
Journal of Nonlinear and Convex Analysis

Volume 11, Number 2, 2010, 243–266

CONVERGENCE OF MULTIVALUED PRAMARTS

CHARLES CASTAING, FATIMA EZZAKI, AND KHALID TAHRI

Abstract. We state various convergence results for multivalued pramarts in a
separable Banach space and its dual. Some new structure results for pramarts
are also discussed. The conditional expectation for a special class closed convex
valued integrable multifunction is also proven.

1. Introduction

The almost sure convergence of vector valued pramarts in Banach spaces were
studied by several authors. There is a rich bibliograpy on this subject, see the
book by Egghe[16] and the references therein. In this paper we present various
convergence results for convex weakly compact valued pramarts in Banach spaces
by introducing some new tools based upon the multivalued biting Dunford-Pettis
theorem developed in [3, 9] which allow to extend classical a.s. norm convergence
results for vector-valued pramarts to the a.s. convergence with respect to the linear
topology [2] for convex weakly compact valued pramarts. Main results are given in
section 4-5-6 where several convergence results for multivalued pramarts are pre-
sented in both the primal space and the dual space. The paper is organized as
follows. In section 2 we summarize some basic properties of Mosco convergence and
linear topology and measurable multifunctions. In section 3 we state and summa-
rize for references the multivalued conditional expectation for closed convex valued
integrable multifunctions and the multivalued biting Dunford-Pettis theorem. Sec-
tion 4 is devoted to the convergence with respect to the linear topology for convex
weakly compact valued integrably bounded pramarts in the case when the underly-
ing Banach space is separable and have the RNP and its strong dual is separable. In
section 5 we present the w∗ Kuratowski convergence for convex weak star compact
valued pramarts in the weak∗ dual of a separable Banach space, here the dual space
is nolonger strongly separable. In section 6 further structure results for pramarts
in both the primal space and the dual space are discussed.

2. Notations and preliminaries

Throughout this paper (Ω,F , P ) is a complete probability space, (Fn)n∈N is an
increasing sequence of sub σ-algebras of F such that F is the σ-algebra generated
by ∪n∈NFn. E is a separable Banach space and E∗ is its topological dual. Let
BE (resp. BE∗) be the closed unit ball of E (resp. E∗) and 2E the collection of
all subsets of E. Let c(E) (resp. cc(E)) (resp. cwk(E)) (resp. Rwk(E)) be the
set of nonempty closed (resp. closed convex) (resp. convex weak compact) (resp.
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ball-weakly compact closed convex) subsets of E, here a closed convex subset in E is
ball-weakly compact if its intersection with any closed ball in E is weakly compact.
For A ∈ cc(E), the distance function and the support function associated with A
are defined respectively by

d(x,A) = inf{‖x− y‖ : y ∈ A}, (x ∈ E)

δ∗(x∗, A) = sup{〈x∗, y〉 : y ∈ A}, (x∗ ∈ E∗).
We also define

|A| = sup{||x|| : x ∈ A}.
and denote by HE the Hausdorff distance defined on the c(E) assciated with the
topology of the norm in E. Given a sub-σ-algebra B in Ω, a multifunction X : Ω →
2E is B-measurable if for every open set U in E the set

X−U := {ω ∈ Ω : X(ω) ∩ U 6= ∅}
is a member of B. A function f : Ω → E is a B-measurable selection of X if
f(ω) ∈ X(ω) for all ω ∈ Ω. A Castaing representation of X is a sequence (fn)n∈N

of B-measurable selections of X such that

X(ω) = cl{fn(ω), n ∈ N} ∀w ∈ Ω

where the closure is taken with respect to the topology of associated with the norm
in E. It is known that a nonempty closed-valued multifunction X : Ω → c(E)
is B-measurable iff it admits a Castaing representation. If B is complete, the B-
measurability is equivalent to the measurability in the sense of graph, namely the
graph of X is a member of B ⊗ B(E), here B(E) denotes the Borel tribe on E.
A cc(E)-valued B-measurable X : Ω → cc(E) is integrable if the set S1

X(B) of all
B-measurable and integrable selections of X is nonempty. We denote by L1

E(B) the
space of E-valued B-measurable and Bochner-integrable functions defined on Ω and
L1

cwk(E)(B) the space of all B-measurable multifunctions X : Ω → cwk(E), such
that |X| ∈ L1

R(B). A sequence (Xn)n∈N in L1
cwk(E)(F) is bounded (resp. uniformly

integrable) if the sequence (|Xn|)n∈N is bounded (resp. uniformly integrable) in
L1

R(F). A cc(E)-valued sequence (Xn)n∈N Mosco-converges [19] to X∞ ∈ cc(E) if

X∞ = s-liXn = w-lsXn

where
s-li Xn = {x ∈ E : ||xn − x|| → 0, xn ∈ Xn}

and
w-ls Xn = {x ∈ E : x = w- lim

j→∞
xnj , xnj ∈ Xnj}

and s (resp. w) is the strong (resp. weak) topology in E. If (Xn)n∈N Mosco-
converges to X∞ in cc(E), we write

M - lim
n→∞Xn = X∞.

A cc(E)-valued sequence (Xn)n∈N converges to X∞ ∈ cc(E) with respect to the
linear topology τL [2] if

lim
n→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) ∀x∗ ∈ E∗.
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lim
n→∞ d(x,Xn) = d(x,X∞) ∀x ∈ E.

Beer showed that the τL-topology is stronger than the Mosco-topology. We refer
to [11] for the theory of Measurable Multifunctions and Convex Analysis, and to
[16, 20] for basic theory of martingales and adapted sequences.

3. Multivalued conditional expectation and Multivalued
Dunford-Pettis theorem

A sequence (Xn,Fn)n∈N of cc(E)-valued multifunctions is adapted if each Xn

is Fn-measurable. Given a sub-σ-algebra, B of F and an integrable F-measurable
cc(E)-valued multifunction X : Ω ⇒ E, Hiai and Umegaki [18] showed the existence
of a B-measurable cc(E)-valued integrable mutifunction, denoted by EBX such that

S1
EBX(B) = cl{EBf : f ∈ S1

X(F)}
the closure being taken in L1

E(Ω,A, P ); EBX is the multivalued conditional expec-
tation of X relative to B. If X ∈ L1

cwk(E)(F), and the strong dual E∗
b is separable,

then EBX ∈ L1
cwk(E)(B) with S1

EBX
(B) = {EBf : f ∈ S1

X(F)}. This result was
stated by the first author in ([3], Theorem 3). A unified approach for general
conditional expectation of cc(E)-valued integrable multifunctions is given in [21]
allowing to recover both the cc(E)-valued conditional expectation of cc(E)-valued
integrable multifunctions in the sense of [18] and the cwk(E)-valued conditional
expectation of cwk(E)-valued integrably bounded multifunctions given in [3]. For
more information on multivalued conditional expectation and related subjects we
refer to [1, 6, 11, 18, 21]. In the context of this paper we present a specific version
of conditional expectation that we summarize below.

Proposition 3.1. Assume that E∗
b is separable. Let B be a sub-σ-algebra of F and

an integrable F-measurable cc(E)-valued multifunction X : Ω ⇒ E. Assume further
there is a F-measurable ball-weakly compact cc(E)-valued multifunction K : Ω ⇒ E
such that X(ω) ⊂ K(ω) for all ω ∈ Ω. Then there is a unique (for the equality a.s.)
B-measurable cc(E)-valued multifunction Y satisfying the property

(∗) ∀v ∈ L∞E∗(B),
∫

Ω
δ∗(v(ω), Y (ω))P (dω) =

∫

Ω
δ∗(v(ω), X(ω))P (dω).

EBX := Y is the conditional expectation of X.

Proof. The proof is a careful adaptation of the one of Theorem VIII.35 in [11]. For
technical reason we will assume that B is complete. Let u0 be an integrable selection
of X. For every n ≥ 1, let

Xn(ω) = X(ω) ∩ (u0(ω) + nBE) ∀n ∈ N ∀ω ∈ Ω.

As X(ω) ⊂ K(ω) for all ω ∈ Ω, we get

Xn(ω) = X(ω) ∩ (u0(ω) + nBE) ⊂ K(ω) ∩ (u0(ω) + nBE) ∀n ∈ N ∀ω ∈ Ω.

As K(ω) is ball-weakly compact, it is immediate that Xn ∈ L1
cwk(E)(F). so that, by

virtue of ([3] or ([21], Remarks of Theorem 3), the conditional expectation EBXn ∈
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L1
cwk(E)(B). It follows that

(∗∗)
∫

Ω
δ∗(v(ω), EBXn(ω))P (dω) =

∫

Ω
δ∗(v(ω), Xn(ω))P (dω).

∀n ∈ N,∀v ∈ L∞E∗(B). Now let

Y (ω) = cl(∪n∈NEBXn(ω)) ∀ω ∈ Ω.

Then Y is B-measurable and convex. Now the required property (∗) follows from
(∗∗) and the monotone convergence theorem. Indeed

∀n ∈ N,∀v ∈ L∞E∗(B), 〈u0, v〉 ≤ δ∗(v, Xn) ↑ δ∗(v, X)

〈v, EBu0〉 ≤ δ∗(v, EBXn) ↑ δ∗(v, Y ).

Now the uniqueness follows exactly as in the proof of Theorem VIII.35 via the
measurable projection theorem ([11], Theorem III.32). ¤

New existence results of conditional expectation for convex weakly compact val-
ued multifunctions and its applications to martingales are available in [1, 6].

For the convenience of the reader recall and summarize a tightness condition
and a compactness result in the space L1

cwk(E)(Ω,F , P ). A sequence (Xn)n∈N

in L1
cwk(E(F) is cwk(E)-tight if, for every ε > 0, there is a cwk(E)-valued F-

measurable multifunction Γε : Ω → E such that

sup
n∈N

P (Ω \ {ω ∈ Ω : Xn(ω) ⊂ Γε(ω)}) ≤ ε.

The following is a multivalued biting-Dunford-Pettis (biting-compactness for short)
theorem in the space L1

cwk(E)(F). See ([5], Theorem 6.1).

Theorem 3.2. Suppose that E is a separable Banach space, (Xn)n∈N is a bounded
sequence in L1

cwk(E)(F) satisfying one of the following conditions:
(a) (Xn)n∈N is cwk(E)-tight.
(b) E∗

b is separable, E has the RNP and for each A ∈ F , ∪∞n=1

∫
A Xn dP is relatively

weakly compact in E.
Then there exist an increasing sequence (Ap)p∈N in F such that

limp→∞ P (Ap) = 1, a subsequence (X ′
n)n∈N of (Xn)n∈N and X∞ ∈

L1
cwk(E)(F) such that, for each p ∈ N and for each v ∈ L∞E∗(Ap ∩ F), the following

holds:
lim

n→∞

∫

Ap

δ∗(v, X ′
n) dP =

∫

Ap

δ∗(v, X∞) dP.

We finish this section by mentionning a useful result.

Proposition 3.3. Suppose that E is a separable Banach space, (Xn)n∈N is a
bounded sequence in L1

cwk(E)(F) satisfying the following condition: There is a F-
measurable Rwk(E)-valued multifunction K : Ω ⇒ E such that Xn(ω) ⊂ K(ω) for
all n ∈ N and for all ω ∈ Ω. Then (Xn)n∈N is cwk(E)-tight.

Proof. See e.g. ([7], Proposition 3.3 (i)). ¤
We will show in next section the convergence problem for multivalued pramarts.
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4. Convergence of pramarts in L1
cwk(E)(F)

From now we will assume in the majority of this section that the strong dual E∗
b

is separable in order to ensure the weak compactness of the conditional expectation
for multifunctions in L1

cwk(E)(F) and also the validity of the multivalued Dunford-
Pettis theorem in this space (see Theorem 3.2). This assumption can be removed
in some particular cases. We provide in this section the a.s. τL-convergence for
bounded pramarts in L1

cwk(E)(F). Let us recall and summarize some definitions.

Definition 4.1. A sequence (Xn,Fn)n∈N in L1
cwk(E)(F) is an adapted sequence if

each Xn is Fn-measurable. An adapted sequence (Xn,Fn)n∈N in L1
cwk(E)(F) is a

pramart if, for every ε > 0, there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([HE(Xσ, EFσXτ ) > ε]) ≤ ε

where T denotes the set of bounded stopping times.

It is clear that if (Xn,Fn)n∈N is a pramart in L1
cwk(E)(F), then, for each x∗ ∈

BE∗ , the adapted sequence (δ∗(x∗, Xn),Fn)n∈N is a real-valued pramart in L1
R(F)

because
|δ∗(x∗, Xσ)− δ∗(x∗, EFσXτ )| ≤ h(Xσ, EFσXτ ).

It is clear that this definition covers the notion of vector-valued pramarts in L1
E(F).

Indeed an adapted sequence (Xn,Fn)n∈N in L1
E(F) is a pramart if, for every ε > 0,

there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ > σε ⇒ P ([ |Xσ − EFσXτ | > ε]) ≤ ε

We also need the classical notion of subpramarts.

Definition 4.2. An adapted sequence (Xn,Fn)n∈N in L1
R(F) is a subpramart, if,

for every ε > 0, there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([(Xσ − EFσXτ )+ > ε]) ≤ ε

We will need some technical lemmas.

Lemma 4.3. Assume that E∗
b is separable and D∗

1 := (e∗m)m∈N is a dense sequence
in BE∗. Let (Xn,Fn)n∈N be a pramart in L1

cwk(E)(F). Then the following holds:

sup
m∈N

[δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+] ≤ HE(Xσ, EFσXτ ) a.s.

for all σ, τ ∈ T, τ ≥ σ.

Proof. For each m ∈ N, we have

δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+ ≤ [δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )]+ a.s.

Indeed, if δ∗(e∗m, Xσ) > 0, then we have

δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+ = δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )+

≤ δ∗(e∗m, Xσ)− [EFσδ∗(e∗m, Xτ )]+

≤ [δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )]+ a.s.
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If δ∗(e∗m, Xσ) ≤ 0, then we have

δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+ = 0− EFσδ∗(e∗m, Xτ )+

≤ 0 ≤ [δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )]+.

So we get the estimate

δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+ ≤ |δ∗(e∗m, Xσ)− EFσδ∗(e∗m, Xτ )|
≤ HE(Xσ, EFσXτ ) a.s.

Finally by taking the supremum on m ∈ N in the preceding estimate, we get the
required inequality

sup
m∈N

[δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+] ≤ HE(Xσ, EFσXτ ) a.s.

Alternatively we may apply the techniques developed in Choukairi ([12, 13], Theo-
rem 3.1). For each m,n ∈ N, let us set

ϕm,n(ω) := δ∗(e∗m, Xn(ω))

Let σ, τ ∈ T, τ ≥ σ and let us set

ϕm,τ (ω) := δ∗(e∗m, Xτ (ω))

ϕm,σ(ω) := δ∗(e∗m, Xσ(ω))

From Jensen inequality we have

|EFσϕm,τ (ω)| ≤ EFσ |ϕm,τ |(ω) a.s.

Then for a.s. ω ∈ Ω we have that

δ∗(e∗m, Xσ)+ − EFσδ∗(e∗m, Xτ )+ = ϕ+
m,σ − EFσ(ϕ+

m,τ )

=
1
2
[ϕm,σ + |ϕm,σ| − EFσ(ϕm,τ )− EFσ(|ϕm,τ |)]

≤ 1
2
[ϕm,σ − EFσ(ϕm,τ ) + |ϕm,σ| − |EFσ(ϕm,τ )|]

≤ 1
2
[ϕm,σ − EFσ(ϕm,τ ) + |ϕm,σ − EFσ(ϕm,τ )|]

= [ϕm,σ − EFσ(ϕm,τ )]+

= [δ∗(em, Xσ)− δ∗(em, EFσXτ )]+

≤ HE(Xσ, EFσXτ ).

¤

Lemma 4.4. Assume that E∗
b is separable and D∗

1 := (e∗m)m∈N is a dense sequence
in BE∗. Let x ∈ E and let (Xn,Fn)n∈N be a pramart in L1

cwk(E)(F). Then the
following holds:

(〈e∗m, x〉 − δ∗(e∗m, Xσ))+ − EFσ(〈e∗m, x〉 − δ∗(e∗m, Xτ ))+ ≤ HE(Xσ, EFσXτ )

a.s. for all m ∈ N, σ, τ ∈ T, τ ≥ σ.
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Proof. We can apply the techniques developed in Lemma 4.3. For simplicity for
each m,n ∈ N, let us set

ϕm,n,x(ω) := 〈e∗m, x〉 − δ∗(e∗m, Xn(ω))

Let σ, τ ∈ T, τ ≥ σ and let us set

ϕm,τ,x(ω) := 〈e∗m, x〉 − δ∗(e∗m, Xτ (ω))

ϕm,σ,x(ω) := 〈e∗m, x〉 − δ∗(e∗m, Xσ(ω))

From Jensen inequality we have

|EFσϕm,τ,x(ω)| ≤ EFσ |ϕm,τ,x|(ω) a.s.

Then for a.s. ω ∈ Ω we have that

ϕ+
m,σ,x − EFσ(ϕ+

m,τ,x) =
1
2
[ϕm,σ,x + |ϕm,σ,x| − EFσ(ϕm,τ,x)− EFσ(|ϕm,τ,x|)]

≤ 1
2
[ϕm,σ,x − EFσ(ϕm,τ,x) + |ϕm,σ,x| − |EFσ(ϕm,τ,x)|]

≤ 1
2
[ϕm,σ,x − EFσ(ϕm,τ,x) + |ϕm,σ,x − EFσ(ϕm,τ,x)|]

= [ϕm,σ,x − EFσ(ϕm,τ,x)]+

= [δ∗(em, Xσ)− δ∗(em, EFσXτ )]+

≤ HE(Xσ, EFσXτ )

thereby proving the required inequality. ¤

Remarks. 1) Lemma 4.3-4.4 show that the sequence ((δ∗(e∗m, Xn)+n∈N)m∈N and
(([〈e∗m, x〉−δ∗(e∗m, Xn)]+)n∈N)m∈N are uniform sequence of positive subpramarts in
the terminology of Egghe ([16], definition VIII.1.14).
2) Lemma 4.3-4.4 hold true if we remplace D∗

1 =: (e∗m)m∈N by E∗
1 =: (f∗m)m∈N

where (f∗m)m∈N is a dense sequence in BE∗ with respect to the Mackey topology
τ(E∗, E).

There is a useful application of Lemma 4.3.

Lemma 4.5. Let (Xn,Fn)n∈N be a pramart in L1
R(F) and (Yn,Fn)n∈N be a mar-

tingale in L1
R(F) . Then the following holds:

(Yσ −Xσ)+ − EFσ(Yτ −Xτ )+ ≤ |Xσ − EFσXτ |
a.s. for all σ, τ ∈ T, τ ≥ σ.

Proof. Since (Yn,Fn)n∈N is a martingale in L1
R(F) we have

Yσ = EFσYτ ∀σ, τ ∈ T, τ ≥ σ.

Hence the result follows by applying Lemma 4.3 to the pramart (Zn)n∈N = (Yn −
Xn)n∈N ¤

The following result has some importance in the pramart convergence.
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Lemma 4.6. Assume that E∗
b is separable and D∗

1 := (e∗m)m∈N is a dense sequence
in BE∗. Let (Xn,Fn)n∈N be a pramart in L1

E(F) and (Yn,Fn)n∈N be a martingale
in L1

E(F). Then the following holds:

sup
m∈N

[〈e∗m, Yσ −Xσ〉+ − EFσ〈e∗m, Yτ −Xτ 〉+] ≤ ||Xσ − EFσXτ ||E a.s.

for all σ, τ ∈ T, τ ≥ σ.

Proof. Since (Yn,Fn)n∈N is a martingale in L1
E(F) we have

Yσ = EFσYτ ∀σ, τ ∈ T, τ ≥ σ.

In particular we have

〈e∗m, Yσ〉 = 〈e∗m, EFσYτ 〉 = EFσ〈e∗m, Yτ 〉 ∀m ∈ N, ∀σ, τ ∈ T, τ ≥ σ.

Now we may apply Lemma 4.5 to the pramarts

(〈e∗m, Yn −Xn〉)n∈N = (〈e∗m, Yn〉 − 〈e∗m, Xn〉)n∈N.

This yields for a.s. ω ∈ Ω

〈e∗m, Yσ −Xσ〉+ − EFσ〈e∗m, Yτ −Xτ 〉+ ≤ |〈e∗m, Xσ − EFσXτ 〉|
≤ ||Xσ − EFσXτ ||E .

By taking the supremum on m ∈ N in the preceding estimate, we get the result. ¤

Theorem 4.7. Assume that E∗
b is separable and E have the RNP. Let

(Xn,Fn)n∈N be a bounded pramart in L1
cwk(E)(F) satisfying the weak compactness

condition: For each A ∈ F , ∪∞n=1

∫
A XndP is relatively σ(E, E∗)-compact. Then

there exist X∞ ∈ L1
cwk(E)(F) such that

lim
n→∞ |Xn(ω)| = |X∞(ω)| a.s.

lim
n→∞ δ∗(x∗, Xn(ω)) = δ∗(x∗, X∞(ω)) a.s. ∀x∗ ∈ BE∗ .

lim
n→∞ d(x,Xn(ω)) = d(x,X∞(ω)) a.s. ∀x ∈ E.

Proof. The proof is divided in two steps.
Step 1 Claim: There exist X∞ ∈ L1

cwk(E)(F) such that

lim
n→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ BE∗ .

We will use the biting-compactness method developed in ([5], Theorem 2.7). Since
(Xn)n∈N is bounded in L1

cwk(E)(F), that is,

sup
n∈N

∫

Ω
|Xn|dP = sup

n∈N

∫

Ω
sup

x∗∈BE∗
|δ∗(x∗, Xn)|dP < ∞

for each x∗ ∈ BE∗ , the L1-bounded pramart (δ∗(x∗, Xn))n∈N converges a.s. to an
integrable function mx∗ ∈ L1

R(F). Now applying Theorem 3.2 to the bounded se-
quence (Xn,Fn)n∈N provides an increasing sequence (Ap)p∈N with limp→∞ P (Ap) =
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1, a subsequence (X ′
n)n∈N of (Xn)n∈N and X∞ ∈ L1

cwk(E)(F) such that, for each
p ∈ N, and each v ∈ L∞E∗(Ap ∩ F),

(4.1) lim
n→∞

∫

Ap

δ∗(v, X ′
n)dP =

∫

Ap

δ∗(v, X∞)dP.

So by identifying the limits, we get

(4.2) lim
n→∞

∫

A
δ∗(x∗, X ′

n)dP =
∫

A
δ∗(x∗, X∞)dP =

∫

A
mx∗dP

for each p ∈ N, each A ∈ Ap ∩ F and each x∗ ∈ BE∗ . Consequently, there is a
negligible set Np,x∗ ∈ Ap ∩ F such that

lim
n→∞ δ∗(x∗, Xn) = mx∗(ω) = δ∗(x∗, X∞) ∀ω /∈ Np,x∗

Let D∗
1 = (e∗m)m∈N be a dense sequence in BE∗ with respect to the topology of the

dual norm of E∗. Set
Np =

⋃

x∗∈D∗1

Np,x∗

Then Np is negligible in Ap ∩ F and we have

(4.3) lim
n→∞ δ∗(e∗m, Xn) = δ∗(e∗m, X∞) ∀m ∈ N, ∀ω ∈ Ap \Np.

By Lemma 4.3 ((δ∗(e∗m, Xn)+)n∈N)m∈N is a uniform sequence of positive L1-bounded
subpramarts [16]. Further by (4.3) we have

(4.4) lim
n→∞ δ∗(e∗m, Xn)+ = δ∗(e∗m, X∞)+ ∀m ∈ N, ∀ω ∈ Ap \Np.

Then N := ∪p∈NNp is negligible. Applying Lemma VIII.1.15 in [16] to
((δ∗(e∗m, Xn)+)n∈N)m∈N yields

lim
n→∞ |Xn| = lim

n→∞ sup
m∈N

δ∗(e∗m, Xn)+ = sup
m∈N

lim
n→∞ δ∗(e∗m, Xn)+

= sup
m∈N

δ∗(e∗m, X∞)+ = |X∞|

for all ω ∈ Ω \N . So we get

(4.5) sup
n∈N

|Xn| < ∞ ∀ω ∈ Ω \N.

Now by (4.5) it is not difficult to check that

(4.6) lim
n→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) ∀ω ∈ Ω \N, ∀x∗ ∈ BE∗

because for each ω ∈ Ω \N , x∗ ∈ BE∗ and e∗ ∈ D∗
1 we have the estimate

|δ∗(x∗, Xn)− δ∗(e∗, X∞)| ≤ ||x∗ − e∗|| sup
n∈N

|Xn|

+|δ∗(e∗, Xn)− δ∗(e∗, X∞)|+ ||x∗ − e∗|| |X∞|.
Step 2 Claim: limn→∞ d(x,Xn(ω)) = d(x,X∞(ω)) a.s. ∀x ∈ E. Let x ∈ E.
By Lemma 4.4 and the scalar convergence obtained in the first step we see that
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(([〈e∗m, x〉 − δ∗(e∗m, Xn)]+)n∈N)m∈N is a uniform sequence of positive L1-bounded
subpramarts [16] with

lim
n→∞[〈e∗m, x〉 − δ∗(e∗m, Xn)]+ = [〈e∗m, x〉 − δ∗(e∗m, X∞)]+ a.s.

From Lemma VIII.1.15 in [16] we deduce that

lim
n→∞ d(x,Xn(ω)) = lim

n→∞ sup
m∈N

〈e∗m, x〉 − δ∗(e∗m, Xn(ω))

= lim
n→∞ sup

m∈N
[〈e∗m, x〉 − δ∗(e∗m, Xn(ω))]+

= sup
m∈N

lim
n→∞[〈e∗m, x〉 − δ∗(e∗m, Xn(ω))]+

= sup
m∈N

[〈e∗m, x〉 − δ∗(e∗m, X∞(ω))]+

= sup
m∈N

[〈e∗m, x〉 − δ∗(e∗m, X∞(ω))] = d(x,X∞(ω)) a.s.

Hence we get
lim

n→∞ d(x,Xn(ω)) = d(x,X∞(ω))

a.s. for all x ∈ E by equicontinuity of the distance function and the separability of
E. ¤

When the pramarts (Xn)n∈N in Theorem 4.7 are single-valued, namely Xn ∈
L1

E(Ω,F , P ), Theorem 4.7 is reduced to

Corollary 4.8. Assume that E∗
b is separable and E have the RNP. Let (Xn,Fn)n∈N

be a bounded pramart in L1
E(F) satisfying the weak compactness condition: For

each A ∈ F , ∪∞n=1

∫
A XndP is relatively σ(E, E∗)-compact. Then (Xn)n∈N norm

converges a.s. to an element X∞ ∈ L1
E(F).

There is a variant of Theorem 4.7.

Theorem 4.9. Assume that E∗
b is separable. Let (Xn,Fn)n∈N be a bounded pramart

in L1
cwk(E)(F) satisfying the condition: There is a Rwk(E)-valued F-measurable

multifunction K : Ω ⇒ E such that Xn(ω) ⊂ K(ω) for all n ∈ N and for all ω ∈ Ω.
Then there exist X∞ ∈ L1

cwk(E)(F) such that

lim
n→∞ |Xn(ω)| = |X∞(ω)| a.s.

lim
n→∞ δ∗(x∗, Xn(ω)) = δ∗(x∗, X∞(ω) a.s ∀x∗ ∈ BE∗ .

lim
n→∞ d(x,Xn(ω)) = d(x,X∞(ω)) a.s. ∀x ∈ E.

Proof. The proof is divided in two steps.
Step 1 Claim: There exist X∞ ∈ L1

cwk(E)(F) such that

lim
n→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ BE∗ .

We will use the biting-compactness method developed in the proof of Theorem 4.7.
However this need a careful look. Since (Xn)n∈N is bounded in L1

cwk(E)(F), that is,

sup
n∈N

∫

Ω
|Xn|dP = sup

n∈N

∫

Ω
sup

x∗∈BE∗
|δ∗(x∗, Xn)|dP < ∞
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for each x∗ ∈ BE∗ , the L1-bounded pramart (δ∗(x∗, Xn))n∈N converges a.s. to an
integrable function mx∗ ∈ L1

R(F). Now applying Theorem 3.2 to the bounded se-
quence (Xn,Fn)n∈N provides an increasing sequence (Ap)p∈N with limp→∞ P (Ap) =
1, a subsequence (X ′

n)n∈N of (Xn)n∈N and X∞ ∈ L1
cwk(E)(F) such that, for each

p ∈ N, and each v ∈ L∞E∗(Ap ∩ F),

(4.7) lim
n→∞

∫

Ap

δ∗(v, X ′
n)dP =

∫

Ap

δ∗(v, X∞)dP

So by identifying the limits, we get

(4.8) lim
n→∞

∫

A
δ∗(x∗, X ′

n)dP =
∫

A
δ∗(x∗, X∞)dP =

∫

A
mx∗dP

for each p ∈ N, each A ∈ Ap ∩ F and each x∗ ∈ BE∗ . Consequently, there is a
negligible set Np,x∗ ∈ Ap ∩ F such that

lim
n→∞ δ∗(x∗, Xn) = mx∗(ω) = δ∗(x∗, X∞) ∀ω /∈ Np,x∗

Let E∗
1 = (f∗m)m∈N be a dense sequence in BE∗ with respect to the Mackey topology

τ(E∗, E). Set

Np =
⋃

x∗∈E∗1

Np,x∗

Then Np is negligible in Ap ∩ F and we have

(4.9) lim
n→∞ δ∗(f∗m, Xn) = δ∗(f∗m, X∞) ∀m ∈ N, ∀ω ∈ Ap \Np.

By Lemma 4.3 ((δ∗(f∗m, Xn)+)n∈N)m∈N is a uniform sequence of positive L1-bounded
pramarts. Further by (4.9) we have

(4.10) lim
n→∞ δ∗(f∗m, Xn)+ = δ∗(f∗m, X∞)+ ∀m ∈ N, ∀ω ∈ Ap \Np.

Then N := ∪p∈NNp is negligible. Now applying Lemma VIII.1.15 to

((δ∗(f∗m, Xn)+)n∈N)m∈N

yields

lim
n→∞ |Xn| = lim

n→∞ sup
m∈N

δ∗(f∗m, Xn)+ = sup
m∈N

lim
n→∞ δ∗(f∗m, Xn)+

= sup
m∈N

δ∗(f∗m, X∞)+ = |X∞|

for all ω ∈ Ω \N . Therefore we get

(4.11) r(ω) := sup
n∈N

|Xn(ω)| < ∞ ∀ω ∈ Ω \N.

Let us set
Γ(ω) = K(ω) ∩ r(ω)BE , ∀ω ∈ Ω \N.

Then Γ(ω) is convex weakly compact because K(ω) is weakly ball-compact for each
ω ∈ Ω. Now we show that

lim
n→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞)
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for all x∗ ∈ BE∗ and for all ω ∈ Ω \ N . We will use an argument in ([4], Lemma
3.2). Let x∗ ∈ BE∗ and f∗m ∈ E∗

1 . We have the estimate

|δ∗(x∗, Xn)− δ∗(x∗, X∞)| ≤ max{δ∗(x∗ − f∗m, Xn), δ∗(f∗m − x∗, Xn)}
+|δ∗(f∗m, Xn)− δ∗(f∗m, X∞)|
+max{δ∗(x∗ − f∗m, X∞), δ∗(f∗m − x∗, X∞)}.

Let ω ∈ Ω \N be fixed and ε > 0. Since Γ(ω) is weakly compact, there is f∗m ∈ M∗
1

such that
max{δ∗(x∗ − f∗m,Γ(ω)), δ∗(f∗m − x∗,Γ(ω))} ≤ ε.

Since Xn(ω) ⊂ Γ(ω) for all n ∈ N ∪ {∞}, it follows that

|δ∗(x∗, Xn(ω))− δ∗(x∗, X∞(ω))| ≤ |δ∗(f∗m, Xn(ω))− δ∗(f∗m, X∞(ω))|+ 2ε.

So we deduce that
lim

n→∞ δ∗(x∗, Xn(ω)) = δ∗(x∗, X∞(ω)).

Step 2 Claim: limn→∞ d(x,Xn(ω)) = d(x,X∞(ω)) a.s. ∀x ∈ E. Let x ∈ E.
By Lemma 4.4 and the scalar convergence obtained in the first step we conclude
that (([〈f∗m, x〉− δ∗(f∗m, Xn)]+n∈N)m∈N is a uniform sequence of positive L1-bounded
subpramarts with

lim
n→∞[〈f∗m, x〉 − δ∗(f∗m, Xn)]+ = [〈f∗m, x〉 − δ∗(f∗m, X∞)]+ a.s.

From Lemma VIII.1.15 we deduce that

lim
n→∞ d(x,Xn(ω)) = lim

n→∞ sup
m∈N

〈f∗m, x〉 − δ∗(f∗m, Xn(ω))

= lim
n→∞ sup

m∈N
[〈f∗m, x〉 − δ∗(f∗m, Xn(ω))]+

= sup
m∈N

lim
n→∞[〈f∗m, x〉 − δ∗(f∗m, Xn(ω))]+

= sup
m∈N

[〈f∗m, x〉 − δ∗(f∗m, X∞(ω))]+

= sup
m∈N

[〈f∗m, x〉 − δ∗(f∗m, X∞(ω))] = d(x,X∞(ω)) a.s.

Hence we get
lim

n→∞ d(x,Xn(ω)) = d(x,X∞(ω))

a.s. for all x ∈ E by equicontinuity of the distance function and the separability of
E. ¤

When the pramarts (Xn)n∈N in Theorem 4.9 are single-valued, namely Xn ∈
L1

E(Ω,F , P ), Theorem 4.9 is reduced to

Corollary 4.10. Assume that E is separable. Let (Xn,Fn)n∈N be a bounded pra-
mart in L1

E(F) satisfying the condition: There is a Rwk(E)-valued F-measurable
multifunction K : Ω ⇒ E such that Xn(ω) ∈ K(ω) for all n ∈ N and for all ω ∈ Ω.
Then (Xn)n∈N norm converges a.s. to an element X∞ ∈ L1

E(F).
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5. Pramarts in L1
E∗ [E](F) and L1

cwk(E∗s )(F)

Let (Ω,F , P ) be a complete probability space, (Fn)n∈N an increasing sequence
of sub σ-algebras of F such that F is the σ-algebra generated by ∪∞n≥1Fn. Let E

be a separable Banach space, D = (xp)p∈N is a dense sequence in E, E∗ is the
topological dual of E, BE (resp. BE∗ ) is the closed unit ball of E (resp. E∗). We
denote by E∗

s (resp. E∗
b ) (resp. E∗

m∗) the topological dual E∗ endowed with the
topology σ(E∗, E) of pointwise convergence, alias w∗ topology (resp. the topology
associated with the dual norm ||.||E∗b ) (resp. the topology m∗ = σ(E∗,H), where
H is the linear space of E generated by D, that is the Hausdorff locally convex
topology defined by the sequence of semi-norms

pk(x∗) = max{|〈x∗, xp〉| : p ≤ k}, x∗ ∈ E∗, k ≥ 1.

Recall that the topology m∗ is metrizable, for instance, by the metric

dE∗
m∗ (x

∗
1, x

∗
2) :=

p=∞∑

p=1

1
2p
|〈xp, x

∗
1〉 − 〈xp, x

∗
2〉|, x∗1, x

∗
2 ∈ E∗.

We assume from now that dE∗
m∗ is held fixed. Further, we have m∗ ⊂ w∗ ⊂ s∗.

When E is infinite dimensional these inclusions are strict. On the other hand, the
restrictions of m∗ and w∗ to any bounded subset of E∗ coincide and the Borel tribe
B(E∗

s ) and B(E∗
m∗) associated with E∗

s and E∗
m∗ are equal. Noting that E∗ is the

countable union of closed balls, we deduce that the space E∗
s is Suslin, as well as

the metrizable topological space E∗
m∗ . A 2E∗s -valued multifunction (alias mapping

for short) X : Ω ⇒ E∗
s is F-measurable if its graph belongs to F ⊗B(E∗

s ). Given a
F-measurable mapping X : Ω ⇒ E∗

s and a Borel set G ∈ B(E∗
s ), the set

X−G = {ω ∈ Ω : X(ω) ∩G 6= ∅}
is F-measurable, that is X−G ∈ F . In view of the completeness hypothesis on
the probability space, this is a consequence of the Projection Theorem (see e.g.
Theorem III.23 of [11]) and of the equality

X−G = projΩ {Gr(X) ∩ (Ω×G)}.
Further if u : Ω → E∗

s is a scalarly F-measurable mapping, that is, for every x ∈ E,
the scalar function ω 7→ 〈x, u(ω)〉 is F-measurable, then the function f : (ω, x∗) 7→
||x∗ − u(ω)||E∗b is F ⊗B(E∗

s )-measurable, and for every fixed ω ∈ Ω, f(ω, .) is lower
semicontinuous on E∗

s , shortly, f is a normal integrand, indeed, we have

||x∗ − u(ω)||E∗b = sup
j∈N

〈ej , x
∗ − u(ω)〉

here D1 = (ej)j≥1 is a dense sequence in the closed unit ball of E. As each function
(ω, x∗) 7→ 〈ej , x

∗ − u(ω)〉 is F ⊗ B(E∗
s )-measurable and continuous on E∗

s for each
ω ∈ Ω, it follows that f is a normal integrand. Consequently, the graph of u be-
longs to F ⊗ B(E∗

s ). Besides these facts, let us mention that the function distance
dE∗b (x∗, y∗) = ||x∗−y∗||E∗b is lower semicontinuous on E∗

s ×E∗
s , being the supremum

of w∗-continuous functions. If X is a F-measurable mapping, the distance function
ω 7→ dE∗b (x∗, X(ω)) is F-measurable, by using the lower semicontinuity of the func-
tion dE∗b (x∗, .) on E∗

s and measurable projection theorem ([11], Theorem III.23) and
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recalling that E∗
s is a Suslin space. A mapping u : Ω ⇒ E∗

s is said to be scalarly in-
tegrable, if, for every x ∈ E, the scalar function ω 7→ 〈x, u(ω)〉 is F-measurable and
integrable. We denote by L1

E∗ [E](F) the subspace of all F-measurable mappings
u such that the function |u| : ω 7→ ||u(ω)||E∗b is integrable. The measurability of
|u| follows easily from the above considerations. Let (Xn)n∈N be a sequence of F-
measurable w∗-closed convex mappings, the sequential weak∗ upper limit w∗-ls Xn

of (Xn)n∈N is defined by

w∗-ls Xn = {x∗ ∈ E∗ : x∗ = σ(E∗, E)- lim
j→∞

x∗j ; x∗j ∈ Xnj}.

Similarly the sequential weak∗ lower limit w∗-li Xn of (Xn)n∈N is defined by

w∗-li Xn = {x∗ ∈ E∗ : x∗ = σ(E∗, E)- lim
n→∞x∗n; x∗n ∈ Xn}.

The sequence (Xn)n∈N weak star Kuratowski (w∗K for short) converges to a F-
measurable w∗-closed convex valued mapping X∞ : Ω ⇒ E∗

s if the following holds

w∗-ls Xn ⊂ X∞ ⊂ w∗-li Xn a.s.

Shortly
w∗- lim

n→∞Xn = X∞ a.s.

By cwk(E∗
s ) we denote the set of all nonempty convex σ(E∗, E)-compact subsets

of E∗
s . A cwk(E∗

s )-valued mapping X : Ω ⇒ E∗
s is scalarly F-measurable if the

function ω → δ∗(x,X(ω)) is F-measurable for every x ∈ E. Let us recall that
any scalarly F-measurable cwk(E∗

s )-valued mapping is F-measurable. Indeed, let
(ek)k∈N be a sequence in E which separates the points of E∗, then we have x ∈ X(ω)
iff, 〈ek, x〉 ≤ δ∗(ek, X(ω)) for all k ∈ N. By L1

cwk(E∗s )(Ω,F , P ) (shortly L1
cwk(E∗s )(F))

we denote the of all scalarly integrable cwk(E)-valued multifunctions X such that
the function |X| : ω → |X(ω)| is integrable, here |X(ω)| := supy∗∈X(ω) ||y∗||E∗b , by
the above consideration, it is easy to see that |X| is F-measurable. Let H∗E∗b be the
Hausdorff distance asscociated with the dual norm ||.||E∗b on bounded closed convex
subsets in E∗, and X, Y be two convex weak∗ compact valued measurable mapping,
thenH∗E∗b (X, Y ) = supj∈N[δ∗(ej , X)−δ∗(ej , Y )] is measurable. A sequence (Xn)n∈N

in L1
cwk(E∗s )(F) is bounded (resp. uniformly integrable) if (|Xn|)n∈N is bounded (resp.

uniformly integrable) in L1
R(Ω,F , P ). We refer to [14] for the weak star convergence

of closed bounded convex sets in a dual space.
For the convenience of the reader we recall and summarize the existence and unique-
ness of the conditional expectation in L1

cwk(E∗s )(F). See ([21], Theorem 3).

Theorem 5.1. Given Γ ∈ L1
cwk(E∗s )(F) and a sub σ-algebra B of F , there exists a

unique (for equality a.s.) mapping Σ := EBΓ ∈ L1
cwk(E∗s )(B), that is the conditional

expectation of Γ with respect to B, which enjoys the following properties:
a)

∫
Ω δ∗(v, Σ)dP =

∫
Ω δ∗(v, Γ)dP for all v ∈ L∞E (B).

b) Σ ⊂ EB|Γ|BE∗ a.s.
c) S1

Σ(B) is sequentially σ(L1
E∗ [E](B), L∞E (B)) compact (here S1

Σ(B) denotes the set
of all L1

E∗ [E](B) selections of Σ) and satisfies the inclusion

EBS1
Γ(F) ⊂ S1

Σ(B).
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d) Furthermore one has

δ∗(v, EBS1
Γ(F)) = δ∗(v,S1

Σ(B))

for all v ∈ L∞E (B).
e) EB is increasing: Γ1 ⊂ Γ2 a.s. implies EBΓ1 ⊂ EBΓ2 a.s.

For more information for the conditional expectation of multifunctions, we refer
to [6, 18, 21].

Definition 5.2. A sequence (Xn,Fn)n∈N in L1
cwk(E∗s )(F) is an adapted sequence if

each Xn is Fn-measurable. An adapted sequence (Xn,Fn)n∈N in L1
cwk(E∗s )(F) is a

pramart if, for every ε > 0, there is σε ∈ T such that

σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([HE∗b (Xσ, EFσXτ ) > ε]) ≤ ε

where T denotes the set of bounded stopping times and the conditional expectation
is defined by Theorem 5.1.

Although the dual E∗ is nolonger separable, we can develop our convergence
results for pramarts in L1

cwk(E∗s )(F) because the above conditional expectation are
ensured by Theorem 5.1 and the measurability of HE∗b (Xσ, EFσXτ ) is ensured by
the formula given above.

We begin with a simple result dealing with pramarts in L1
E∗ [E](F) that is even

new.

Theorem 5.3. Let (Xn)n∈N be a bounded pramart in L1
E∗ [E](F). Then there is

X∞ ∈ L1
E∗ [E](F) such that

lim
n→∞ |Xn(ω)| = |X∞(ω)| a.s.

lim
n→∞〈x,Xn(ω)〉 = 〈x,X∞(ω)〉 a.s. ∀x ∈ BE

Proof. We will use a simple variant of the biting-compactness method developed
in [8]. Since (Xn)n∈N is bounded in L1

E∗ [E](F), there are subsequences (Xnk
)k∈N,

(Ynk
)k∈N, (Znk

)k∈N in L1
E∗ [E](F) such that (Ynk

)k∈N is uniformly integrable and
limk→∞ |Znk

| = 0 a.s. and such that

(5.1) Xnk
= Ynk

+ Znk
∀k ∈ N

By virtue of Theorem 6.5.9 in [8] we may assume there is X∞ ∈ L1
E∗ [E](F) such

that

(5.2) lim
k→∞

∫

Ω
〈u, Ynk

〉dP =
∫

Ω
〈u,X∞〉dP

for all u ∈ L∞E (F). Let (em)m∈N be a dense sequence in BE . Now by combining
(5.1)-(5.2) and the pramart a.s. convergence of each (〈x,Xn〉) (x ∈ E), it is not
difficult to see that

(5.3) lim
n→∞〈em, Xn〉 = 〈em, X∞〉 a.s.

By Lemma 4.3 and (5.3) ((〈em, Xn〉+)m∈N)n∈N is a uniform sequence of positive
L1-bounded subpramarts in the terminology of [16] with

(5.4) lim
n→∞〈em, Xn〉+ = 〈em, X∞〉+, a.s.
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Applying Lemma VIII.1.15 in [16] to ((〈em, Xn〉+)n∈N)m∈N yields

lim
n→∞ |Xn| = lim

n→∞ sup
m∈N

〈em, Xn〉+ = sup
m∈N

lim
n→∞〈em, Xn〉+

= sup
m∈N

〈em, X∞〉+ = |X∞| a.s.

Therefore we get

(5.5) sup
n∈N

|Xn(ω)| < ∞ a.s.

Now by (5.3)-(5.5) it is not difficult to check that

lim
n→∞〈x,Xn〉 = 〈x,X∞〉, a.s. ∀x ∈ BE

thereby proving the theorem. ¤
Now we proceed to the w∗K convergence of pramarts in L1

cwk(E∗s )(F). Recall that
the Banach space E is weakly compactly generated (WCG) if there exist a weakly
compact subset of E whose linear span is dense in E.

Theorem 5.4. Assume that E is WCG. Let (Xn)n∈N be a bounded pramart
L1

cwk(E∗s )(F). Then there is X∞ ∈ L1
cwk(E∗s )(F) such that

lim
n→∞ |Xn(ω)| = |X∞(ω)| a.s.

w∗K- lim
n→∞Xn(ω) = X∞(ω) a.s.

Proof. We will use again the biting-compactness method. Since (Xn)n∈N is bounded
in L1

cwk(E∗s
(F), that is,

sup
n∈N

∫

Ω
|Xn|dP = sup

n∈N

∫

Ω
sup

x∈BE

|δ∗(x,Xn)|dP < ∞

for each x ∈ BE , the L1-bounded pramart (δ∗(x,Xn))n∈N converges a.s. towards to
an integrable function ϕx ∈ L1

R(F). Let (em)m∈N be a dense sequence in BE . Ap-
plying ([10], Theorem 6.1(4)), involving a special biting convergence in L1

cwk(E∗s )(F)
gives X∞ ∈ L1

cwk(E∗s )(F) such that

(5.6) lim
n→∞ δ∗(em, Xn) = ϕem = δ∗(em, X∞) a.s.

By Lemma 4.3 and (5.6) ((δ∗(em, Xn)+)n∈N)m∈N is a uniform sequence of positive
L1-bounded subpramarts [16]. with

(5.7) lim
n→∞ δ∗(em, Xn)+ = δ∗(em, X∞)+, a.s. ∀m ∈ N,

Applying Lemma VIII.1.15 in [16] to ((δ∗(e,Xn)+)n∈N)m∈N yields

lim
n→∞ |Xn| = lim

n→∞ sup
m∈N

δ∗(em, Xn)+ = sup
m∈N

lim
n→∞ δ∗(em, Xn)+

= sup
m∈N

δ∗(em, X∞)+ = |X∞| a.s.

Therefore we get

(5.8) sup
n∈N

|Xn(ω)| < ∞ a.s.
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Now by (5.6)-(5.8) it is not difficult to check that

(5.9) lim
n→∞ δ∗(x,Xn) = δ∗(x,X∞), a.s. ∀x ∈ BE .

Since E is WCG, applying (5.8)-(5.9) and Theorem 4.1 in [14] yield the w∗K con-
vergence for (Xn)n∈N ¤

We will prove in next section the validity of Theorem 5.4 without assuming that
E is WCG.

6. Further structure results for pramarts

In this section we investigate in some structure results for both pramarts and
multivalued pramarts. We will use the following lemma.

Lemma 6.1. Assume that E∗
b is separable and E∗

1 := (f∗m)m∈N is a dense sequence
in BE∗ with respect to the Mackey topology. Let (Xn,Fn)n∈N be a pramart in
L1

cwk(E)(F) and (Yn,Fn)n∈N be a martingale in L1
cwk(E)(F). Then the following

holds

(δ∗(f∗m, Yσ)− δ∗(f∗m, Xσ))+ − EFσ(δ∗(f∗m, Yτ )− δ∗(f∗m, Xτ ))+

≤ HE(EFσXτ , Xσ) a.s. ∀m ∈ N.

Proof. For simplicity, for each m ∈ N, n ∈ N, set Am
n = δ∗(f∗m, Xn) and Bm

n =
δ∗(f∗m, Yn). Then (Am

n )n∈N is a pramart in L1
R(F) and (Bm

n )n∈N is a martingale in
L1

R(F). Applying Lemma 4.5 to (Am
n )n∈N and (Bm

n )n∈N yields for a.s. ω ∈ Ω

(Bm
σ −Am

σ )+ − EFσ(Bm
τ −Am

τ )+ ≤ |Am
σ − EFσAm

τ |
= |δ∗(f∗m, Xσ)− EFσδ∗(f∗m, Xτ )|
= |δ∗(f∗m, Xσ)− δ∗(f∗m, EFσXτ )|
≤ HE(Xσ, EFσXτ )

where Am
σ = δ∗(f∗m, Xσ) and Bm

τ = δ∗(f∗m, Yτ ). It follows that

(([δ∗(f∗m, Yn)− δ∗(f∗m, Xn)]+)n∈N)m∈N

is a positive uniform sequence of subpramarts.
Alternatively we may repeat the techniques given the proof of Lemma 4.4. For

simplicity for each m,n ∈ N, let us set

ϕm,n(ω) := δ∗(e∗m, Yn)− δ∗(e∗m, Xn)

Let σ, τ ∈ T, τ ≥ σ and let us set

ϕm,σ := δ∗(e∗m, Yσ)− δ∗(e∗m, Xσ)

ϕm,τ := δ∗(e∗m, Yτ )− δ∗(e∗m, Xτ )

From Jensen inequality we have

|EFσϕm,τ | ≤ EFσ |ϕm,τ | a.s.
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Then for a.s. ω ∈ Ω we have that

ϕ+
m,σ − EFσ(ϕ+

m,τ ) =
1
2
[ϕm,σ + |ϕm,σ| − EFσ(ϕm,τ )− EFσ(|ϕm,τ |)]

≤ 1
2
[ϕm,σ − EFσ(ϕm,τ ) + |ϕm,σ| − |EFσ(ϕm,τ )|]

≤ 1
2
[ϕm,σ − EFσ(ϕm,τ ) + |ϕm,σ − EFσ(ϕm,τ )|]

= [ϕm,σ − EFσ(ϕm,τ )]+

= [δ∗(em, Xσ)− δ∗(em, EFσXτ )]+

≤ HE(Xσ, EFσXτ )

thereby proving the required inequality. ¤

Remark. A dual variant of Lemma 6.1 is available: Let (em)m∈N be a dense sequence
in BE , (Xn,Fn)n∈N a pramart in L1

cwk(E∗s )(F) and (Yn,Fn)n∈N a martingale in
L1

cwk(E∗s )(F). Then the following holds

(δ∗(em, Yσ)− δ∗(em, Xσ))+ − EFσ(δ∗(em, Yτ )− δ∗(em, Xτ ))+

≤ HE∗b (EFσXτ , Xσ) a.s. ∀m ∈ N.

We begin with a convergence theorem for pramarts in L1
cwk(E)(F).

Theorem 6.2. Assume that E∗
b is separable. Let (Xn,Fn)n∈N be a bounded pramart

in L1
cwk(E)(F) satisfying: there is X∞ ∈ L1

cwk(E(F) such that

lim
n→∞ δ∗(x∗, Xn) = δ∗(x∗, X∞) a.s. ∀x∗ ∈ BE∗ .

Then the following hold:

lim
n→∞HE(EFnX∞, Xn) = 0 a.s.

Consequently
M - lim

n→∞Xn = X∞ a.s.

lim
n→∞ d(x,Xn(ω)) = d(x,X∞(ω)) a.s. ∀x ∈ E.

Proof. Step 1. Claim 1 M - limn→∞EFnX∞ = X∞ a.s. See Theorem 3.1 in [1].
Step 2 Claim 2 limn→∞HE(EFnX∞, Xn) a.s.
Let E∗

1 = (f∗m)m∈N be a dense sequence in the closed unit ball BE∗ with respect
Mackey topology τ(E∗, E). We have

HE(EFnX∞, Xn, ) = sup
m∈N

[δ∗(f∗m, EFnX∞)− δ∗(f∗m, Xn)]

= sup
m∈N

[δ∗(f∗m, EFnX∞)− δ∗(f∗m, Xn)]+

As (δ∗(f∗m, Xn) − δ∗(f∗m, EFnX∞))n∈N are real-valued bounded pramart in L1
R(F)

which converges a.s. to 0, and from Lemma 6.1

(([δ∗(f∗m, EFnX∞)− δ∗(f∗m, Xn)]+)n∈N)m∈N
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is a uniform sequence of positive subpramarts, applying Lemma VIII.1.15 in [16]
yields

lim
n→∞H(EFnX∞, Xn) = lim

n→∞ sup
m∈N

[δ∗(f∗m, EFnX∞)− δ∗(f∗m, Xn)]

= lim
n→∞ sup

m∈N
[δ∗(f∗m, EFnX∞)− δ∗(f∗m, Xn)]+

= sup
m∈N

lim
n→∞[δ∗(f∗m, EFnX∞)− δ∗(f∗m, Xn)]+ = 0

almost surely.
Step 3 By Claim 1-2 and Proposition 3.1 in [1], we conclude that

M - lim
n→∞Xn = X∞ a.s.

Hence Proposition 3.2 in [1] shows that

lim
n→∞ d(x,Xn(ω)) = d(x,X∞(ω)) a.s. ∀x ∈ E.

¤

The following decomposition theorem is a combined effort of Theorem 4.7 and
Theorem 6.2.

Corollary 6.3. Assume that E∗
b is separable and E have the RNP. Let

(Xn,Fn)n∈N be a bounded pramart in L1
E(F) satisfying the following condition:

For each A ∈ F , ∪∞n=1

∫
A XndP is relatively σ(E, E∗)-compact. Then there exist a

regular martingale (Yn)n∈N in L1
E(F) and a pramart (Zn)n∈N in L1

E(F) such that

Xn = Yn + Zn, ∀n ∈ N.

lim
n→∞ |Zn| = 0 a.s.

Proof. According to Theorem 4.7 and Theorem 6.2 there is X∞ ∈ L1
E(F) such that

lim
n→∞ |Xn − EFnX∞| = 0 a.s.

Hence the result follows by setting

Yn = EFnX∞ ∀n ∈ N.

Zn = Xn − Yn ∀n ∈ N.

Consequently (Xn)n∈N converges a.s. in norm to an integrable function in L1
E(F).

¤

The following decomposition result is consequence of Theorem 4.9 and Theorem
6.2.

Corollary 6.4. Assume that E is separable. Let (Xn,Fn)n∈N be a bounded pramart
in L1

E(F) satisfying the following condition: There is a weakly ball-compact closed
convex valued F-measurable multifunction K : Ω ⇒ E such that Xn(ω) ∈ K(ω) for
all n ∈ N and for all ω ∈ Ω. Then there exist a regular martingale (Yn)n∈N in
L1

E(F) and a pramart (Zn)n∈N in L1
E(F) such that

Xn = Yn + Zn, ∀n ∈ N.
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lim
n→∞ |Zn| = 0 a.s.

Proof. According to Theorem 4.9 and Theorem 6.2 there is X∞ ∈ L1
E(F) such that

lim
n→∞ |Xn − EFnX∞| = 0 a.s.

Hence the result follows by setting

Yn = EFnX∞ ∀n ∈ N.

Zn = Xn − Yn ∀n ∈ N.

Consequently (Xn)n∈N converges a.s. in norm to an integrable function in L1
E(F).

¤

Now we present the weak star Kuratowski convergence for bounded pramarts in
L1

cwk(E∗s )(F).

Theorem 6.5. Assume that E is separable. Let (Xn)n∈N be a bounded pramart in
L1

cwk(E∗s )(F) satisfying: there is X∞ ∈ L1
cwk(E∗s

(F) such that

lim
n→∞ δ∗(x,Xn) = δ∗(x,X∞) a.s. ∀x ∈ BE .

Then the following hold:
lim

n→∞ |Xn| = |X∞| a.s.

w∗K- lim
n→∞Xn = X∞ a.s.

Proof. Step 1 Let (ej)j∈N be a dense sequence in BE . Arguing as in the proof of
Theorem 6.2 using the scalar convergence a.s. of (Xn)n∈N towards X∞ and the
fact that ((δ∗(ej , Xn)+)n∈N)j∈N is a positive uniform sequence of subpramarts and
applying again Lemma VIII.1.5 in [16] yields

lim
n→∞ |Xn| = lim

n→∞ sup
j∈N

δ∗(ej , Xn)

= lim
n→∞ sup

j∈N
δ∗(ej , Xn)+ = sup

j∈N
lim

n→∞ δ∗(ej , Xn)+

= sup
j∈N

δ∗(ej , X∞)+ = sup
j∈N

δ∗(ej , X∞) = |X∞| a.s.

So we get

(∗) sup
n∈N

|Xn(ω)| < ∞ a.s.

Step 2 Claim 1: (∗∗) w∗K- limn→∞EFnX∞ = X∞ a.s. See Theorem 3.1 in [6].
Step 3 Claim 2: (∗∗∗) limn→∞HE∗b (EFnX∞, Xn) = 0 a.s.

As (δ∗(ej , Xn) − δ∗(ej , E
FnX∞)n∈N are real-valued bounded pramart in

L1
R(F) which converges a.s. to 0, and from the remark of Lemma 6.1

(([δ∗(em, EFnX∞)− δ∗(ej , Xn)]+)n∈N)j∈N
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is a uniform sequence of positive subpramarts, applying Lemma VIII.1.15 in [16]
yields

lim
n→∞HE∗b (EFnX∞, Xn) = lim

n→∞ sup
j∈N

[δ∗(ej , E
FnX∞)− δ∗(ej , Xn)]

= lim
n→∞ sup

j∈N
[δ∗(ej , E

FnX∞)− δ∗(ej , Xn)]+

= sup
j∈N

lim
n→∞[δ∗(ej , E

FnX∞ − δ∗(ej , Xn)]+ = 0

almost surely. By (∗), (∗∗), (∗∗∗) and Lemma 3.1 in [6], we conclude that

w∗K- lim
n→∞EFnX∞ = X∞ a.s.

¤

The following decomposition theorem is consequence of Theorem 5.3 and Theo-
rem 6.5.

Corollary 6.6. Let (Xn)n∈N be a bounded pramart in L1
E∗ [E](F). Then there

exist a regular martingale (Yn)n∈N = (EFnX∞)n∈N in L1
E∗ [E](F) and a pramart

(Zn)n∈N in L1
E∗ [E](F) such that

Xn = Yn + Zn, ∀n ∈ N.

lim
n→∞ |Zn| = 0 a.s.

Consequenlty
w∗- lim

n→∞Xn = w∗- lim
n→∞Yn = X∞ a.s.

Proof. According to Theorem 5.3 and Theorem 6.5 there is X∞ ∈ L1
E∗ [E](F) such

that
lim

n→∞ |Xn − EFnX∞|E∗b = 0 a.s.

Hence the result follows by setting

Yn = EFnX∞ ∀n ∈ N.

Zn = Xn − Yn ∀n ∈ N.

so that
w∗- lim

n→∞Xn = w∗- lim
n→∞Yn = X∞ a.s.

¤

We finish this paper by providing some specific properties for pramarts which
may be useful in other convergence results and provides some interesting analogies
with multivalued martingales. This shed a new light on the study of multivalued
pramarts in both the primal space and the dual space.

Lemma 6.7. Assume that E∗
b is separable. Let x ∈ E and (Xn,Fn)n∈N be a

pramart in L1
cwk(E)(F) such that supn∈N

∫
Ω d(x,Xn)dP < ∞. Then (d(x,Xn))n∈N

is a positive L1-bounded subpramart converging a.s. to an integrable function in
L1

R(F).
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Proof. By [15], Lemma 4.3) for any sub-σ-algebra B of F and for any X ∈ L1
cwk(E)(F)

we have

(6.1) d(x,EBX) ≤ EBd(x,X) a.s.

Since (Xn,Fn)n∈N is a pramart, for every ε > 0, there is σε ∈ T such that

(6.2) σ, τ ∈ T, τ ≥ σ ≥ σε ⇒ P ([HE(Xσ, EFσXτ ) > ε]) ≤ ε.

By (6.1) for σ, τ ∈ T, τ ≥ σ ≥ σε, we have

(6.3) d(x,Xσ)− EFσd(x,Xτ ) ≤ d(x,Xσ)− d(x,EFσXτ ) a.s.

By (6.3) and ([2], Lemma 1.5.1, p. 29) we deduce

[d(x,Xσ)− EFσd(x,Xτ )]+ ≤ |d(x,Xσ)− d(x,EFσXτ )|(6.4)

≤ sup
x∈E

|d(x,Xσ)− d(x,EFσXτ )| = HE(Xσ, EFσXτ ) a.s.

Using (6.4) and (6.2) and the definition 4.2 (of subpramart) it is easy to conclude
that (d(x,Xn))n∈N is a positive L1-bounded subpramart which converges a.s. to
an integrable function by virtue of Millet-Sucheston theorem, see ([16], Theorem
VIII.1.11). ¤

Remarks. 1) If E is separable, and if (Xn,Fn)n∈N is a L1-bounded pramart in
L1

E(F), the techniques of Lemma 6.7 show that (|Xn|,Fn)n∈N is a positive L1-
bounded subpramart, similarly if (Xn,Fn)n∈N is a pramart in L1

cwk(E∗s )(F) such
that supn∈N

∫
Ω dE∗b (0, Xn)dP < ∞, then (dE∗b (0, Xn))n∈N is a positive L1-bounded

subpramart.
2) In the context of convex weakly-weakly∗ compact valued pramarts given here,
it is easy to see that a convex weakly-weakly∗ compact valued martingale: Xn =
EFnXn+1,∀n ∈ N is a convex weakly-weakly∗ compact valued pramart. Further
these pramarts enjoy similar convergence properties like convex weakly-weakly∗
compact valued sub-martingales: Xn ⊂ EFnXn+1,∀n ∈ N, see [1, 6]. Mosco
convergence for unbounded closed convex supermartingales (Xn,Fn): EFnXn+1 ⊂
Xn,∀n ∈ N, is available, see [1, 6, 15] and the references therein, further if
d(0, Xn)n∈N is bounded in L1, then d(0, Xn)n∈N is a L1-bounded submartingale,
hence it is a subpramart (compare with Lemma 6.7) above. In despite of these
similarities, it seems that it is difficult to find a unified closed convex valued pramart
theory generalizing the closed convex valued sub-super martingales. Clearly the
class of convex weakly-weakly∗ compact valued pramarts contains the class of convex
weakly-weakly∗ compact valued uniform amarts:

lim
σ≤τ ;τ∈T

∫

Ω
h(Xσ, EFσXτ )dP = 0.

3) If the pramarts given in Corollary 6.1–6.3 are uniformly integrable, then the
decomposition formula given therein is unique. Indeed assume that

Xn = Yn + Zn = Y ′
n + Z ′n
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where (Yn,Fn) and (Y ′
n,Fn) are martingales and (Zn,Fn) and (Z ′n,Fn) and pra-

marts with
lim

n→∞ |Zn| = lim
n→∞ |Z

′
n| = 0 a.s.

Then for each A ∈ ∪nFn

lim
n→∞

∫

A
(Zn − Z ′n)dP = 0.

But Y ′
n−Yn = Z ′n−Zn form also a martingale so that, for each m ∈ N and A ∈ Fm

lim
n→∞

∫

A
(Zn − Z ′n)dP =

∫

A
(Zm − Z ′m)dP = 0.

Hence Zm = Z ′m a.s. and also Ym = Y ′
m a.s. for each m ∈ N.
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Faculté des Sciences et Techniques, BP 2202, Fès Maroc

E-mail address: fatimaezzaki@yahoo.fr

Khalid Tahri
Laboratoire modélisation et calcul scientifique, Département de Mathématiques
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