sequence {γn} such that F (S)∩F (T ) is nonempty and bounded. Let {αn}, {βn}
be two sequences in [0, 1] such that αn → 0 and 0 < δ ≤ βn ≤ 1 − κ for all n ≥ 1.
Let {xn} be a sequence in C generated by the following general CQ algorithm:

(4.1)



u = x1 ∈ C chosen arbitrary,
zn = (1− βn)xn + βnT

nxn,
yn = αnu+ (1− αn)Szn,
Cn =

{
z ∈ C : ‖yn − z‖2 ≤ αn‖u− z‖2 + (1− αn)‖xn − z‖2 + θn

}
,

Qn = {z ∈ C : 〈xn − z, u− xn〉 ≥ 0} ,
xn+1 = PCn∩Qn(u), ∀n ≥ 1,

where θn = cn + γn∆n and ∆n = sup
{
‖xn − z‖2 : z ∈ F (S) ∩ F (T )

}
< ∞. If

‖zn − Szn‖ → 0, then the sequence {xn} converges strongly to PF (S)∩F (T )(u).

Proof. We divide the proof into the following six steps.
Step 1. We claim that Cn is closed and convex. Indeed, the defining inequality

in Cn is equivalent to the inequality

2〈αnu+ (1− αn)xn − yn, z〉 ≤ αn‖u‖2 + (1− αn)‖xn‖2 − ‖yn‖2 + θn.

Thus, it is easy to see that Cn is closed and convex.
Step 2. We claim that F (S) ∩ F (T ) ⊂ Cn. Indeed, let p ∈ F (S) ∩ F (T ). From

(4.1), we have

‖zn − p‖2 = ‖(1− βn)(xn − p) + βn(Tnxn − p)‖2

≤ (1− βn)‖xn − p‖2 + βn‖Tnxn − p‖2 − βn(1− βn)‖xn − Tnxn‖2

≤ (1− βn)‖xn − p‖2 + βn

[
(1 + γn)‖xn − p‖2 + κ‖xn − Tnxn‖2 + cn

]
−βn(1− βn)‖xn − Tnxn‖2

≤ ‖xn − p‖2 + βn(κ− (1− βn))‖xn − Tnxn‖2 + cn + γn‖xn − p‖2

≤ ‖xn − p‖2 + cn + γn∆n,

and hence
‖yn − p‖2 = ‖αn(u− p) + (1− αn)(Szn − p)‖2

≤ αn‖u− p‖2 + (1− αn)‖Szn − p‖2

≤ αn‖u− p‖2 + (1− αn)‖zn − p‖2

≤ αn‖u− p‖2 + (1− αn)
[
‖xn − p‖2 + cn + γn∆n

]
≤ αn‖u− p‖2 + (1− αn)‖xn − p‖2 + cn + γn∆n.

Thus, p ∈ Cn.
Step 3. We claim that F (S) ∩ F (T ) ⊂ Cn ∩ Qn for all n ≥ 1. Indeed, it is

sufficient to show that F (S) ∩ F (T ) ⊂ Qn. We prove this by induction.
For n = 1, we have F (S)∩F (T ) ⊂ C = Q1. Assume that F (S)∩F (T ) ⊂ Qn for

some n ≥ 1. Since xn+1 is the projection of u onto Cn ∩Qn, it follows that

〈xn+1 − z, u− xn+1〉 ≥ 0, ∀z ∈ Cn ∩Qn.
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As F (S) ∩ F (T ) ⊂ Cn ∩ Qn, the last inequality holds, in particular for all z ∈
F (S) ∩ F (T ). By the definition of Qn+1,

Qn+1 = {z ∈ C : 〈xn+1 − z, u− xn+1〉 ≥ 0} ,
it follows that F (S) ∩ F (T ) ⊂ Qn+1. By induction, we get

F (S) ∩ F (T ) ⊂ Qn, ∀n ≥ 1.

Step 4. We claim that ‖xn − xn+1‖ → 0. Indeed, by the definition of Qn, we
have xn = PQn(u) and hence

‖u− xn‖ ≤ ‖u− y‖, ∀y ∈ F (S) ∩ F (T ) ⊂ Qn.

Note that the boundedness of F (S) ∩ F (T ) implies that {‖xn − u‖} is bounded.
Since xn = PQn(u) which together with the fact that xn+1 ∈ Cn ∩Qn ⊂ Qn implies
that

‖u− xn‖ ≤ ‖u− xn+1‖.
Thus, {‖u − xn‖} is nondecreasing. Since {‖xn − u‖} is bounded, we obtain that
lim

n→∞
‖xn − u‖ exists.

Observe that xn = PQn(u) and xn+1 ∈ Qn which imply that

〈xn+1 − xn, xn − u〉 ≥ 0.

Using Lemma 2.7 (a), we obtain

‖xn+1 − xn‖2 = ‖xn+1 − u− (xn − u)‖2

= ‖xn+1 − u‖2 − ‖xn − u‖2 − 〈xn+1 − xn, xn − u〉
≤ ‖xn+1 − u‖2 − ‖xn − u‖2 → 0 as n→∞.

Step 5. We claim that ‖xn − Txn‖ → 0. Indeed, for p ∈ F (S) ∩ F (T ), from
Lemma 2.9 we have

‖Tnxn − p‖ ≤ 1
1− κ

(
κ‖xn − p‖+

√
(1 + (1− κ)γn)‖xn − p‖2 + (1− κ)cn

)
.

This together with the boundedness of {xn}, implies that {Tnxn} is bounded. Hence
from the definition of zn, it follows that {zn} is bounded.

Now by the definition of zn, we have

(4.2)

‖xn − Tnxn‖2 = β−1
n ‖xn − zn‖

≤ β−1
n (‖xn − xn+1‖+ ‖xn+1 − zn‖)

≤ δ−1 (‖xn − xn+1‖+ ‖xn+1 − zn‖)
≤ δ−1 (‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − zn‖) .

Since xn+1 ∈ Cn, we have from αn → 0

‖yn − xn+1‖2 ≤ αn‖u− xn+1‖2 + (1− αn)‖xn − xn+1‖2 + cn + γn∆n → 0.

It follows from ‖Szn − zn‖ → 0 that

‖yn − zn‖ = ‖αn(u− zn) + (1− αn)(Szn − zn)‖
≤ αn‖u− zn‖+ (1− αn)‖Szn − zn‖ → 0.

Consequently, from (4.2) we conclude that

(4.3) ‖xn − Tnxn‖ → 0 as n→∞.

By Step 4 and (4.3), we obtain from Lemma 2.10 that xn − Txn → 0 as n→∞.
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Step 6. We claim that xn → v ∈ F (S) ∩ F (T ). Indeed, since H is reflexive and
{xn} is bounded, we obtain that ωw({xn}) is nonempty. Let us show that ωw({xn})
is a singleton. Assume that {xni} is a subsequence of {xn} such that xni ⇀ v ∈ C.
Since ‖xn − Txn‖ → 0 by Step 5, it follows from the uniform continuity of T that
‖xn − Tmxn‖ → 0 for all m ≥ 1. By Proposition 2.12, v ∈ ωw({xn}) ⊂ F (T ). On
the other hand, since ‖xn+1 − xn‖ → 0, ‖xn+1 − yn‖ → 0 and ‖yn − zn‖ → 0, we
deduce that ‖xn − zn‖ → 0 and hence zni ⇀ v. Thus, from Lemma 2.11 we have
v ∈ ωw({xn}) ⊂ F (S). Consequently, v ∈ ωw({xn}) ⊂ F (S) ∩ F (T ).

Since xn+1 = PCn∩Qn(u), we obtain that

‖u− xn+1‖ ≤ ‖u− PF (S)∩F (T )(u)‖, ∀n ≥ 1.

Observe that
‖u− xni‖⇀ ‖u− v‖.

By weak lower semicontinuity of the norm, we have

‖u− PF (S)∩F (T )(u)‖ ≤ ‖u− v‖
≤ lim inf

i→∞
‖u− xni‖

≤ lim sup
i→∞

‖u− xni‖

≤ ‖u− PF (S)∩F (T )(u)‖,
which yields

‖u− PF (S)∩F (T )(u)‖ = ‖u− v‖
and

(4.4) lim
i→∞

‖u− xni‖ = ‖u− PF (S)∩F (T )(u)‖.

Hence v = PF (S)∩F (T )(u) by the uniqueness of the nearest point projection of u onto
F (S)∩F (T ). Thus, ‖xni−u‖ → ‖v−u‖. This shows that ‖xni−u‖ → ‖v−u‖, that
is, xni → v. Since {xni} is an arbitrary weakly convergent subsequence of {xn}, it
follows that ωw({xn}) = {v} and hence from Lemma 2.5 we have xn ⇀ v. It is easy
to see as (4.4) that ‖xn − u‖ → ‖v − u‖. Therefore, xn → v. �

From Theorem 4.1, we derive the following results which appeared recently in
the literature.

Corollary 4.2 ([26, Theorem 4.1]). Let C be a nonempty closed convex subset of
a real Hilbert space H and T : C → C be a uniformly continuous asymptotically
κ-strict pseudocontractive mapping in intermediate sense with sequence {γn} such
that F (T ) is nonempty and bounded. Let {αn} be a sequence in [0, 1] such that
0 < δ ≤ αn ≤ 1 − κ for all n ≥ 1. Let {xn} be a sequence in C generated by the
following CQ algorithm:

(4.5)


u = x1 ∈ C chosen arbitrary,
yn = (1− αn)xn + αnT

nxn,
Cn =

{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + ϑn

}
,

Qn = {z ∈ C : 〈xn − z, u− xn〉 ≥ 0} ,
xn+1 = PCn∩Qn(u), ∀n ≥ 1,

where ϑn = cn + γn∆n and ∆n = sup
{
‖xn − z‖2 : z ∈ F (T )

}
< ∞. Then {xn}

converges strongly to PF (T )(u).



STRONG AND WEAK CONVERGENCE THEOREMS 301

Proof. In Theorem 4.1, put S ≡ I the identity mapping, and αn = 0 for all n ≥ 1.
Then, F (S)∩F (T ) = F (T ) and yn = zn. In this case, (4.1) reduces to (4.5). Thus,
from Theorem 4.1 we obtain the desired conclusion. �

Corollary 4.3 ([17, Theorem 2.2]). Let C be a nonempty closed convex bounded
subset of a real Hilbert space H and T : C → C be an asymptotically nonexpansive
mapping with sequence {kn} in [1,∞). Let {αn} be a sequence in [0, 1] such that
0 < δ ≤ αn ≤ 1. Define a sequence {xn}∞n=1 in C by the following algorithm:

(4.6)


u = x1 ∈ C chosen arbitrary,
yn = (1− αn)xn + αnT

nxn,
Cn =

{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + ϑn

}
,

Qn = {z ∈ C : 〈xn − z, u− xn〉 ≥ 0} ,
xn+1 = PCn∩Qn(u), ∀n ≥ 1,

where ϑn = (k2
n − 1)diam(C)2 for all n ≥ 1, where diam(C) denotes the diameter

of C. Then {xn} converges strongly to PF (T )(u).

Corollary 4.4 ([24, Theorem 3.4]). Let C be a nonempty closed convex bounded
subset of a real Hilbert space H and T : C → C be a nonexpansive mapping with
F (T ) 6= ∅. Let {αn} be a sequence in [0, 1] such that 0 < δ ≤ αn ≤ 1. Define a
sequence {xn}∞n=1 in C by the following algorithm:

(4.7)


u = x1 ∈ C chosen arbitrary,
yn = (1− αn)xn + αnT

nxn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ C : 〈xn − z, u− xn〉 ≥ 0} ,
xn+1 = PCn∩Qn(u), ∀n ≥ 1.

Then {xn} converges strongly to PF (T )(u).

5. Nearly asymptotically strict pseudocontractive mappings in
intermediate sense

Motivated and inspired by the concept of asymptotically κ-strict pseudocontrac-
tive mappings in intermediate sense, we introduce the concept of nearly asymp-
totically strict pseudocontractive mappings in intermediate sense in the setting of
Banach spaces, which are not necessarily Lipschitzian.

Definition 5.1. Let C be a nonempty bounded subset of a uniformly convex Ba-
nach space X. A mapping T : C → C is called a nearly asymptotically κ-strict
pseudocontractive mapping in intermediate sense with sequence {γn} if there exist
a constant κ ∈ [0, 1) and a sequence {γn} in [0,∞) with lim

n→∞
γn = 0 such that

(5.1)
lim sup

n→∞
sup

x,y∈C
(‖Tnx− Tny‖2 − (1 + γn)‖x− y‖2

−κmin{‖x− Tnx− (y − Tny)‖2, g(‖x− Tnx− (y − Tny)‖)}) ≤ 0,

where g : [0, 2r] → R is defined as in Lemma 2.1 and r = sup{‖x‖ : x ∈ C}.

Remark 5.2. Let C be a nonempty bounded subset of a Hilbert space H. If we
take g(t) = t2, ∀t ∈ [0,∞), then each asymptotically κ-strict pseudocontractive
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mapping T : C → C in intermediate sense with sequence {γn} must be a nearly
asymptotically κ-strict pseudocontractive mappings in intermediate sense with se-
quence {γn}. As pointed out in [26], if T : C → C is an asymptotically κ-strict
pseudocontractive mapping in intermediate sense with sequence {γn} then T is not
necessarily uniformly L-Lipschitzian. Therefore, there is no doubt that in a uni-
formly convex Banach space, every nearly asymptotically κ-strict pseudocontractive
mapping T : C → C in intermediate sense with sequence {γn} is not necessarily
uniformly L-Lipschitzian. Actually, this can be seen from Lemma 5.4.

We study some properties and convergence of some iteration processes for the
class of nearly asymptotically κ-strict pseudocontractive mappings in the interme-
diate sense. Rest of the paper we, assume that

θn := max{0, sup
x,y∈C

(‖Tnx− Tny‖2 − (1 + γn)‖x− y‖2

−κmin{‖x− Tnx− (y − Tny)‖2, g(‖x− Tnx− (y − Tny)‖)})}.

Then θn ≥ 0 (∀n ≥ 1), θn → 0 (n→∞), and (5.1) reduces to the following relation

(5.2)
‖Tnx− Tny‖2 ≤ (1 + γn)‖x− y‖2

+κmin
{
‖x− Tnx− (y − Tny)‖2, g(‖x− Tnx− (y − Tny)‖)

}
+ θn

for all x, y ∈ C and n ≥ 1.

Lemma 5.3. Let C be a nonempty bounded subset of a uniformly convex Banach
space X and T : C → C be a nearly asymptotically κ-strict pseudocontractive map-
ping in intermediate sense with sequence {γn}. Then

‖Tnx− Tny‖ ≤ 1
1− κ

(
κ‖x− y‖+

√
(1 + (1− κ)γn)‖x− y‖2 + (1− κ)θn

)
for all x, y ∈ C and n ≥ 1.

Proof. For all x, y ∈ C, we have

‖Tnx− Tny‖2

≤ (1 + γn)‖x− y‖2

+κmin
{
‖x− Tnx− (y − Tny)‖2, g(‖x− Tnx− (y − Tny)‖)

}
+ θn

≤ (1 + γn)‖x− y‖2 + κ‖x− Tnx− (y − Tny)‖2 + θn

≤ (1 + γn)‖x− y‖2 + κ(‖x− y‖+ ‖Tnx− Tny‖)2 + θn

≤ (1 + κ+ γn)‖x− y‖2 + κ
(
2‖x− y‖‖Tnx− Tny‖+ ‖Tnx− Tny‖2

)
+ θn.

It gives us that

(1− κ)‖Tnx− Tny‖2 − 2κ‖x− y‖‖Tnx− Tny‖ − (1 + κ+ γn)‖x− y‖2 − θn ≤ 0,

which is a quadratic inequality in ‖Tnx− Tny‖. Hence, the conclusion follows. �

Lemma 5.4. Let C be a nonempty bounded subset of a uniformly convex Banach
space X and T : C → C be a uniformly continuous nearly asymptotically κ-strict
pseudocontractive mapping in intermediate sense with sequence {γn}. Let {xn} be
a sequence in C such that ‖xn−xn+1‖ → 0 and ‖xn−Tnxn‖ → 0 as n→∞. Then
‖xn − Txn‖ → 0 as n→∞.
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Proof. Since T is a nearly asymptotically κ-strict pseudocontractive mapping in the
intermediate sense, we obtain from Lemma 5.3 that

‖Tn+1xn − Tn+1xn+1‖
≤ 1

1−κ

(
κ‖xn − xn+1‖+

√
(1 + (1− κ)γn+1)‖xn − xn+1‖2 + (1− κ)θn+1

)
.

Since ‖xn − xn+1‖ → 0, we have ‖Tn+1xn − Tn+1xn+1‖ → 0. Observe that

(5.3)
‖xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖
+‖Tn+1xn+1 − Tn+1xn‖+ ‖Tn+1xn − Txn‖.

By the uniform continuity of T , we have

(5.4) ‖Txn − Tn+1xn‖ → 0 as n→∞.

Since ‖xn − Tnxn‖ → 0 and ‖xn − xn+1‖ → 0, it follows from (5.3) and (5.4) that
lim

n→∞
‖xn − Txn‖ = 0. �

6. Weak convergence of modified Mann iteration process

We extend demiclosedness principle (Proposition 2.12) for nearly asymptotically
κ-strict pseudocontractive mappings in intermediate sense in the setting of Banach
spaces.

Proposition 6.1 (Demiclosedness principle). Let C be a nonempty closed convex
bounded subset of a uniformly convex Banach space X, which has a weakly contin-
uous duality map J . Let T : C → C be a continuous nearly asymptotically κ-strict
pseudocontractive mapping in intermediate sense with sequence {γn}. Then I−T is
demiclosed at zero in the sense that if {xn} is a sequence in C such that xn ⇀ x ∈ C
and lim sup

m→∞
lim sup

n→∞
‖xn − Tmxn‖ = 0, then (I − T )x = 0.

Proof. Let {xn} be a sequence in C such that xn ⇀ x ∈ C and

(6.1) lim sup
m→∞

lim sup
n→∞

‖xn − Tmxn‖ = 0.

By Lemma 5.3, we have

‖Tmxn − Tmx‖ ≤ 1
1−κ

(
κ‖xn − x‖+

√
(1 + (1− κ)γm)‖xn − x‖2 + (1− κ)θm

)
≤ K ′

for all m,n ≥ 1 and some constant K ′ > 0. Since X has a weakly continuous duality
map J , there exists a gauge ϕ(t) = t for which the duality map J is single-valued
and weak-to-weak∗ sequentially continuous. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ =

1
2
t2, ∀t ≥ 0.

Then, J(x) = ∂(1
2‖x‖

2) for all x ∈ X. Hence, from xn ⇀ x and Lemma 2.2 (ii) we
deduce that for all y ∈ X,

(6.2) lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − x‖2 + ‖y − x‖2.
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Define
ψ(y) := lim sup

n→∞
‖xn − y‖2, ∀y ∈ X.

Then, (6.2) can be rewritten as

(6.3) ψ(y) = ψ(x) + ‖x− y‖2, ∀y ∈ X.
Since T is a nearly asymptotically κ-strict pseudocontractive mapping in interme-
diate sense with sequence {γn}, by relation (5.2), we have

ψ(Tmx) = lim sup
n→∞

‖xn − Tmx‖2

≤ lim sup
n→∞

(‖xn − Tmxn‖+ ‖Tmxn − Tmx‖)2

= lim sup
n→∞

(
‖xn − Tmxn‖2 + ‖Tmxn − Tmx‖2

+2‖xn − Tmxn‖‖Tmxn − Tmx‖
)

≤ lim sup
n→∞

‖Tmxn − Tmx‖2

+ lim sup
n→∞

(‖xn − Tmxn‖2 + 2‖xn − Tmxn‖K ′)

≤ lim sup
n→∞

(
(1 + γm)‖xn − x‖2 + κ‖xn − Tmxn − (x− Tmx)‖2 + θm

)
+ lim sup

n→∞

(
‖xn − Tmxn‖2 + 2‖xn − Tmxn‖K ′)

≤ ψ(x) + κ lim sup
n→∞

‖xn − Tmxn − (x− Tmx)‖2 + ψ(x)γm + θm

+ lim sup
n→∞

(
‖xn − Tmxn‖2 + 2‖xn − Tmxn‖K ′) , ∀m ≥ 1.

By (6.3), we have

ψ(x) + ‖x− Tmx‖2 = ψ(Tmx)
≤ ψ(x) + κ lim sup

n→∞
‖xn − Tmxn − (x− Tmx)‖2 + ψ(x)γm

+θm + lim sup
n→∞

(
‖xn − Tmxn‖2 + 2‖xn − Tmxn‖K ′) ,

which implies that

(6.4)
‖x− Tmx‖2 ≤ κ lim sup

n→∞
‖xn − Tmxn − (x− Tmx)‖2 + ψ(x)γm + θm

+ lim sup
n→∞

(
‖xn − Tmxn‖2 + 2‖xn − Tmxn‖K ′) .

Since lim sup
m→∞

lim sup
n→∞

‖xn − Tmxn‖ = 0, it follows from (6.4) that

lim sup
m→∞

‖x− Tmx‖2 ≤ κ lim sup
m→∞

‖x− Tmx‖2.

It means that Tmx → x as m → ∞. Therefore, the continuity of T implies that
(I − T )x = 0. �

We now prove the weak convergence of (1.1) for nearly asymptotically κ-strict
pseudocontractive mappings in intermediate sense.

Theorem 6.2. Let C be a nonempty closed convex bounded subset of a uniformly
convex Banach space X, which has a weakly continuous duality map J . Let T :
C → C be a uniformly continuous nearly asymptotically κ-strict pseudocontractive
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mapping in intermediate sense with sequence {γn} such that F (T ) 6= ∅ and
∞∑

n=1

γn <

∞. Assume that {αn} is a sequence in (0, 1) such that 0 < δ ≤ αn ≤ 1− κ− δ < 1

and
∞∑

n=1

αnθn < ∞. Let {xn}∞n=1 be a sequence in C generated by the following

modified Mann iteration process:

(6.5) xn+1 = (1− αn)xn + αnT
nxn, ∀n ≥ 1.

Then {xn} converges weakly to an element of F (T ).

Proof. Let p be an element in F (T ). Using relation (2.2), we obtain
(6.6)

‖xn+1 − p‖2 = ‖(1− αn)(xn − p) + αn(Tnxn − p)‖2

≤ (1− αn)‖xn − p‖2

+αn‖Tnxn − p‖2 − αn(1− αn)g(‖xn − Tnxn‖)
≤ (1− αn)‖xn − p‖2 + αn[(1 + γn)‖xn − p‖2

+κmin{‖xn − Tnxn‖2, g(‖xn − Tnxn‖)}+ θn]
−αn(1− αn)g(‖xn − Tnxn‖)
≤ (1− αn)‖xn − p‖2 + αn[(1 + γn)‖xn − p‖2

+κg(‖xn − Tnxn‖) + θn]
−αn(1− αn)g(‖xn − Tnxn‖)
≤ (1 + γn)‖xn − p‖2 − αn(1− αn − κ)g(‖xn − Tnxn‖) + αnθn

≤ (1 + γn)‖xn − p‖2 − δ2g(‖xn − Tnxn‖) + αnθn

≤ (1 + γn)‖xn − p‖2 + αnθn

for all n ≥ 1. By Lemma 2.3, last inequality in (6.6) and the assumptions that
∞∑

n=1

γn <∞ and
∞∑

n=1

αnθn <∞, we deduce that

(6.7) lim
n→∞

‖xn − p‖ exists.

Suppose lim
n→∞

‖xn − p‖ = r for some r > 0. It is easy to see from the second last

inequality in (6.6) that

δ2g(‖xn − Tnxn‖) ≤ (1 + γn)‖xn − p‖2 − ‖xn+1 − p‖2 + αnθn,

which implies that lim
n→∞

g(‖xn − Tnxn‖) = 0. Since g : [0, 2r] → R is a strictly

increasing, continuous and convex function such that g(0) = 0, we have

lim
n→∞

‖xn − Tnxn‖ = 0.

Observe that

‖xn+1 − xn‖ = αn‖xn − Tnxn‖ ≤ (1− κ− δ)‖xn − Tnxn‖ → 0 as n→∞.

Since ‖xn+1 − xn‖ → 0, ‖xn − Tnxn‖ → 0 as n → ∞, C is bounded, {xn} is
a sequence in C and T is uniformly continuous, we obtain from Lemma 5.4 that
‖xn − Txn‖ → 0 as n→∞.

By the boundedness of {xn}, there exists a subsequence {xnk
} of {xn} such that

xnk
⇀ x ∈ C. Since T is uniformly continuous and ‖xn − Txn‖ → 0, we have
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‖xn − Tmxn‖ → 0 for all m ≥ 1. By Proposition 6.1, we obtain x ∈ F (T ). To
complete the proof, it is sufficient to show that ωw({xn}) consists of exactly one
point, namely, x. Suppose there exists another subsequence {xnj} of {xn} which
converges weakly to some z 6= x. As in the case of x, we must have z ∈ F (T ). It
follows from (6.7) that lim

n→∞
‖xn−x‖ and lim

n→∞
‖xn−z‖ exist. Since X has a weakly

continuous duality map J , by utilizing Lemma 2.2 (ii) we conclude that X satisfies
the Opial condition. Thus, we have

lim
n→∞

‖xn − x‖ = lim
k→∞

‖xnk
− x‖ < lim

k→∞
‖xnk

− z‖ = lim
n→∞

‖xn − z‖,

lim
n→∞

‖xn − z‖ = lim
j→∞

‖xnj − z‖ < lim
j→∞

‖xnj − x‖ = lim
n→∞

‖xn − x‖,

which leads to a contradiction. So we must have x = z. This shows that ωw({xn})
is a singleton. Therefore, {xn} converges weakly to x by Lemma 2.5. �

Remark 6.3. It is well known that every real Hilbert spaceH is uniformly convex and
its normalized duality mapping J = I is weakly continuous. When C is a nonempty
closed convex bounded subset of H, T : C → C is a nearly asymptotically κ-strict
pseudocontractive mapping in intermediate sense with sequence {γn} if and only if
T : C → C is an asymptotically κ-strict pseudocontractive mapping in intermediate
sense with sequence {γn}. Thus, Theorem 6.2 is more general than the results
studied in [18, 21, 27, 26] to certain extent.

As a consequence of Theorem 6.2, we derive the following corollaries.

Corollary 6.4. Let C be a nonempty closed convex bounded subset of a uniformly
convex Banach space X, which has a weakly continuous duality map J . Let T :
C → C be a uniformly continuous nearly asymptotically κ-strict pseudocontractive
mapping in intermediate sense with F (T ) 6= ∅ (in this case, γn = 0, ∀n ≥ 1).
Assume that {αn} is a sequence in (0, 1) such that 0 < δ ≤ αn ≤ 1− κ− δ < 1 and
∞∑

n=1

αnθn < ∞. Let {xn}∞n=1 be a sequence in C generated by the modified Mann

iteration process defined by (6.5). Then {xn} converges weakly to an element of
F (T ).

Corollary 6.5. [26, Theorem 3.4] Let C be a nonempty closed convex bounded
subset of a Hilbert space H and T : C → C be a uniformly continuous asymptotically
κ-strict pseudocontractive mapping in intermediate sense with sequence {γn} such

that F (T ) 6= ∅ and
∞∑

n=1

γn <∞. Assume that {αn} is a sequence in (0, 1) such that

0 < δ ≤ αn ≤ 1 − κ − δ < 1 and
∞∑

n=1

αncn < ∞. Let {xn}∞n=1 be a sequence in

C generated by the modified Mann iteration process defined by (6.5). Then {xn}
converges weakly to an element of F (T ).
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Corollary 6.6 ([18, Theorem 3.1]). Let C be a nonempty closed convex bounded
subset of a Hilbert space H and T : C → C be an asymptotically κ-strict pseu-

docontractive mapping with sequence {γn} such that F (T ) 6= ∅ and
∞∑

n=1

γn < ∞.

Assume that {αn} is a sequence in (0, 1) such that 0 < δ ≤ αn ≤ 1 − κ − δ < 1.
Let {xn}∞n=1 be a sequence in C generated by the modified Mann iteration process
defined by (6.5). Then {xn} converges weakly to an element of F (T ).
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