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KKM-FAN PRINCIPLE IN ℵ0-SPACES AND SOME
APPLICATIONS

M. H. EL BANSAMI AND H. RIAHI

Abstract. In this paper we first introduce the topological structure of ℵ0-spaces
which is a generalization of hyperconvex metric spaces. We then establish an
associated KKM finite intersection lemmas. As applications we give a ℵ0-space
version of Fan’s best approximation theorem for set-valued mappings and some
fixed point theorems.

1. Introduction and preliminaries

Let us start by briefly introducing some needed notations and terminology.
Throughout this paper, for each integer n ≥ 0 we denote by Fn the set of all
nonempty subset of 〈n〉 := {0, 1, . . . , n} . For each J ∈ Fn, we denote by ∆J :=
conv {ei : i ∈ J} the convex hull of {ei : i ∈ J}, and ∆n = ∆〈n〉 where e0, e1, . . . , en

are the unit vectors of Rn+1. If card (J) denotes the cardinality of J , the set
∆k

n = ∪
card(J)≤k

∆J is called the k-skeleton of ∆n.

Recall that {Mi ⊂ ∆n : i ∈ 〈n〉} is a KKM family if for each J ∈ Fn

∆J ⊂ ∪i∈JMi.
The KKM (Knaster-Kuratowski-Mazurkiewicz) or three polish’s lemma is one of

the most interesting results in nonlinear functional analysis. This lemma [16] states
that each KKM family of closed subsets of ∆n has a nonempty intersection. The
KKM lemma is in fact equivalent to several fundamental results as Sperner’s lemma
[20], Brouwer’s fixed point theorem [5], Ky Fan’s minimax inequality [7], and others
see [23] for more details. The dual form of the KKM lemma says that the KKM
lemma holds true when the word closed is replaced by open. In the last decades,
the KKM lemma and Ky Fan’s minimax inequality have been improved by relaxing
the closedness, the convexity, the compactness condition or even more by extending
the framework to more general nonlinear structures. Our object in this paper is to
use hyperconvex structure in metric spaces and H-structure in topological spaces
in order to extend some recent intersection and minimax inequality results as in
Khamsi [12] and Kirk, Sims and Yuan [14].

To present interconnection between hyperconvex structure and H-structure let us
recall the definitions.
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Definition 1.1 (Aronszjn and Panitchpakdi [2]). A metric space (X, d) is said to
be hyperconvex if for any class {xα : α ∈ A} in X and {rα : α ∈ A} in R+, one has

d(xα, xβ) ≤ rα + rβ ∀α, β ∈ A =⇒
⋂

α∈A
B(xα, rα) 6= ∅

where B(xα, rα) is the closed ball centered at xα with radius rα.

For any nonempty bounded subset A of X, its convex hull co(A) is defined by

co(A) := ∩{B : B is a closed ball containing A}.
Remark that A = co(A) iff A is an intersection of balls. In this case we will say A
is an admissible subset of X.

Note that every hyperconvex metric space is complete. Also, it is quite easy to
see that an admissible subset of a hyperconvex metric space is hyperconvex.

The notion of hyperconvex spaces was introduced by Aronszajn and Panitchpakdi
in [2], where it is shown that a metric space is hyperconvex if and only if it is
injective with respect to the nonexpansive mappings. Since every metric space has
an injective hull [11], it follows that every metric space is isometric with a subspace
of a (minimal) hyperconvex superspace. Also it is known that the space C(E) of all
continuous real functions on a Stonian space E (extremally disconnected compact
Hausdorff space) with the usual norm is hyperconvex, and that every hyperconvex
real Banach space is a space C(E) for some Stonian space E. Classical and concrete
examples of hyperconvex spaces include the well-known spaces (Rn, ‖ · ‖∞), l∞ and
L∞.

A topological space X is said to be contractible if the identity of X is homotopic
to a constant mapping.

Definition 1.2 (Horvath [9], Bardaro and Ceppiletti [3]). Let X be a topological
space, F(X) the set of all finite nonempty subset of X, and Γ : F(X) → 2X a
set-valued mapping (2X denotes the set of all nonempty subsets of X), then (X, Γ)
is a H-structure (or H-space) if :

(a) Γ(A) is nonempty and contractible for every A ∈ F(X); and
(b) Γ(A) ⊂ Γ(B) if A ⊂ B and A,B ∈ F(X).

Recently, Horvath [9] obtained some generalizations of KKM and Ky Fan’s geo-
metric lemma by replacing convexity assumption with the H-structure. More details
concerning these definitions and properties can be found in the recent Yuan’s book
[23].

The starting point of this paper is to introduce a generalized hyperconvex struc-
ture on topological space and propose the topological structure of ℵ0-space. Based
on the useful KKM-Lemma [16] and its recent dual form [21, 13, 17, 23] we discuss
some properties of ℵ0-space in topological spaces by employing Horvath’s approch
[9, 18] of H-spaces and hyperconvex structures [8, 12]. Afterword, we present some
KKM-finite intersection properties of set-valued mappings. These results improve
and unify some corresponding results in the literature.

Definition 1.3. Let (X, d1) and (Y, d2) be two metric spaces, and T : X → Y
a continuous mapping. The continuity modulus of T is an increasing mapping
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δ : [0,+∞[ → [0,+∞] such that lim
ε→0

δ(ε) = 0 and

sup
x,y∈X

d1(x,y)≤ε

d2(T (x), T (y)) ≤ δ(ε).

If moreover δ is subadditive, i.e. δ(ε1 + ε2) ≤ δ(ε1) + δ(ε2), ∀ε1, ε2 ∈ [0,+∞[, we
say that T admits a subadditive modulus of continuity.

If a mapping T has some modulus of continuity, it is uniformly continuous.
Conversely, for each uniformly continuous mapping T there exists a minimal

modulus of continuity δT defined as follows:

δT (ε) = sup{d2(T (x), T (y)) : x, y ∈ X, d1(x, y) ≤ ε}.
Every other modulus of continuity δ of T satisfies : δT (ε) ≤ δ(ε) for all ε > 0.

For a continuous mapping T , see [2, Theorem 1], in order that there exists a
subadditive modulus of continuity majorating a given modulus of continuity δ, it is
necessary and sufficient that lim supε→+∞

δ(ε)
ε < +∞.

Definition 1.4 ([2, 6]). Let m ∈ N and (X, d) a metric space. (X, d) is said to
be m-hyperconvex if for any class {xα : α ∈ A} in X and {rα : α ∈ A} in R+ with
card(A) < m, one has

d(xα, xβ) ≤ rα + rβ ∀α, β ∈ A =⇒ ∩
α∈A

B(xα, rα) 6= ∅

If X is m-hyperconvex for every m ∈ N, we say that X is ℵ0-hyperconvex.

Remark that if cardinality of A is not fixed, as introduced in Definition 1.1, we
only say X to be hyperconvex.

It is clear that hyperconvexity is stronger than m-hyperconvexity, for each m.
The notion of m-hyperconvexity is also stronger than m′-hyperconvexity if m′ < m,
and the inclusion is strict.

Take, for example, the Euclidean plane R2 with the natural metric. It is easy to
see that R2 is a 3-hyperconvex space but not 4-hyperconvex. Thus R2 is neither
ℵ0-hyperconvex nor hyperconvex.

Given a metric space X and A ⊂ M . We will denote by h(A) the ℵ0-hyperconvex
hull of A in M , i.e. h(A) is a minimal element, relatively to order of inclusion, of
the set of ℵ0-hyperconvex subsets of M .

Let Y be an other metric space and T : Y → X a compact mapping, i.e. T is
continuous and T (A) is relatively compact in X for each bounded subset A of Y .

Fix y0 ∈ Y , and denote, for each n ≥ 2, B(y0, n) the closed ball centered at y0

with radius n. Then by induction we define

Hn = h (h(Bn) ∪Hn−1) where Bn := T (B(y0, n)) and H1 = h(B(y0, 1)).

Following Espinola and Lopez [6], we have the following characterization of a
complete ℵ0-hyperconvex metric space.

Theorem 1.5. Let (X, d) be a metric space, then the following assersions are equiv-
alent:

(1) X is ℵ0-hyperconvex and complete;



232 M. H. EL BANSAMI AND H. RIAHI

(2) if Y ∪ {z} is a metric space which contains metrically Y , n ∈ N for which
n − 1 < d(y0, z) < n, and T : Y → X a compact uniformly continuous
mapping with a subadditive modulus of continuity δT , then there exists T :
Y ∪{z} → X an extension of T such that T (z) ∈ Hn+1 and δT is a modulus
of continuity for T ;

(3) if Y is a metric space, T : Y → X a compact uniformly continuous mapping
with a subadditive modulus of continuity δT , and Z is a metric space which
contains metrically Y , then there exists T : Z → X an extension of T such
that

δT (ε) = max {(1 + η) εδT (1), (1 + η) δT (ε)}
is a modulus of continuity for T .

Definition 1.6. Let H be a nonempty set, M be a topological space and R :
F(H) → 2M . The triplet (H, M, R) is said to be a ℵ0-space if

(1) ∀A ∈ F(H), R(A) is a nonempty complete ℵ0-hyperconvex space;
(2) ∀A,B ∈ F(H), A ⊂ B implies R(A) ⊂ R(B) metrically.

Remark 1.7. This definition extend the similar one in [12] since if M is a hyperconvex
space and seting R(A) = co(A) we have (M, M, R) is a ℵ0-space.

Remark 1.8. If H = 〈n〉 for some n ∈ N \ {0} we say that (M, R) is a (n,ℵ0)-space.

Remark 1.9. Let us remark that R(J) may be a metric space for a nonmetrisable
topological space M . As an example, one can consider R(J) as a closed ball in a
normed space M with a separable dual space M ′ endowed with the weak topology
σ(M, M ′). Then, for σ(M, M ′), M is nonmetrisable but R(J) is metrisable. This
says that Definition 1.6 and Remark 1.8 extend the definition 3 in [12].

Remark 1.10. Consider in
(
R3, ‖.‖2

)
the triangle 4 = conv {e0, e1, e2}. Then 4

is convex and thus contractible, but not ℵ0-hyperconvex. We conclude that con-
tractibility and ℵ0-hyperconvexity are different notions.

Proposition 1.11. The product of finite ℵ0-hyperconvex spaces (respectively, ℵ0-
spaces) is a ℵ0-hyperconvex space (respectively, ℵ0-space).

Proof. Consider X1, X2, . . . , Xi, . . . , Xn a finite family of ℵ0-hyperconvex spaces,
and X := Π

i
Xi. Let

(
xα = (x1

α, . . . , xn
α)

)
α∈A be a net in X and (rα)α∈A a net of

positive real numbers such that d(xα, xβ) := max
1≤i≤n

di(xi
α, xi

β) ≤ rα + rβ.

Then for each 1 ≤ i ≤ n one has d(xi
α, xi

β) ≤ rα + rβ , and since Xi are ℵ0-
hyperconvex spaces, we obtain ∩

α∈A
BXi(xα,i, rα) 6= ∅. This implies that ∩

α∈A
BX(xα, rα),

since equal to Π
i
∩

α∈A
BXi(xα,i, rα), is nonempty; and thus X is ℵ0-hyperconvex space.

Let (H, X1, R1) , . . . , (H, Xn, Rn) be ℵ0-spaces, and define the mapping R : F(H) →
2X by R(A) := Π

i
Ri(Pi(A)), where Pi is the projection on the space Xi. One can

verify that (H, X,R) is a ℵ0-space. ¤

Proposition 1.12. Let M be a compact ℵ0-hyperconvex metric space, then every
nonempty admissible subset is ℵ0-hyperconvex.
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Proof. Let B be a nonempty admissible subset of M . Since an admissible subset is
an intersection of balls, set B := ∩

i∈I
B(yi, ti), where I index the family of all balls

containing B and the families (yi)i∈I ⊂ M and (ti)i∈I ⊂]0,+∞[. Consider (xα) ⊂ B
and rα > 0 such that d(xα, xβ) ≤ rα + rβ . For D := ∩

α
B(xα, rα) let us show that

D ∩B 6= ∅.
Let Ki := B(yi, ti) ∩ D and fixe J ∈ F(I). Let us consider (yi, ti)i∈J , (xα, rα)

and check that this family satisfies the condition of Definition 1.3 what affirms that

∩
i∈J

B(yi, ti) ∩
(
∩
α
B(xα, rα)

)
= ∩

i∈J
B(yi, ti) ∩D 6= ∅ implies ∩

i∈J
Ki 6= ∅.

Consequently ∩
i∈I

Ki = D ∩B 6= ∅ from which B is ℵ0-hyperconvexe. ¤

2. Continuous simplicial selection

In order to give the main result of this section we first prove the following technical
extension lemma.

Lemma 2.1. Let M be a topological space and g : ∆k
n −→ M be a mapping with

a subadditive modulus of continuity δg. Consider f : ∆k+1
n −→ M a continuous

mapping such that f = g on ∆k
n (i.e. f is an extension of g to ∆k+1

n ), and suppose
that for each J ∈ Fn, with card (J) ≤ k + 1, the modulus of continuity δJ

f of f on
∆J is subadditive. Then f has a subadditive modulus of continuity δf on ∆k+1

n .

Proof. Fix ε > 0, sufficiently small, and consider ∆J ,∆J ′ two faces of ∆k+1
n with

∆J ∩∆J ′ 6= ∅. Note that the case ∆J ∩∆J ′ = ∅ is omited since, in this case, the
distance between ∆J and ∆J ′ may be larger than ε.

Denote by ∆I := ∆J ∩∆J ′ which is a subset of ∆k
n, and let x ∈ ∆J and y ∈ ∆J ′

such that d(x, y) ≤ ε, where d is the Euclidean distance. One has

x =
∑
i∈J

αiei =
∑

i∈J1

αiei +
∑
i∈I

αiei and y =
∑
i∈J ′

βiei =
∑

i∈J ′1

βiei +
∑
i∈I

βiei

where

αi, βi ≥ 0,
∑
i∈J

αi =
∑
i∈J ′

βi = 1 and J1 = J\I, J ′1 = J ′\I.

Fix i1 ∈ I and consider x1 :=
∑
i∈I

α′iei and y1 :=
∑
i∈I

β′iei where α′i = αi, β′i = βi if

i 6= i1 and α′i1 = αi1 +
∑

i∈J1

αi, β′i1 = βi1 +
∑

i∈J ′1

βi.

Clearly, x1, y1 ∈ ∆I , d(x, x1) =

(
∑

i∈J1

α2
i + (

∑
i∈J1

αi)2
)1/2

.

According, since card (J1) ≤ n, to Hölder inequality we obtain

∑

i∈J1

αi ≤
√

n


∑

i∈J1

α2
i




1/2
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and then

d(x, x1) ≤

(n + 1)

∑

i∈J1

α2
i




1/2

≤ √
n + 1d(x, y).

Since

d(x, y) =


∑

i∈I

(αi − βi)
2 +

∑

i∈J1

α2
i +

∑

i∈J ′1

β2
i




1/2

≤ ε,

we deduce
d(x, x1) ≤

√
n + 1ε.

Similarly, by seting c :=
√

n + 1, we have

d(y, y1) =


∑

i∈J ′1

β2
i +


∑

i∈J ′1

βi




2


1/2

≤ √
n + 1ε ≤ cε.

Thus
d(x1, y1) ≤ d(x, x1) + d(x, y) + d(y, y1) ≤ (2c + 1)ε.

Since x ∈ ∆J , y ∈ ∆J ′ and x1, y1 ∈ ∆I , if we denote the restriction of f on J by fJ ,
it follows that

d(f(x), f(y)) = d(fJ(x), fJ ′(y))
≤ d(fJ(x), fJ(x1)) + d(fJ(x1), fJ ′(y1)) + d(fJ ′(y1), fJ ′(y))
≤ d(fJ(x), fJ(x1)) + d(fI(x1), fI(y1)) + d(fJ ′(y1), fJ ′(y))
≤ d(fJ(x), fJ(x1)) + d(g(x1), g(y1)) + d(fJ ′(y1), fJ ′(y))
≤ δfJ

(cε) + δg((2c + 1)ε) + δfJ′ (cε).

We deduce that

sup
{x∈∆J ,y∈∆J′ : d(x,y)≤ε}

d(f(x), f(y)) ≤ δf (ε) := δ0
f (ε) +

ζ

ρ
ε

where δ0
f (ε) := max

J,J ′∈Fn

(
δfJ

(cε) + δg(cε) + δfJ′ (cε)
)
, ρ := inf

{J,J ′:∆J∩∆J′=∅}
d(∆J ,∆J ′)

and ζ := sup
x,y∈∆k+1

n

d(f(x), f(y)).

We confirm then that δf is a modulus of continuity of f which is subadditive
since δ0

f is so. ¤

Theorem 2.2. Let M be a topological space and R : Fn → 2M be a set-valued map-
ping. Suppose (M, R) to be a (n,ℵ0)-space, then there exists a continuous mapping
f : ∆n → M such that for each J ∈ Fn one has f(∆J) ⊂ R(J) and which modulus
of continuity is subadditive.

Proof. For each i ∈ 〈n〉 we choose some xi ∈ R ({i}) and define f0 : ∆0
n → M by

f0(ei) = xi. In this way we obtain a uniformly continuous f0 with a subadditive
modulus of continuity δf0 .
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Suppose, by induction, we have constructed a continuous mapping fk : ∆k
n →

M on the k-skeleton of ∆n which modulus of continuity δfk is subadditive, and
fk(∆J) ⊂ R (J) if card(J) ≤ k + 1, (i.e. dim (∆J) ≤ k).

Consider ∆J a k + 1-dimensional face, and for each i ∈ J set Ji = J\ {i}. Then
∂∆J = ∪

i∈J
∆Ji is a subset of a k-skeleton of ∆n; thus

fk(∂∆J) ⊂ ∪
i∈J

fk(∆Ji) ⊂ R (J)

Recall that R(J) is a complete ℵ0-hyperconvex space, then by Theorem 1.5 fk

can be extended to a continuous mapping fk+1
J : ∆J → R (J) with a subadditive

modulus of continuity δfk+1
J

.

Let us define fk+1 on ∆k+1
n by fk+1/∆J := fk+1

J for each J , and claim that
fk+1 is well defined. Indeed, let ∆J and ∆J ′ be two different faces of ∆n which
dimension is k + 1 and ∆J ∩∆J ′ 6= ∅; then fk+1

J = fk+1
J ′ = fk on ∆J ∩∆J ′ since

∆J ∩∆J ′ ∈ ∆k
n. Thus fk+1 is well defined and continuous, and from Lemma 2.1 its

modulus of continuity is subadditive. ¤

3. Generalized KKM finite intersection property

Proposition 3.1. Let (M, R) be a (n,ℵ0)-space and M0, . . . , Mn be a family of
closed (or open) subsets of M , and suppose that R (J) ⊂ ∪

i∈J
Mi for each J ∈ Fn.

Then ∩
i∈〈n〉

Mi 6= ∅.

Proof. Using Theorem 2.2, there exists a continuous mapping f : ∆n → M with a
subadditive modulus of continuity and such that for each J ∈ Fn one has f(∆J) ⊂
R(J). Thus the family

{
f−1(Mi) : i ∈ 〈n〉} satisfies conditions of KKM-Lemma or

its dual respectively provided that Mi are supposed closed or open respectively, i.e.
∆J ⊂ ∪

i∈J
f−1(Mi). Consequently ∩

i∈〈n〉
f−1(Mi) 6= ∅ and hence ∩

i∈〈n〉
Mi 6= ∅. ¤

Corollary 3.2. Let M be a complete ℵ0-hyperconvex space, {Mi : i ∈ 〈n〉} a
recovering family of closed (or open) subsets of M , and {Fi : i ∈ 〈n〉} a family
of subsets of M . Suppose that

(i) for all i ∈ 〈n〉, Fi ∩Mi = ∅;
(ii) for all J ⊂ 〈n〉 with card(J) ≤ n one has ∩

i∈J
Fi is a nonempty complete

ℵ0-hyperconvex space.
Then ∩

i∈〈n〉
Mi 6= ∅.

Proof. Introducing the mapping R defined by R(J) := ∩
i/∈J

Fi for each J strictly

included in 〈n〉 and R(〈n〉) = M , then Proposition 3.1 implies the desired result. ¤
Remark that if we suppose Fi = Mi for all i ∈ 〈n〉, the disappointed condition

(ii) is automatically satisfied since Mi are supposed to be closed.

Proposition 3.3. Let M be a complete ℵ0-hyperconvex space, {Mi : i ∈ 〈n〉} a
recovering family of closed subsets of M , and {Fi : i ∈ 〈n〉} a family of subsets of
M . Suppose that
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(i) for all i ∈ 〈n〉, Fi ⊂ Mi;
(ii) for all J ⊂ 〈n〉 with card(J) ≤ n one has ∩

i∈J
Fi is a nonempty ℵ0-hyperconvex

space.
Then ∩

i∈〈n〉
Mi 6= ∅.

For the proof of this proposition we need the following lemma for which we present
a proof since we found it anywhere in the consulted bibliography.

Lemma 3.4. Let g : ∆n → ∆n be a continuous mapping such that g(∆J) ⊂ ∆J for
every J ∈ Fn. Then g is surjective.

Proof. Let us note that g(∆n) ⊂ ∆n is true. To prove the converse inclusion fix
y ∈ ∆n and consider for all i ∈ 〈n〉 the closed subset

Ei(y) := {x ∈ ∆n : 〈y − g(x), ei − g(x)〉 ≤ 0}.
Then the family {Ei(y) : i ∈ 〈n〉} satisfies conditions of KKM-Lemma, i.e., for every
finite subset J ⊂ 〈n〉 there holds ∆J ⊂ ∩

i∈J
Ei(y). Indeed, suppose to the contrary

that z ∈ ∆J , but z /∈ Ei(y) for all i ∈ J . Then for some δ > 0 one has

〈y − g(z), ei − g(z)〉 ≥ δ > 0 for all i ∈ J.

Using z ∈ ∆J and the assumption of lemma we conclude that g(z) ∈ ∆J , that is
g(z) =

∑
i∈J giei, gi ≥ 0 and

∑
i∈J gi = 1. Hence

0 = 〈y − g(z),
∑

i∈J

giei − g(z)〉 =
∑

i∈J

gi〈y − g(z), ei − g(z)〉 ≥
∑

i∈J

giδ = δ

a contradiction with δ > 0. It follows from the KKM Lemma that there exists
x ∈ ∆n such that x ∈ ∩

i∈〈n〉
Ei(y), that is

〈y − g(x), ei − g(x)〉 ≤ 0 for all i ∈ 〈n〉.
Now y ∈ ∆n then y =

∑
i∈〈n〉

yiei for some yi ≥ 0 such that
∑

i∈〈n〉
yi = 1, and hence

‖y − g(x)‖2 = 〈y − g(x), y − g(x)〉 =
∑

i∈〈n〉
yi〈y − g(x), ei − g(x)〉 ≤ 0.

It follows then that there exists some x ∈ ∆n such that g(x) = y, and since y was
arbitrary in ∆n the claimed result follows. ¤

Proof of Proposition. Consider the mappings R defined by R(J) := ∩
i/∈J

Fi if J is

different from 〈n〉 and R(〈n〉) = M , then using assumption (ii) (M, R) is a (n,ℵ0)-
space. By Theorem 2.2 there is a continuous function f : ∆n → M for which
f(∆J) ⊂ R(J) for each J ∈ Fn.
Suppose that ∩

i∈〈n〉
Mi = ∅, and consider the continuous mapping g defined on ∆n

by

g(x) :=
1∑

i∈〈n〉
d(f(x),Mi)

∑

i∈〈n〉
d(f(x),Mi)ei.
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Fix x ∈ ∆J , one has f(x) ∈ ∩
i/∈J

Fi and then f(x) ∈ ∩
i/∈J

Mi. We obtain d(f(x),Mi) =

0 for each i /∈ J , and thus g(x) ∈ ∆J . We conclude that g(∆J) ⊂ ∆J . Using Lemma
3.4, it follows that g is surjective.

Let x0 ∈ ∆n for which g(x0) /∈ ∂∆n, then f(x0) /∈ Mi for each i ∈ 〈n〉. Con-
sequently, f(x0) is outside the set ∪

i∈〈n〉
Mi, which contradicts {Mi : i ∈ 〈n〉} is a

recovering family of M .

Remark 3.5. Suppose M = ∆n and Fi = co({ej : j 6= i}) for i ∈ 〈n〉, then Propo-
sition 3.3 is reduced to Alexandroff and Pasynkoff’s theorem [1]. Also by setting
M = ∆n and Fi = M \Mi which are closed subsets, we obtain the Klee and Berge’s
intersection theorem, see [4, 15].

Remark 3.6. Combining the proof of Lemma 3.4 and Proposition 3.3 we can see
that Lemma 3.4 is equivalent to KKM lemma.

Proposition 3.7. Let Z be a topologiacal space and {Ti : i ∈ 〈n〉} a family of
nonempty subsets of Z. Suppose that for each J ⊂ 〈n〉 the space ∪

i∈J
Ti is complete

and ℵ0-hyperconvex, then ∩
i∈〈n〉

Ti 6= ∅.

Proof. Let us consider R(J) := ∪
i∈J

Ti for each J ∈ Fn, and using Theorem 2.2 there

exists a continuous mapping f : ∆n → Z satisfying f(∆J) ⊂ R(J) for every J ∈ Fn.
Let us denote by d the metric defined on ∪

i∈〈n〉
Ti. Suppose that ∩

i∈〈n〉
Ti = ∅, and

define the continuous mapping F : ∆n → ∆n by

F (x) :=
1∑

i∈〈n〉
d(f(x), Ti)

∑

i∈〈n〉
d(f(x), Ti)ei.

By Brouwer’s Fixed Point Theorem there exists x0 ∈ ∆n such that F (x0) = x0.
Let J0 := {i ∈ 〈n〉 : d(f(x0), Ti) 6= 0}, then x0 ∈ ∆J0 and f(x0) /∈ Ti for each
i ∈ J0. Hence f(x0) ∈ f (∆J0) ⊂ ∆J0 ⊂ ∪

i∈J0

Ti, thereby contradicting f(x0) /∈ Ti for

i ∈ J0. ¤

Theorem 3.8. Consider for i ∈ 〈n〉 (Xi;Ri) a ℵ0-space and Bi ⊂ X :=
Π

j∈〈n〉
Xj. For x, y ∈ X, let us denote by xi the ith component of x, xi =

(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Π
j 6=i

Xj, and [yi, x
i] = (x1, . . . , xi−1, yi, xi+1, . . . , xn) ∈

X. Suppose that for i ∈ 〈n〉 and each x ∈ X

(1) Xi is compact ;
(2) Bi(x) :=

{
y ∈ X : [yi, x

i] ∈ Bi

}
is nonempty and open ;

(3) Bi(x) :=
{
y ∈ X : [xi, y

i] ∈ Bi

}
is nonempty ;

(4) if A ∈ F(Bi(x)) then R(A) ⊂ Bi(x).

Then ∩
i∈〈n〉

Bi 6= ∅.
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Proof. Consider G : X → 2X defined by G(x) := X\ ∩
i∈〈n〉

Bi(x). For each y ∈ X

there exists x ∈ X such that [yi, x
i] ∈ Bi, which means y ∈ ∩

i∈〈n〉
Bi(x). Thus

∩
x∈X

G(x) = ∩
x∈X

(
X\ ∩

i∈〈n〉
Bi(x)

)
= X\ ∪

x∈X
∩

i∈〈n〉
Bi(x) = ∅.

One can easily justify by contradiction that G is ℵ0-KKM mapping; therefore, there
exists a finite subset A of X and z ∈ R(A) such that z /∈ ∪

x∈A
G(x). We deduce that

for each x ∈ A and each i ∈ 〈n〉, x ∈ Bi(z), and using the assumption 4 we have
R(A) ⊂ Bi(z) which implies z ∈ Bi(z). Thus z ∈ Bi for each i ∈ 〈n〉, and then the
conclusion is true. ¤
Remark 3.9. Theorem 3.8 improves Theorem 5.2 in [14] by considering a
ℵ0-hyperconvex space.

To prove the main fixed point theorem of this section we need the following
continuous selection theorem which includes Tarafdar’s similar result, see [22].

Theorem 3.10. Let M be a compact topological space, H a topological space,
(H, H,R) a ℵ0-space, and F : M → 2H . Suppose that:

(i) for each x ∈ M and A ∈ F(F (x)), one has R(A) ⊂ F (x);
(ii) M = ∪

y∈H
int(F−1(y)), where int is the topological interior in M .

Then there exists a continuous selection f of F which can be expressed as the com-
posite of two continuous mappings g : 4n → H and h : M →4n.

If moreover M = H, F admits a fixed point.

Proof. Using condition (ii) and compactness of M , there exists y1, . . . , yn such that

M = ∪
i∈〈n〉

int(F−1(yi)).

Let (ψi)i be an associated partition of unity, and consider h : M → 4n defined by
h(x) =

∑
i∈〈n〉

ψi(x)ei, and Rn : Fn → 2M defined by Rn(J) := R({yi : i ∈ J}) if

J ∈ Fn.
Using Theorem 2.2 one can find a continuous mapping g : 4n → H for which

g(∆J) ⊂ Rn(J) for each J ∈ Fn.
We claim that g (h(x)) ∈ F (x) for each x ∈ M . Indeed, let us fixe some x ∈

M and set J(x) := {i ∈ 〈n〉 : ψi(x) 6= 0}. Since ψi(x) 6= 0 is equivalent to x ∈
int(F−1(yi)), then yi ∈ F (x). Setting A(x) = {yi : i ∈ J(x)} and taking into
account the assumption (i) we have R(A(x)) ⊂ F (x), and then

g (h(x)) ∈ g(4J(x)) ⊂ Rn(J(x)) = R(A(x)) ⊂ F (x).

We confirm then that f := g ◦ h is a continuous selection of F .
Consider now the continuous mapping h ◦ g : 4n → 4n, then using Brouwer’s

Fixed Point Theorem one has the existence of x0 ∈ 4n such that h ◦ g(x0) = x0.
Taking y0 = g (x0) ∈ M , then

y0 = g (x0) = g (h ◦ g(x0)) = g ◦ h (y0) = f (y0) ∈ F (y0) ,

and thus y0 is a fixed point of F . ¤
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Theorem 3.11. Let M be a compact ℵ0-hyperconvex space, and T : M → 2M with
nonempty closed valued in M . Suppose that

(i) for each x ∈ M, A ∈ F(F (x)) one has co(A) ⊂ F (x);
(ii) M = ∪

y∈H
int(T−1(y)).

Then, there exists x0 ∈ M such that x0 ∈ T (x0).

Proof. Let us first remark, by setting R(A) = co(A) and using Proposition 1.12,
that (M, M, R) is a ℵ0-space. Hence all assumptions of Theorem 3.10 are satisfied,
and then F has a fixed point. ¤
Remark 3.12. Note that this theorem extends Theorems 2.11.26, 2.11.32, 2.11.41,
2.11.22 in [23] and Theorem 3 in [19].

4. Generalized Ky Fan Lemma

Definition 4.1. Let (H, M, R) be a ℵ0-space. A set-valued mapping F : H → 2M

is said to be ℵ0-R-KKM if for each A ∈ F(H),

R(A) ⊂ ∪
x∈A

F (x).

Theorem 4.2. Let (H, M, R) be a ℵ0-space, Y = R(H) and F : H → 2M∩Y .
Suppose that for some x0 ∈ X

(1) F (x0) is relatively compact in Y ;
(2) F is (x0,ℵ0)-R-KKM;
(3) for each A ∈ F(H, x0) and x ∈ A one has F (x) ∩R(A) is closed in R(A);
(4) for each A ∈ F(H, x0) one has clM ( ∩

x∈A
F (x)) ∩R(A) = ∩

x∈A
F (x) ∩R(A).

Then ∩
x∈X

F (x) 6= ∅.

Proof. Let us fix some A ∈ F(H, x0) and consider the set-valued mapping T defined
for each x ∈ A by TA(x) := F (x) ∩ R(A). We confirm that TA is ℵ0-R-KKM from
A to R(A); then using Proposition 3.1 and the assumptions 2 - 3 we conclude that
∩

x∈A
TA(x) 6= ∅. This implies that the set-valued mapping V : F(H, x0) → 2M

which values are V (A) := clY ( ∩
x∈A

F (x)) ∩ R(A) is well defined. We have for each

A ∈ F(H, x0), V (A) is a subset of the compact subset clY F (x0) of Y . Since the
family {V (A) : A ∈ F(X, x0)} satisfies the finite intersection property, we conclude
that ∩

A∈F(X,x0)
V (A) 6= ∅, let x̄ be one point.

In this way we obtain for each x ∈ X, by setting A(x) := {x, x0} which is an
element of F(H, x0), x̄ ∈ V (A(x)) = clY ( ∩

x∈A(x)
F (x)) ∩R(A) = ∩

x∈A(x)
F (x) ∩R(A);

the last equality follows from the assumption 4. Thus x̄ ∈ F (x), which completes
the proof. ¤
Remark 4.3. Note that as a special case we find Theorem 4 in [12].

Theorem 4.4. Let X be a compact topological space, Y a complete metric space
and f : X × Y → R. Suppose that

(1) for each x ∈ X the mapping y → f(x, y) is lower semicontinuous;
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(2) for each A ∈ F(X), {y ∈ Y : inf
x∈A

f(x, y) ≤ 0} is ℵ0-hyperconvex and closed.

Then there exists y0 ∈ X such that f(x, y0) ≤ 0 for every x ∈ X.

Proof. It suffices to consider R(A) := {y ∈ Y : inf
x∈A

f(x, y) ≤ 0} and F (x) :=

{y ∈ Y : f(x, y) ≤ 0}. Then F is a ℵ0-R-KKM, and all assumptions of Theorem 4.2
are satisfied. ¤
Remark 4.5. Note that Condition 2 is equivalent to

2’. If, for each A ∈ F(X), (yα) ⊂ Y , (rα) ⊂ R+ such that for all α, β d(yα, yβ) ≤
rα + rβ there exists some x ∈ A such that for each α f(x, yα) ≤ 0, then
we have d(z, yα) ≤ rα for all α implies the existence of x ∈ A such that
f(x, z) ≤ 0.
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