U-CONVEXITY OF ψ-DIRECT SUMS OF BANACH SPACES

KEN-ICHI MITANI

Abstract

We shall characterize the U-convexity of the ψ-direct sum $\left(X_{1} \oplus \cdots \oplus\right.$ $\left.X_{n}\right)_{\psi}$ of Banach spaces X_{1}, \ldots, X_{n}, where ψ is a continuous convex function on $\Delta_{n}\left(=\left\{\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in \mathbb{R}^{n-1}: t_{j} \geq 0(\forall j), \sum_{j=1}^{n-1} t_{j} \leq 1\right\}\right)$ with some appropriate conditions.

1. Introduction and preliminaries

A norm $\|\cdot\|$ on \mathbb{C}^{n} is said to be absolute if

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|=\left\|\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)\right\|
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$, and normalized if $\|(1,0, \ldots, 0)\|=\|(0,1,0, \ldots, 0)\|=$ $\cdots=\|(0, \ldots, 0,1)\|=1$. Let $A N_{n}$ be the family of all absolute normalized norms on \mathbb{C}^{n}. Recently, Saito, Kato and Takahashi [12] showed that for any absolute normalized norms on \mathbb{C}^{n} there corresponds a continuous convex function on $\Delta_{n}(=$ $\left.\left\{\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in \mathbb{R}^{n-1}: t_{j} \geq 0(\forall j), \sum_{j=1}^{n-1} t_{j} \leq 1\right\}\right)$ with some appropriate conditions, as follows. For any $\|\cdot\| \in A N_{n}$ we define

$$
\begin{equation*}
\psi\left(s_{1}, \ldots, s_{n-1}\right)=\left\|\left(1-\sum_{i=1}^{n-1} s_{i}, s_{1}, \ldots, s_{n-1}\right)\right\| \quad\left(\left(s_{1}, \ldots, s_{n-1}\right) \in \Delta_{n}\right) . \tag{1.1}
\end{equation*}
$$

Then ψ is a continuous convex function on Δ_{n}, and satisfies the following conditions:

$$
\begin{aligned}
& \left(A_{0}\right) \quad \psi(0,0, \ldots, 0)=\psi(1,0,0, \ldots, 0)=\psi(0,1,0, \ldots, 0) \\
& =\cdots=\psi(0, \ldots, 0,1)=1, \\
& \left(A_{1}\right) \quad \psi\left(s_{1}, \ldots, s_{n-1}\right) \geq \\
& \left(s_{1}+\cdots+s_{n-1}\right) \psi\left(\frac{s_{1}}{s_{1}+\cdots+s_{n-1}}, \ldots, \frac{s_{n-1}}{s_{1}+\cdots+s_{n-1}}\right), \\
& \text { if } s_{1}+\cdots+s_{n-1} \neq 0, \\
& \text { (A2) } \quad \psi\left(s_{1}, \ldots, s_{n-1}\right) \geq\left(1-s_{1}\right) \psi\left(0, \frac{s_{2}}{1-s_{1}}, \ldots, \frac{s_{n-1}}{1-s_{1}}\right), \quad \text { if } s_{1} \neq 1, \\
& \left(A_{n}\right) \quad \psi\left(s_{1}, \ldots, s_{n-1}\right) \geq\left(1-s_{n-1}\right) \psi\left(\frac{s_{1}}{1-s_{n-1}}, \ldots, \frac{s_{n-2}}{1-s_{n-1}}, 0\right), \quad \text { if } s_{n-1} \neq 1 .
\end{aligned}
$$

2010 Mathematics Subject Classification. 46B20.
Key words and phrases. U-convexity, absolute norm, direct sum.

Let Ψ_{n} be the set of all continuous convex functions ψ on Δ_{n} satisfying $\left(A_{0}\right),\left(A_{1}\right)$, $\ldots,\left(A_{n}\right)$. Conversely, for every $\psi \in \Psi_{n}$, we define

$$
\begin{aligned}
& \left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{\psi} \\
& = \begin{cases}\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right) \psi\left(\frac{\left|x_{2}\right|}{\left|x_{1}\right|+\cdots+\left|x_{n}\right|}, \ldots, \frac{\left|x_{n}\right|}{\left|x_{1}\right|+\cdots+\left|x_{n}\right|}\right) & \text { if }\left(x_{1}, \ldots, x_{n}\right) \neq(0, \ldots, 0), \\
0 & \text { if }\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0) .\end{cases}
\end{aligned}
$$

Then $\|\cdot\|_{\psi} \in A N_{n}$ and satisfies (1.1). Hence $A N_{n}$ and Ψ_{n} are in a one-to-one correspondence under (1.1).

For any Banach spaces $X_{1}, X_{2}, \ldots, X_{n}$, we define the ψ-direct sum $\left(X_{1} \oplus X_{2} \oplus\right.$ $\left.\cdots \oplus X_{n}\right)_{\psi}$ to be their direct sum equipped with the norm

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{\psi}=\left\|\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots,\left\|x_{n}\right\|\right)\right\|_{\psi}
$$

for $x_{1} \in X_{1}, \ldots, x_{n} \in X_{n}$. This extends the notion of the ℓ_{p}-direct sum ($X_{1} \oplus X_{2} \oplus$ $\left.\cdots \oplus X_{n}\right)_{p}$ of Banach spaces. In [5, 11, 13], the authors characterized the strict, uniform, and uniform non-squareness of $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$ by means of the associate function ψ. Smoothness and uniform smoothness of $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$ are treated in $[3,9]$.

Let X be a Banach space. Let X^{*} be the dual space of $X, S_{X}=\{x \in X$: $\|x\|=1\}$, and for $x \in X$ with $x \neq 0, D(X, x)=\left\{\alpha \in S_{X^{*}}:\langle\alpha, x\rangle=\|x\|\right\}$. A Banach space X is called a u-space if for any $x, y \in S_{X}$ with $\|x+y\|=2$, we have $D(X, x)=D(Y, y)$ (see [3]). A Banach space X is called a U-space if for any $\varepsilon>0$, there exists a $\delta>0$ such that for any $x, y \in S_{X}$, we have $\|x+y\| \leq 2(1-\delta)$ whenever $\langle\alpha, y\rangle<1-\varepsilon$ for some $\alpha \in D(X, x)$ (see [7]). Gao and Lau [4] showed that if a Banach space X is a U-space, then X has uniform normal structure.

In this paper, we characterize the U-convexity of $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$. We first characterize the U-convexity of $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ by means of ψ. Namely, we show that $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ is a U-space (resp. a u-space) if and only if ψ is a u-function (see the notation of u -function in $\S 2$ and $\S 3$). We next prove that $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$ is a u-space if and only if $X_{1}, X_{2}, \ldots, X_{n}$ are u-spaces and ψ is a u-function. Moreover, we show that $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$ is a U-space if and only if $X_{1}, X_{2}, \ldots, X_{n}$ are U -spaces and ψ is a u -function.

Let I be an index set and $\left\{X_{i}\right\}_{i \in I}$ be a family of Banach spaces. We define the Banach space $\ell_{\infty}\left(I, X_{i}\right)$ by

$$
\ell_{\infty}\left(I, X_{i}\right)=\left\{\left\{x_{i}\right\} \in \prod_{i \in I} X_{i}:\left\|\left\{x_{i}\right\}\right\|=\sup _{i \in I}\left\|x_{i}\right\|<\infty\right\} .
$$

Let \mathcal{U} be an ultrafilter in I and let $N_{\mathcal{U}}=\left\{\left\{x_{i}\right\} \in \ell_{\infty}\left(I, X_{i}\right): \lim _{\mathcal{U}}\left\|x_{i}\right\|=0\right\}$. The ultraproduct of $\left\{X_{i}\right\}$ is the quotient space $\ell_{\infty}\left(I, X_{i}\right) / N_{\mathcal{U}}$ equipped with the quotient norm. Note that for each $\left\{x_{i}\right\}_{\mathcal{U}}$ in the ultraproduct of $\left\{X_{i}\right\}$, we have $\left\|\left\{x_{i}\right\}_{\mathcal{U}}\right\|=$ $\lim _{\mathcal{U}}\left\|x_{i}\right\|$. In particular, for a Banach space X, the ultrapower denoted by $X_{\mathcal{U}}$ is the ultraproduct of $\left\{X_{i}\right\}$ if $I=\mathbb{N}$ and $X_{i}=X$ for all $i \in \mathbb{N}$ (for details see [3, 4]). Dhompongsa, Kaewkhao and Saejung [3] showed the following.

Proposition 1.1 ([3]). Let X be a Banach space and X^{*} the dual space of X. Then (i) If X^{*} is a u-space, then X is a u-space.
(ii) If X is a U-space, then X is a u-space. The converse holds, whenever dim $X<\infty$.
(iii) X is a U-space if and only if $X_{\mathcal{U}}$ is a u-space.

Proposition $1.2([3])$. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $\psi \in \Psi_{n}$. Then $\left(\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\psi}\right)_{\mathcal{U}}$ is isometric to $\left(\left(X_{1}\right)_{\mathcal{U}} \oplus \cdots \oplus\left(X_{n}\right)_{\mathcal{U}}\right)_{\psi}$.

Let f be a continuous convex function from a convex subset C of a real Banach space X into \mathbb{R}. We denote by $\partial f(x)$ the subdifferential of f at $x \in C ; \partial f(x)=$ $\left\{a \in X^{*}: f(y) \geq f(x)+\langle a, y-x\rangle\right.$ for $\left.y \in C\right\}$. For $n \in \mathbb{N}$ with $n \geq 2$, put $I_{n}=\{0,1, \ldots, n-1\}$. We also put $p_{0}=(0,0, \ldots, 0) \in \Delta_{n}$ and

$$
p_{j}=(0, \ldots, 0, \stackrel{(j)}{1}, 0, \ldots, 0) \in \Delta_{n}
$$

where $j=1,2, \ldots, n-1$.
Definition $1.3([8])$. For each $\psi \in \Psi_{n}$, we define the extended function $\tilde{\psi}$ of ψ as

$$
\widetilde{\psi}(t)=\sup \left\{\begin{array}{ll}
& s=\left(s_{1}, s_{2}, \ldots, s_{n-1}\right) \in \Delta_{n} \\
\psi(s)+\langle a, t-s\rangle: & a \in \partial \psi(s), \\
& \psi(s)+\left\langle a, p_{j}-s\right\rangle \geq 0 \text { for } j \in I_{n}
\end{array}\right\}
$$

for all $t \in \mathbb{R}^{n-1}$.
Then $\widetilde{\psi}$ has the following properties:
(1) $\widetilde{\psi}(t)=\psi(t)$ holds for all $t \in \Delta_{n}$.
(2) $\widetilde{\psi}$ is a convex function on \mathbb{R}^{n-1} with $\widetilde{\psi}(t)<\infty$ for all $t \in \mathbb{R}^{n-1}$.
(3) For every $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \Delta_{n}, a \in \partial \widetilde{\psi}(t)$ if and only if $a \in \psi(t)$ and $\psi(t)+\left\langle a, p_{j}-t\right\rangle \geq 0$ for all $j \in I_{n}$.
(4) If $n=2$, then

$$
\widetilde{\psi}(t)= \begin{cases}1-t & \text { if } \quad t<0 \\ \psi(t) & \text { if } \quad 0 \leq t \leq 1 \\ t & \text { if } \quad t>1\end{cases}
$$

and

$$
\partial \widetilde{\psi}(t)= \begin{cases}{\left[-1, \psi_{R}^{\prime}(0)\right]} & \text { if } t=0 \\ {\left[\psi_{L}^{\prime}(t), \psi_{R}^{\prime}(t)\right]} & \text { if } \quad 0<t<1 \\ {\left[\psi_{L}^{\prime}(1), 1\right]} & \text { if } t=1\end{cases}
$$

where $\psi_{L}^{\prime}(t)$ (resp. $\left.\psi_{R}^{\prime}(t)\right)$ is the left (resp. right) derivative of ψ at t (see [8]).

The following was proved by Bonsall and Duncan [2].

Lemma $1.4([2])$. For each $t \in[0,1]$, put $x(t)=\frac{1}{\psi(t)}(1-t, t)$. Then

$$
D\left(\mathbb{C}^{2}, x(t)\right)= \begin{cases}\left\{\binom{1}{c(1+a)}: a \in \partial \widetilde{\psi}(0),|c|=1\right\}, & \text { if } t=0, \\ \left\{\binom{\psi(t)-a t}{\psi(t)+a(1-t)}: a \in \partial \widetilde{\psi}(t)\right\}, & \text { if } 0<t<1, \\ \left\{\binom{c(1-a)}{1}: a \in \partial \widetilde{\psi}(1),|c|=1\right\}, & \text { if } t=1\end{cases}
$$

holds.
In [8], Mitani, Saito and Suzuki gave the n-dimensional version of Lemma 1.4.
Lemma 1.5 ([8], p. 106). Let $\psi \in \Psi_{n}$. For every $t=\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in \Delta_{n}$, we put

$$
t_{0}=1-\sum_{i=1}^{n-1} t_{i} \quad \text { and } \quad x(t)=\frac{1}{\psi(t)}\left(t_{0}, t_{1}, \ldots, t_{n-1}\right) \in \mathbb{C}^{n}
$$

Then

$$
\begin{aligned}
& D\left(\mathbb{C}^{n}, x(t)\right) \\
& \left.=\left\{\begin{array}{c}
e^{i \theta_{0}}\left(\psi(t)+\left\langle a, p_{0}-t\right\rangle\right) \\
e^{i \theta_{1}}\left(\psi(t)+\left\langle a, p_{1}-t\right\rangle\right) \\
\vdots \\
e^{i \theta_{n-1}}\left(\psi(t)+\left\langle a, p_{n-1}-t\right\rangle\right)
\end{array}\right) \quad \begin{array}{l}
a \in \partial \widetilde{\psi}(t), \\
\theta_{j} \in[0,2 \pi) \\
\text { for } j \in I_{n} \text { with } t_{j}=0, \\
\theta_{j}=0 \\
\text { for } j \in I_{n} \text { with } t_{j}>0
\end{array}\right\} .
\end{aligned}
$$

Moreover, Mitani, Oshiro and Saito [9] gave the following.
Lemma 1.6 ([9], p.154). Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $\psi \in \Psi_{n}$. For every $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S_{\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}}$,

$$
\begin{aligned}
& D(\\
& \quad\left.\left.X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}, x\right) \\
& \quad=\left\{\left(\begin{array}{c}
a_{1} f_{1} \\
a_{2} f_{2} \\
\vdots \\
a_{n} f_{n}
\end{array}\right): \begin{array}{c}
\left(a_{1}, \ldots, a_{n}\right) \in D\left(\mathbb{C}^{n},\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots,\left\|x_{n}\right\|\right)\right), \\
f_{i} \in D\left(X_{i}, x_{i}\right) \text { for } i \text { with } x_{i} \neq 0, \\
f_{i} \in S_{X_{i}^{*}} \text { for } i \text { with } x_{i}=0
\end{array}\right\} .
\end{aligned}
$$

2. U-CONVEXITY OF ABSOLUTE NORMS ON \mathbb{C}^{2}

Definition 2.1. A function $\psi \in \Psi_{2}$ is said to be a u-function if, for every s and t with $0 \leq s<t \leq 1, \widetilde{\psi}$ is differentiable at s and t, whenever ψ is affine on $[s, t]$.

Our aim in this section is to prove that $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$ is a u-space if and only if ψ is a u-function.

Remark 2.2. Our definition of u-function is different from that of u-function of Dhompongsa, Kaewkhao and Saejung [3], where a function $\psi \in \Psi_{2}$ is said to be a u-function in the sense of Dhompongsa, Kaewkhao and Saejung (in short, DKS) if
for all interval $[s, t] \subset(0,1), \psi$ is differentiable at s and t whenever ψ is affine on $[s, t]$. In [3], they proved that for any Banach spaces X and Y and any $\psi \in \Psi_{2}$, $(X \oplus Y)_{\psi}$ is a u-space (resp. U-space) if and only if X and Y are u-spaces (resp. U-spaces) and ψ is a u-function in the sense of DKS. In particular, for any $\psi \in \Psi_{2}$, $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$ is a u-space if and only if ψ is a u-function in the sense of DKS. However, we can construct a counter-example of this result. We put

$$
\psi_{0}(t)= \begin{cases}-\frac{1}{2} t+1, & \text { if } \quad 0 \leq t \leq \frac{1}{3} \\ \frac{3}{2} t^{2}-\frac{3}{2} t+\frac{7}{6}, & \text { if } \quad \frac{1}{3}<t \leq \frac{2}{3} \\ \frac{1}{2} t+\frac{1}{2}, & \text { if } \quad \frac{2}{3}<t \leq 1\end{cases}
$$

Then it is obvious that $\psi_{0} \in \Psi_{2}$ and ψ_{0} is differentiable on $(0,1)$. Hence ψ_{0} is a u -function in the sense of DKS. However, $\left(\mathbb{C}^{2},\|\cdot\|_{\psi_{0}}\right)$ is not a u-space. Indeed, we consider the two points $x(0)$ and $x\left(\frac{1}{3}\right)$ in \mathbb{C}^{2}. Clearly, $\|x(0)\|_{\psi_{0}}=\left\|x\left(\frac{1}{3}\right)\right\|_{\psi_{0}}=1$ and $\left\|x(0)+x\left(\frac{1}{3}\right)\right\|_{\psi_{0}}=2$. Note that $\partial \widetilde{\psi_{0}}(0)=\left[-1,-\frac{1}{2}\right]$ and $\partial \widetilde{\psi_{0}}\left(\frac{1}{3}\right)=\left\{-\frac{1}{2}\right\}$. Then, by Lemma 1.4, we have

$$
D\left(\mathbb{C}^{2}, x(0)\right)=\left\{\binom{1}{c(1+a)}: a \in\left[-1,-\frac{1}{2}\right],|c|=1\right\}
$$

and

$$
D\left(\mathbb{C}^{2}, x\left(\frac{1}{3}\right)\right)=\left\{\binom{1}{\frac{1}{2}}\right\} .
$$

Hence $D\left(\mathbb{C}^{2}, x(0)\right) \neq D\left(\mathbb{C}^{2}, x\left(\frac{1}{3}\right)\right)$. Thus $\left(\mathbb{C}^{2},\|\cdot\|_{\psi_{0}}\right)$ is not a u-space.
Smoothness of the points 0 and 1 for ψ is important to characterize the U convexity of $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$. Let us present the correct version.

Theorem 2.3. Let $\psi \in \Psi_{2}$. Then the following are equivalent:
(i) $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$ is a u-space.
(ii) For every s and t with $0 \leq s<t \leq 1$, we have $\partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$, whenever ψ is affine on $[s, t]$.
(iii) ψ is a u-function.

Proof. (i) \Rightarrow (ii): Assume that $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$ is a u-space. Fix s and t with $0 \leq s<t \leq 1$. There is no case when $s=0$ and $t=1$. Let ψ be affine on $[s, t]$. As the proof of Theorem 14 in [3], we have $\|x(s)\|_{\psi}=\|x(t)\|_{\psi}=1$ and $\|x(s)+x(t)\|_{\psi}=2$. Hence it follows from the assumption that $D\left(\mathbb{C}^{2}, x(s)\right)=D\left(\mathbb{C}^{2}, x(t)\right)$. We show $\partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$. Take any $a \in \partial \widetilde{\psi}(s)$. If $0<s<t<1$, then from Lemma 1.4,

$$
f:=\binom{\psi(s)-a s}{\psi(s)+a(1-s)} \in D\left(\mathbb{C}^{2}, x(s)\right) .
$$

By $f \in D\left(\mathbb{C}^{2}, x(t)\right)$ and Lemma 1.4, there exists $b \in \partial \widetilde{\psi}(t)$ satisfying

$$
f=\binom{\psi(t)-b t}{\psi(t)+b(1-t)} .
$$

So $\psi(s)-a s=\psi(t)-b t$ and $\psi(s)+a(1-s)=\psi(t)+b(1-t)$. These imply $a=b$. Hence we have $a \in \partial \widetilde{\psi}(t)$. If $0<s<t=1$, then $f \in D\left(\mathbb{C}^{2}, x(s)\right)$. By $f \in D\left(\mathbb{C}^{2}, x(1)\right)$ and Lemma 1.4, there exist c with $|c|=1$ and $b \in \partial \widetilde{\psi}(1)$ such that

$$
f=\binom{c(1-b)}{1}
$$

So $\psi(s)-a s=c(1-b)$ and $\psi(s)+a(1-s)=1$. Note that $\psi(s)-a s=1-b$ because $\psi(s)-a s \geq 0$ and $1-b \geq 0$. Hence $a=b$, that is, $a \in \partial \widetilde{\psi}(1)$. In other cases, we similarly have $a \in \partial \widetilde{\psi}(t)$. Hence $\partial \widetilde{\psi}(s) \subset \partial \widetilde{\psi}(t)$. Similarly, $\partial \widetilde{\psi}(s) \supset \partial \widetilde{\psi}(t)$. Thus we have (i) \Rightarrow (ii).
(ii) \Rightarrow (i): Assume that the assertion (ii) holds. We show that $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$ is a u-space. Take any $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right) \in S_{\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)}$ with $\|x+y\|_{\psi}=2$. Put

$$
s=\frac{\left|x_{1}\right|}{\left|x_{0}\right|+\left|x_{1}\right|} \quad \text { and } \quad t=\frac{\left|y_{1}\right|}{\left|y_{0}\right|+\left|y_{1}\right|}
$$

Without loss of generality, we may assume that $s \leq t$. As the proof of Theorem 14 in [3], we have

$$
\begin{aligned}
2 & \leq\left\|\left(\left|x_{0}\right|+\left|y_{0}\right|,\left|x_{1}\right|+\left|y_{1}\right|\right)\right\|_{\psi} \\
& =\left(\left|x_{0}\right|+\left|y_{0}\right|+\left|x_{1}\right|+\left|y_{1}\right|\right) \psi((1-\lambda) s+\lambda t) \\
& \leq\left(\left|x_{0}\right|+\left|y_{0}\right|+\left|x_{1}\right|+\left|y_{1}\right|\right)\{(1-\lambda) \psi(s)+\lambda \psi(t)\} \\
& =\|x\|_{\psi}+\|y\|_{\psi}=2
\end{aligned}
$$

where $\lambda=\left(\left|y_{0}\right|+\left|y_{1}\right|\right) /\left(\left|x_{0}\right|+\left|y_{0}\right|+\left|x_{1}\right|+\left|y_{1}\right|\right)$. So ψ is affine on $[s, t]$. Hence it follows from the assumption that $\partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$.

We first show $D\left(\mathbb{C}^{2}, x(s)\right)=D\left(\mathbb{C}^{2}, x(t)\right)$. We consider the case when $0<s<$ $t<1$. Take any $f \in D\left(\mathbb{C}^{2}, x(s)\right)$. By Lemma 1.4, there exists $a \in \partial \widetilde{\psi}(s)$ satisfying

$$
f=\binom{\psi(s)-a s}{\psi(s)+a(1-s)}
$$

From $a \in \partial \widetilde{\psi}(s)$ and $a \in \partial \widetilde{\psi}(t)$, we have $\psi(s)-\psi(t)=a(s-t)$, which implies $\psi(s)-a s=\psi(t)-a t$ and $\psi(s)+a(1-s)=\psi(t)+a(1-t)$. Hence it follows from $a \in \partial \widetilde{\psi}(t)$ and Lemma 1.4 that

$$
f=\binom{\psi(t)-a t}{\psi(t)+a(1-t)} \in D\left(\mathbb{C}^{2}, x(t)\right)
$$

We next consider the case when $0=s<t<1$. Take any $f \in D\left(\mathbb{C}^{2}, x(0)\right)$. Then there exist $a \in \partial \widetilde{\psi}(0)$ and c with $|c|=1$ satisfying

$$
f=\binom{1}{c(1+a)}
$$

By $a \in \partial \widetilde{\psi}(0)$ and $a \in \partial \widetilde{\psi}(t)$, we obtain $\psi(0)-\psi(t)=a(0-t)$, which implies $1=\psi(t)-a t$ and $1+a=\psi(t)+a(1-t)$. Similarly, by $-1 \in \partial \widetilde{\psi}(0)=\partial \widetilde{\psi}(t)$, we
obtain $1=\psi(t)+t$ and $0=\psi(t)-(1-t)$. Hence $a=-1$, that is, $c(1+a)=0=$ $\psi(t)+a(1-t)$. Hence we have from Lemma 1.4,

$$
f=\binom{\psi(t)-a t}{\psi(t)+a(1-t)} \in D\left(\mathbb{C}^{2}, x(t)\right)
$$

In other cases, we similarly have $f \in D\left(\mathbb{C}^{2}, x(t)\right)$. Hence we have $D\left(\mathbb{C}^{2}, x(s)\right) \subset$ $D\left(\mathbb{C}^{2}, x(t)\right)$. Similarly, we have $D\left(\mathbb{C}^{2}, x(s)\right) \supset D\left(\mathbb{C}^{2}, x(t)\right)$. Hence $D\left(\mathbb{C}^{2}, x(s)\right)=$ $D\left(\mathbb{C}^{2}, x(t)\right)$. Namely,

$$
\begin{equation*}
D\left(\mathbb{C}^{2},\left(\left|x_{0}\right|,\left|x_{1}\right|\right)\right)=D\left(\mathbb{C}^{2},\left(\left|y_{0}\right|,\left|y_{1}\right|\right)\right) \tag{2.1}
\end{equation*}
$$

Similarly, we consider the points x and $\frac{x+y}{2}$, and we can obtain

$$
\begin{equation*}
D\left(\mathbb{C}^{2},\left(\left|x_{0}\right|,\left|x_{1}\right|\right)\right)=D\left(\mathbb{C}^{2},\left(\left|\left(x_{0}+y_{0}\right) / 2\right|,\left|\left(x_{1}+y_{1}\right) / 2\right|\right)\right) \tag{2.2}
\end{equation*}
$$

We next show $D\left(\mathbb{C}^{2}, x\right)=D\left(\mathbb{C}^{2}, y\right)$. Fix $f=\left(\alpha_{0}, \alpha_{1}\right) \in D\left(\mathbb{C}^{2}, x\right)$. Put ρ_{i}, η_{i} and ξ_{i} as $\rho_{i}=\arg x_{i} \in[0,2 \pi), \eta_{i}=\arg y_{i} \in[0,2 \pi)$ and $\xi_{i}=\arg \left(x_{i}+y_{i}\right) / 2 \in[0,2 \pi)$ for all $i=0,1$, where $\arg 0=0$. Then we have from (2.1) and (2.2),

$$
g:=\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},\left(\left|y_{0}\right|,\left|y_{1}\right|\right)\right)
$$

and

$$
h:=\left(e^{i\left(\rho_{0}-\xi_{0}\right)} \alpha_{0}, e^{i\left(\rho_{1}-\xi_{1}\right)} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},(x+y) / 2\right)
$$

Note that $D\left(\mathbb{C}^{2},(x+y) / 2\right) \subset D\left(\mathbb{C}^{2}, x\right) \cap D\left(\mathbb{C}^{2}, y\right)$. Then by $h \in D\left(\mathbb{C}^{2}, x\right)$, we have

$$
\begin{aligned}
1 & =\operatorname{Re}\langle h, x\rangle=\operatorname{Re}\left(e^{i\left(\rho_{0}-\xi_{0}\right)} \alpha_{0} x_{0}\right)+\operatorname{Re}\left(e^{i\left(\rho_{1}-\xi_{1}\right)} \alpha_{1} x_{1}\right) \\
& \leq\left|e^{i\left(\rho_{0}-\xi_{0}\right)} \alpha_{0} x_{0}\right|+\left|e^{i\left(\rho_{1}-\xi_{1}\right)} \alpha_{1} x_{1}\right| \leq\|f\|\|x\|_{\psi}=1
\end{aligned}
$$

which implies $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} x_{i} \geq 0$ for all $i=0,1$. We similarly have from $h \in D\left(\mathbb{C}^{2}, y\right)$, $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} y_{i} \geq 0$ for all $i=0,1$.

From these results we show $e^{i \eta_{i}} \alpha_{i}=e^{i \rho_{i}} \alpha_{i}$ for all i with $x_{i} \neq 0$ and $y_{i} \neq 0$. Let $x_{i} \neq 0$ and $y_{i} \neq 0$. We may assume $\alpha_{i} \neq 0$. Then we have $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} x_{i}=$ $e^{i\left(2 \rho_{i}-\xi_{i}\right)} \alpha_{i}\left|x_{i}\right| \geq 0$. Hence we obtain

$$
\begin{equation*}
e^{i\left(2 \rho_{i}-\xi_{i}\right)} \alpha_{i} \geq 0 \tag{2.3}
\end{equation*}
$$

Also, we have $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} y_{i}=e^{i\left(\rho_{i}-\xi_{i}+\eta_{i}\right)} \alpha_{i}\left|y_{i}\right| \geq 0$. Hence we obtain

$$
\begin{equation*}
e^{i\left(\rho_{i}-\xi_{i}+\eta_{i}\right)} \alpha_{i} \geq 0 \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we have $e^{i\left(\rho_{i}-\eta_{i}\right)} \geq 0$ and so $\rho_{i}=\eta_{i}$. Thus $e^{i \eta_{i}} \alpha_{i}=e^{i \rho_{i}} \alpha_{i}$.
Moreover we show $\left(e^{i \eta_{0}} \alpha_{0}, e^{i \eta_{1}} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},\left(\left|y_{0}\right|,\left|y_{1}\right|\right)\right)$. To do it, we show

$$
\begin{equation*}
\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},\left(\left|y_{0}\right|,\left|y_{1}\right|\right)\right) \tag{2.5}
\end{equation*}
$$

We consider the case where $x_{0} \neq 0$ and $y_{0} \neq 0$. By $e^{i \eta_{0}} \alpha_{0}=e^{i \rho_{0}} \alpha_{0}$, we have $g=\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right)$. Hence we get (2.5). We consider the case where $x_{0}=0$. Then by $\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},\left(\left|x_{0}\right|,\left|x_{1}\right|\right)\right)$, we have

$$
\left\langle\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right),\left(0,\left|x_{1}\right|\right)\right\rangle=\left\langle\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right),\left(0,\left|x_{1}\right|\right)\right\rangle=1
$$

Also, we have

$$
\left\|\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right)\right\|=\left\|\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right)\right\|=1
$$

Hence $\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},\left(\left|x_{0}\right|,\left|x_{1}\right|\right)\right)$. Thus by (2.1), we have (2.5). We consider the case where $y_{0}=0$. Then by $\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},\left(\left|y_{0}\right|,\left|y_{1}\right|\right)\right)$, we have

$$
\left\langle\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right),\left(0,\left|y_{1}\right|\right)\right\rangle=\left\langle\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}\right),\left(0,\left|y_{1}\right|\right)\right\rangle=1 .
$$

Hence we obtain (2.5). Thus (2.5) holds for all cases. Similarly, we can obtain $\left(e^{i \eta_{0}} \alpha_{0}, e^{i \eta_{1}} \alpha_{1}\right) \in D\left(\mathbb{C}^{2},\left(\left|y_{0}\right|,\left|y_{1}\right|\right)\right)$ by using (2.5). Hence $f=\left(\alpha_{0}, \alpha_{1}\right) \in D\left(\mathbb{C}^{2}, y\right)$. Therefore we have $D\left(\mathbb{C}^{2}, x\right) \subset D\left(\mathbb{C}^{2}, y\right)$. Similarly, $D\left(\mathbb{C}^{2}, x\right) \supset D\left(\mathbb{C}^{2}, y\right)$. Thus we have $(\mathrm{ii}) \Rightarrow$ (i).
(ii) \Rightarrow (iii): Assume that assertion (ii) holds. Put s and t with $0 \leqq s<t \leqq 1$. Let $\underset{\sim}{\psi}$ be affine on $[s, t]$. Then it follows from the assumption that $\partial \widetilde{\sim}(s)=\partial \widetilde{\psi}(t)$. By $\widetilde{\psi}_{L}^{\prime}(s) \in \partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$, we have $\widetilde{\psi}_{L}^{\prime}(t) \leq \widetilde{\psi}_{L}^{\prime}(s) \leq \widetilde{\psi}_{R}^{\prime}(t)$, where $\widetilde{\psi}_{L}^{\prime}(t)\left(\right.$ resp. $\left.\widetilde{\psi}_{R}^{\prime}(t)\right)$ is the left (resp. right) derivative of $\widetilde{\psi}$ at t. We also have by the convexity of $\widetilde{\psi}$, $\widetilde{\psi}_{L}^{\prime}(s) \leq \widetilde{\psi}_{R}^{\prime}(s) \leq \widetilde{\psi}_{L}^{\prime}(t) \leq \widetilde{\psi}_{R}^{\prime}(t)$. These imply that $\widetilde{\psi}$ is differentiable at s. Similarly, $\widetilde{\psi}$ is differentiable at t. Thus we have (ii) \Rightarrow (iii).
(iii) \Rightarrow (ii): Assume that ψ is a u-function. Take s and t with $0 \leq s<t \leq 1$. Let ψ be affine on $[s, t]$. From $\widetilde{\psi}_{R}^{\prime}(s)=\widetilde{\psi}_{L}^{\prime}(t)$ and the differentiability, we get $\partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$. Thus we have (iii) \Rightarrow (ii).

3. U-CONVEXity of absolute norms on \mathbb{C}^{n}

In this section, we characterize the U-convexity of $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$. To do it, we shall introduce the following.

Definition 3.1. $\psi \in \Psi_{n}$ is said to be a u-function if, for any $s, t \in \Delta_{n}$ with $s \neq t$, then $\partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$, whenever ψ is affine on $[s, t]$.

When $n=2$, this coincides with the notion of u-function in Definition 2.1, by Theorem 2.3.

Theorem 3.2. Let $\psi \in \Psi_{n}$. Then the following are equivalent:
(i) $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ is a u-space.
(ii) ψ is a u-function.

Proof. (i) \Rightarrow (ii): For each $t=\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \in \Delta_{n}$, we put

$$
t_{0}=1-\sum_{i=1}^{n-1} t_{i} \quad \text { and } \quad x(t)=\frac{1}{\psi(t)}\left(t_{0}, t_{1}, \ldots, t_{n-1}\right) .
$$

Assume that $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ is a u-space. Fix $s=\left(s_{1}, \ldots, s_{n-1}\right) \in \Delta_{n}$ and $t=$ $\left(t_{1}, \ldots, t_{n-1}\right) \in \Delta_{n}$ with $s \neq t$. Let ψ be affine on $[s, t]$. As the proof of Theorem 2.3, we obtain $\|x(s)+x(t)\|_{\psi}=2$. Hence we have from the assumption, $D\left(\mathbb{C}^{n}, x(s)\right)=D\left(\mathbb{C}^{n}, x(t)\right)$. We show $\partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$. Take any $a \in \partial \widetilde{\psi}(s)$. By

Lemma 1.5,

$$
f:=\left(\begin{array}{c}
\psi(s)+\left\langle a, p_{0}-s\right\rangle \\
\psi(s)+\left\langle a, p_{1}-s\right\rangle \\
\vdots \\
\psi(s)+\left\langle a, p_{n-1}-s\right\rangle
\end{array}\right) \in D\left(\mathbb{C}^{n}, x(s)\right)
$$

Hence it follows from $f \in D\left(\mathbb{C}^{n}, x(t)\right)$ and Lemma 1.5 that there exist $c_{0}, c_{1}, \ldots, c_{n-1}$ with $\left|c_{j}\right|=1(\forall j)$ and $b \in \partial \widetilde{\psi}(t)$ satisfying

$$
f=\left(\begin{array}{c}
c_{0}\left(\psi(t)+\left\langle b, p_{0}-t\right\rangle\right) \\
c_{1}\left(\psi(t)+\left\langle b, p_{1}-t\right\rangle\right) \\
\vdots \\
c_{n-1}\left(\psi(t)+\left\langle b, p_{n-1}-t\right\rangle\right)
\end{array}\right)
$$

So we have $\psi(s)+\left\langle a, p_{j}-s\right\rangle=c_{j}\left(\psi(t)+\left\langle b, p_{j}-t\right\rangle\right)$ for all $j \in I_{n}$. Note that since $\psi(t)+\left\langle b, p_{j}-t\right\rangle \geq 0$ for all $j \in I_{n}$, we have for all $j \in I_{n}, \psi(s)+\left\langle a, p_{j}-s\right\rangle=$ $\psi(t)+\left\langle b, p_{j}-t\right\rangle$. Hence we have for all $u \in \mathbb{R}^{n-1}$,

$$
\begin{aligned}
& \widetilde{\psi}(u)-\widetilde{\psi}(t)-\langle a, u-t\rangle \\
& =\widetilde{\psi}(u)-\widetilde{\psi}(s)-\langle a, u-s\rangle+\widetilde{\psi}(s)-\widetilde{\psi}(t)+\langle a, t-s\rangle \\
& \geq \psi(s)-\psi(t)+\langle a, t-s\rangle \\
& =\psi(s)-\psi(t)+\left\langle a, \sum_{t=0}^{n-1} t_{j} p_{j}-s\right\rangle \\
& =\sum_{t=0}^{n-1} t_{j}\left(\psi(s)+\left\langle a, p_{j}-s\right\rangle\right)-\psi(t) \\
& =\sum_{t=0}^{n-1} t_{j}\left(\psi(t)+\left\langle b, p_{j}-t\right\rangle\right)-\psi(t) \\
& =\psi(t)+\left\langle b, \sum_{t=0}^{n-1} t_{j} p_{j}-t\right\rangle-\psi(t)=0,
\end{aligned}
$$

which implies $a \in \partial \widetilde{\psi}(t)$. Hence $\partial \widetilde{\psi}(s) \subset \partial \widetilde{\psi}(t)$. Similarly, $\partial \widetilde{\psi}(s) \supset \partial \widetilde{\psi}(t)$. Thus ψ is a u -function.
$($ ii $) \Rightarrow(\mathrm{i})$: For each $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{C}^{n}$, we put $|x|$ as $|x|=$ $\left(\left|x_{0}\right|,\left|x_{1}\right|, \ldots,\left|x_{n-1}\right|\right)$. Assume that ψ is a u-function. We show that $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ is a u-space. Take any $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in S_{\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)}$ and $y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in$ $S_{\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)}$ with $\|x+y\|_{\psi}=2$. For each i, put s_{i} and t_{i} as

$$
s_{i}=\frac{\left|x_{i}\right|}{\sum_{j=0}^{n-1}\left|x_{j}\right|} \quad \text { and } \quad t_{i}=\frac{\left|y_{i}\right|}{\sum_{j=0}^{n-1}\left|x_{j}\right|}
$$

We also put $s=\left(s_{1}, \ldots, s_{n-1}\right) \in \Delta_{n}, t=\left(t_{1}, \ldots, t_{n-1}\right) \in \Delta_{n}$ and

$$
\lambda=\frac{\sum_{j=0}^{n-1}\left|y_{j}\right|}{\sum_{j=0}^{n-1}\left(\left|x_{j}\right|+\left|y_{j}\right|\right)} .
$$

Then since

$$
\begin{aligned}
2 & \leq\left\|\left(\left|x_{0}\right|+\left|y_{0}\right|,\left|x_{1}\right|+\left|y_{1}\right|, \ldots,\left|x_{n-1}\right|+\left|y_{n-1}\right|\right)\right\|_{\psi} \\
& =\sum_{j=0}^{n-1}\left(\left|x_{j}\right|+\left|y_{j}\right|\right) \psi((1-\lambda) s+\lambda t) \\
& \leq \sum_{j=0}^{n-1}\left(\left|x_{j}\right|+\left|y_{j}\right|\right)\{(1-\lambda) \psi(s)+\lambda \psi(t)\} \\
& =\|x\|_{\psi}+\|y\|_{\psi}=2,
\end{aligned}
$$

it follows that ψ is affine on $[s, t]$. So $\partial \widetilde{\psi}(s)=\partial \widetilde{\psi}(t)$. We first show $D\left(\mathbb{C}^{n}, x(s)\right)=$ $D\left(\mathbb{C}^{n}, x(t)\right)$. Fix $f \in D\left(\mathbb{C}^{n}, x(s)\right)$. Then there exist $a \in \partial \widetilde{\psi}(s)$ and $\left\{c_{j}\right\}_{j=0}^{n-1}$ such that

$$
f=\left(\begin{array}{c}
c_{0}\left(\psi(s)+\left\langle a, p_{0}-s\right\rangle\right) \\
c_{1}\left(\psi(s)+\left\langle a, p_{1}-s\right\rangle\right) \\
\vdots \\
c_{n-1}\left(\psi(s)+\left\langle a, p_{n-1}-s\right\rangle\right)
\end{array}\right)
$$

where $c_{j}=1$ for $j \in I_{n}$ with $s_{j}>0$, and $\left|c_{j}\right|=1$ for $j \in I_{n}$ with $s_{j}=0$. In order to show $f \in D\left(\mathbb{C}^{n}, x(t)\right)$, from Lemma 1.5, it is enough to show the following:
(a): $a \in \partial \widetilde{\psi}(t)$,
(b): For all $i \in I_{n}$, we have $\psi(s)+\left\langle a, p_{i}-s\right\rangle=\psi(t)+\left\langle a, p_{i}-t\right\rangle$,
(c): For all $i \in I_{n}$ with $t_{i}>0$, we have $c_{i}=1$ or $\psi(s)+\left\langle a, p_{i}-s\right\rangle=0$.

The assertion (a) is clear. We also have from $a \in \partial \widetilde{\psi}(s)$ and $a \in \partial \widetilde{\psi}(t), \psi(t)-\psi(s)=$ $\langle a, t-s\rangle$, which implies (b). We show the assertion (c). Assume that $t_{0}>0$. Then we show that $c_{0}=1$ or $\psi(s)+\left\langle a, p_{0}-s\right\rangle=0$. If $s_{0}>0$, then $c_{0}=1$. Let $s_{0}=0$. Put g and h as

$$
g=\left(\begin{array}{c}
\psi(s)+\left\langle a, p_{0}-s\right\rangle \\
\psi(s)+\left\langle a, p_{1}-s\right\rangle \\
\vdots \\
\psi(s)+\left\langle a, p_{n-1}-s\right\rangle
\end{array}\right) \quad \text { and } \quad h=\left(\begin{array}{c}
0 \\
\psi(s)+\left\langle a, p_{1}-s\right\rangle \\
\vdots \\
\psi(s)+\left\langle a, p_{n-1}-s\right\rangle
\end{array}\right) .
$$

From Lemma 1.5, (a) and (b), we have $g \in D\left(\mathbb{C}^{n}, x(s)\right)$ and $g \in D\left(\mathbb{C}^{n}, x(t)\right)$. By $s_{0}=0$, we have $\langle h, x(s)\rangle=\langle g, x(s)\rangle=1$, which implies $h \in D\left(\mathbb{C}^{n}, x(s)\right)$. Hence, by Lemma 1.5, there exists $c \in \partial \widetilde{\psi}(s)$ such that

$$
h=\left(\begin{array}{c}
\psi(s)+\left\langle c, p_{0}-s\right\rangle \\
\vdots \\
\psi(s)+\left\langle c, p_{n-1}-s\right\rangle
\end{array}\right) .
$$

Since $c \in \partial \widetilde{\psi}(t)$ and $\psi(t)+\left\langle c, p_{i}-t\right\rangle=\psi(s)+\left\langle c, p_{i}-s\right\rangle$ for every $i \in I_{n}$, we have $h \in D\left(\mathbb{C}^{n}, x(t)\right)$. Hence $0=\langle g, x(t)\rangle-\langle h, x(t)\rangle=t_{0}\left(\psi(t)+\left\langle a, p_{0}-t\right\rangle\right)$. Therefore we have by $t_{0}>0, \psi(s)+\left\langle a, p_{0}-s\right\rangle=\psi(t)+\left\langle a, p_{0}-t\right\rangle=0$. Similarly, for all $i=1,2, \ldots, n-1$ with $t_{i}>0$, we have $c_{i}=1$ or $\psi(s)+\left\langle a, p_{i}-s\right\rangle=0$. Thus $D\left(\mathbb{C}^{n}, x(s)\right)=D\left(\mathbb{C}^{n}, x(t)\right)$, that is,

$$
\begin{equation*}
D\left(\mathbb{C}^{n},|x|\right)=D\left(\mathbb{C}^{n},|y|\right) . \tag{3.1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
D\left(\mathbb{C}^{n},|x|\right)=D\left(\mathbb{C}^{n},|(x+y) / 2|\right) \tag{3.2}
\end{equation*}
$$

We next show $D\left(\mathbb{C}^{n}, x\right)=D\left(\mathbb{C}^{n}, y\right)$. Fix $f=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n}, x\right)$. Put ρ_{i}, η_{i} and ξ_{i} as $\rho_{i}=\arg x_{i} \in[0,2 \pi), \eta_{i}=\arg y_{i} \in[0,2 \pi)$ and $\xi_{i}=\arg \left(x_{i}+y_{i}\right) / 2 \in[0,2 \pi)$ for all i, where $\arg 0=0$. Then by (3.1) and (3.2), we have

$$
g:=\left(e^{i \rho_{0}} \alpha_{0}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},|x|\right)=D\left(\mathbb{C}^{n},|y|\right)
$$

and

$$
h:=\left(e^{i\left(\rho_{0}-\xi_{0}\right)} \alpha_{0}, \ldots, e^{i\left(\rho_{n-1}-\xi_{n-1}\right)} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},(x+y) / 2\right)
$$

Note that $D\left(\mathbb{C}^{n},(x+y) / 2\right) \subset D\left(\mathbb{C}^{n}, x\right) \cap D\left(\mathbb{C}^{n}, y\right)$. Then by $h \in D\left(\mathbb{C}^{n}, x\right)$, we have

$$
\begin{aligned}
1 & =\operatorname{Re}\langle h, x\rangle=\sum_{i=0}^{n-1} \operatorname{Re}\left(e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} x_{i}\right) \\
& \leq \sum_{i=0}^{n-1}\left|e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} x_{i}\right| \leq\|f\|\|x\|_{\psi}=1,
\end{aligned}
$$

which implies $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} x_{i} \geq 0$ for all i. Similarly, we have by $h \in D\left(\mathbb{C}^{n}, y\right)$, $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} y_{i} \geq 0$ for all i.

Moreover we show that $e^{i \rho_{i}} \alpha_{i}=e^{i \eta_{i}} \alpha_{i}$ for all i with $x_{i} \neq 0$ and $y_{i} \neq 0$. Let $x_{i} \neq 0$ and $y_{i} \neq 0$. We may assume $\alpha_{i} \neq 0$. Then $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} x_{i}=e^{i\left(2 \rho_{i}-\xi_{i}\right)} \alpha_{i}\left|x_{i}\right| \geq 0$ and hence $e^{i\left(2 \rho_{i}-\xi_{i}\right)} \alpha_{i} \geq 0$. We also have $e^{i\left(\rho_{i}-\xi_{i}\right)} \alpha_{i} y_{i}=e^{i\left(\rho_{i}-\xi_{i}+\eta_{i}\right)} \alpha_{i}\left|y_{i}\right| \geq 0$ and hence $e^{i\left(\rho_{i}-\xi_{i}+\eta_{i}\right)} \alpha_{i} \geq 0$. These imply $e^{i\left(\rho_{i}-\eta_{i}\right)} \geq 0$. Hence $\rho_{i}=\eta_{i}$ and so $e^{i \rho_{i}} \alpha_{i}=e^{i \eta_{i}} \alpha_{i}$.

From this result, we show $\left(e^{i \eta_{0}} \alpha_{0}, \ldots, e^{i \eta_{n-1}} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},|y|\right)$. To do it, we show

$$
\begin{equation*}
\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},|y|\right) . \tag{3.3}
\end{equation*}
$$

Let $x_{0} \neq 0$ and $y_{0} \neq 0$. Then by $e^{i \rho_{0}} \alpha_{0}=e^{i \eta_{0}} \alpha_{0}$, we have

$$
g=\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right)
$$

By $g \in D\left(\mathbb{C}^{n},|y|\right)$, we have (3.3). Let $x_{0}=0$. By $\left(e^{i \rho_{0}} \alpha_{0}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right) \in$ $D\left(\mathbb{C}^{n},|x|\right)$ we have

$$
\begin{aligned}
& \left\langle\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right),\left(0,\left|x_{1}\right|, \ldots,\left|x_{n-1}\right|\right)\right\rangle \\
& \quad=\left\langle\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right),\left(0,\left|x_{1}\right|, \ldots,\left|x_{n-1}\right|\right)\right\rangle=1
\end{aligned}
$$

and

$$
\left\|\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right)\right\|=\left\|\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right)\right\|=1
$$

and hence

$$
\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},|x|\right)
$$

Thus by (3.1) we obtain (3.3). If $y_{0}=0$, then by $\left(e^{i \rho_{0}} \alpha_{0}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right) \in$ $D\left(\mathbb{C}^{n},|y|\right)$, we have

$$
\begin{aligned}
& \left\langle\left(e^{i \eta_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right),\left(0,\left|y_{1}\right|, \ldots,\left|y_{n-1}\right|\right)\right\rangle \\
& \quad=\left\langle\left(e^{i \rho_{0}} \alpha_{0}, e^{i \rho_{1}} \alpha_{1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right),\left(0,\left|y_{1}\right|, \ldots,\left|y_{n-1}\right|\right)\right\rangle=1
\end{aligned}
$$

Hence we have (3.3). Thus (3.3) holds for all cases. Similarly, we obtain

$$
\left(e^{i \eta_{0}} \alpha_{0}, e^{i \eta_{1}} \alpha_{1}, e^{i \rho_{2}} \alpha_{2}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},|y|\right)
$$

by using (3.3). In the same way, we can show that for each i,

$$
\left(e^{i \eta_{0}} \alpha_{0}, \ldots, e^{i \eta_{i-1}} \alpha_{i-1}, e^{i \eta_{i}} \alpha_{i}, e^{i \rho_{i+1}} \alpha_{i+1}, \ldots, e^{i \rho_{n-1}} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},|y|\right)
$$

Hence we have

$$
\left(e^{i \eta_{0}} \alpha_{0}, e^{i \eta_{1}} \alpha_{1}, \ldots, e^{i \eta_{n-1}} \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n},|y|\right)
$$

and so $f=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) \in D\left(\mathbb{C}^{n}, y\right)$. Therefore we have $D\left(\mathbb{C}^{n}, x\right) \subset D\left(\mathbb{C}^{n}, y\right)$. Similarly, $D\left(\mathbb{C}^{n}, x\right) \supset D\left(\mathbb{C}^{n}, y\right)$. Thus $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ is a u-space and this completes the proof.

As a direct consequence of Proposition 1.1 and Theorem 3.2, we obtain the following.

Theorem 3.3. Let $\psi \in \Psi_{n}$. Then the following are equivalent:
(i) $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ is a U-space.
(ii) ψ is a u-function.

$$
\text { 4. U-CONVEXITY OF }\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\psi}
$$

In this section, we characterize the U-convexity of $\left(X_{1} \oplus \cdots \oplus X_{n}\right)_{\psi}$.
Theorem 4.1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $\psi \in \Psi_{n}$. Then the following are equivalent:
(i) $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$ is a u-space.
(ii) $X_{1}, X_{2}, \ldots, X_{n}$ and $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ are u-spaces.
(iii) $X_{1}, X_{2}, \ldots, X_{n}$ are u-spaces and ψ is a u-function.

Proof. From Theorem 3.2, it is enough to show (ii) \Rightarrow (i). Assume that $X_{1}, X_{2}, \ldots, X_{n}$ and $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ are u-spaces. We put $X=\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$. Fix $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S_{X}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in S_{X}$ with $\|x+y\|_{\psi}=2$. We also put $z=\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots,\left\|x_{n}\right\|\right)$ and $w=\left(\left\|y_{1}\right\|,\left\|y_{2}\right\|, \ldots,\left\|y_{n}\right\|\right)$. We shall show $D(X, x) \subset D(X, y)$. Fix

$$
f=\left(\begin{array}{c}
a_{1} f_{1} \\
a_{2} f_{2} \\
\vdots \\
a_{n} f_{n}
\end{array}\right) \in D(X, x)
$$

where $\left(a_{1}, \ldots, a_{n}\right) \in D\left(\mathbb{C}^{n}, z\right), f_{i} \in D\left(X_{i}, x_{i}\right)$ for $i \in I_{n}$ with $x_{i} \neq 0$, and $f_{i} \in$ $S_{X_{i}^{*}}$ for $i \in I_{n}$ with $x_{i}=0$. For each $i \in I_{n}$ with $y_{i} \neq 0$, take a $g_{i} \in D\left(X_{i}, y_{i}\right)$. For each $i \in I_{n}$ with $y_{i}=0$, take a $g_{i}^{\prime} \in S_{X_{i}}$. Moreover, we put

$$
h_{i}= \begin{cases}f_{i}, & \text { if } \quad a_{i} \neq 0 \\ g_{i}, & \text { if } \\ a_{i}=0 \text { and } y_{i} \neq 0, \\ g_{i}^{\prime}, & \text { if } \\ a_{i}=0 \text { and } y_{i}=0\end{cases}
$$

for each $i \in I_{n}$. Note that

$$
f=\left(\begin{array}{c}
a_{1} h_{1} \\
\vdots \\
a_{n} h_{n}
\end{array}\right)
$$

In order to show $f \in D(X, y)$, from Lemma 1.6, it is enough to show the following: (a): $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in D\left(\mathbb{C}^{n}, w\right)$,
(b): For $i \in I_{n}$ with $y_{i} \neq 0, h_{i} \in D\left(X_{i}, y_{i}\right)$,
(c): For $i \in I_{n}$ with $y_{i}=0, h_{i} \in S_{X_{i}}$.

Obviously, the assertion (c) holds. We show (a). From $2=\|x+y\|_{\psi} \leq\|z+w\|_{\psi} \leq 2$, we obtain $\|z+w\|_{\psi}=2$ and $\|z\|_{\psi}=\|w\|_{\psi}=1$. Hence, since $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right.$) is a u-space, we have

$$
\begin{equation*}
D\left(\mathbb{C}^{n}, z\right)=D\left(\mathbb{C}^{n}, w\right) \tag{4.1}
\end{equation*}
$$

which implies (a). Similarly, we have

$$
\begin{equation*}
D\left(\mathbb{C}^{n},\left(\left\|\left(x_{1}+y_{1}\right) / 2\right\|, \ldots,\left\|\left(x_{n}+y_{n}\right) / 2\right\|\right)\right)=D\left(\mathbb{C}^{n}, z\right) \tag{4.2}
\end{equation*}
$$

We next show (b). Fix $i \in I_{n}$ with $y_{i} \neq 0$. If $a_{i}=0$, then $h_{i}=g_{i} \in D\left(X_{i}, y_{i}\right)$. Let $a_{i} \neq 0$. Assume that $x_{i}=0$. Then both $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(a_{1}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{n}\right)$ belong to $D\left(\mathbb{C}^{n}, z\right)$. From (4.1), they also belong to $D\left(\mathbb{C}^{n}, w\right)$. Hence

$$
a_{i}\left\|y_{i}\right\|=\left\langle\left(a_{1}, \ldots, a_{n}\right), w\right\rangle-\left\langle\left(a_{1}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{n}\right), w\right\rangle=0
$$

which is a contradiction. So $x_{i} \neq 0$. Note that $a_{i} \neq 0$ and

$$
\left(a_{1}, \ldots, a_{n}\right) \in D\left(\mathbb{C}^{n},\left(\left\|\left(x_{1}+y_{1}\right) / 2\right\|, \ldots,\left\|\left(x_{n}+y_{n}\right) / 2\right\|\right)\right)
$$

Hence, by Lemma 1.6, we can take an element

$$
k=\left(k_{1}, \ldots, k_{n}\right) \in D\left(X, \frac{x+y}{2}\right)
$$

with $k_{i} \neq 0$. Note that $D\left(X, \frac{x+y}{2}\right) \subset D(X, x) \cap D(X, y)$. Hence by $k \in D(X, x)$, we have

$$
1=\sum_{i=1}^{n} \operatorname{Re}\left(k_{i}\left(x_{i}\right)\right) \leq \sum_{i=1}^{n}\left|k_{i}\left(x_{i}\right)\right| \leq \sum_{i=1}^{n}\left\|k_{i}\right\|\left\|x_{i}\right\| \leq 1
$$

which implies $k_{i}\left(x_{i}\right)=\left\|k_{i}\right\|\left\|x_{i}\right\|$. Similarly $k_{i}\left(y_{i}\right)=\left\|k_{i}\right\|\left\|y_{i}\right\|$. These imply

$$
2=\frac{k_{i}}{\left\|k_{i}\right\|}\left(\frac{x_{i}}{\left\|x_{i}\right\|}+\frac{y_{i}}{\left\|y_{i}\right\|}\right) \leq\left\|\frac{x_{i}}{\left\|x_{i}\right\|}+\frac{y_{i}}{\left\|y_{i}\right\|}\right\| \leq 2
$$

and so

$$
\left\|\frac{x_{i}}{\left\|x_{i}\right\|}+\frac{y_{i}}{\left\|y_{i}\right\|}\right\|=2
$$

Since X_{i} is a u-space, we have $D\left(X_{i}, \frac{x_{i}}{\left\|x_{i}\right\|}\right)=D\left(X_{i}, \frac{y_{i}}{\left\|y_{i}\right\|}\right)$, which implies $D\left(X_{i}, x_{i}\right)=D\left(X_{i}, y_{i}\right)$. Hence $h_{i}=f_{i} \in D\left(X_{i}, y_{i}\right)$. Therefore we have (b). Thus $f \in D(X, y)$, and so $D(X, x) \subset D(X, y)$. We similarly have $D(X, x) \supset D(X, y)$. Thus X is a u-space. This completes the proof.
Corollary 4.2 (cf. [3]). Let X and Y be Banach spaces and $\psi \in \Psi_{2}$. Then the following are equivalent:
(i) $(X \oplus Y)_{\psi}$ is a u-space.
(ii) X, Y and $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$ are u-spaces.
(iii) X and Y are u-spaces and ψ is a u-function.

As a direct consequence of Proposition 1.1, Proposition 1.2 and Theorem 4.1, we obtain the following.
Theorem 4.3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be Banach spaces and $\psi \in \Psi_{n}$. Then the following are equivalent:
(i) $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}\right)_{\psi}$ is a U-space.
(ii) $X_{1}, X_{2}, \ldots, X_{n}$ and $\left(\mathbb{C}^{n},\|\cdot\|_{\psi}\right)$ are U-spaces.
(iii) $X_{1}, X_{2}, \ldots, X_{n}$ are U-spaces and ψ is a u-function.

Corollary 4.4 (cf. [3]). Let X and Y be Banach spaces and $\psi \in \Psi_{2}$. Then the following are equivalent:
(i) $(X \oplus Y)_{\psi}$ is a U-space.
(ii) X, Y and $\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)$ are U-spaces.
(iii) X and Y are U-spaces, and ψ is a u-function.

References

[1] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd ed., North-Holland, Amsterdam-New York-Oxford, 1985.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Series, Vol.10, 1973.
[3] S. Dhompongsa, A. Kaewkhao and S. Saejung, Uniform smoothness and U-convexity of ψ direct sums, J. Nonlinear Convex Anal. 6 (2005), 327-338.
[4] J. Gao and K. S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), 41-56.
[5] M. Kato, K. -S. Saito and T. Tamura, On ψ-direct sums of Banach spaces and convexity, J. Austral. Math. Soc. 75 (2003), 413-422.
[6] M. Kato, K. -S. Saito and T. Tamura, Uniform non-squareness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429-437.
[7] K. S. Lau, Best approximation by closed sets in Banach spaces, J. Approx. Theory. 23 (1978), 29-36.
[8] K. Mitani, K. -S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^{n}, J. Convex. Anal. 10 (2003), 89-107.
[9] K. Mitani, S. Oshiro and K. -S. Saito, Smoothness of ψ-direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147-157.
[10] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[11] K. -S. Saito and M. Kato, Uniform convexity of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1-11.
[12] K. -S. Saito, M. Kato and Y. Takahashi, Absolute norms on \mathbb{C}^{n}, J. Math. Anal. Appl. 252 (2000), 879-905.
[13] Y. Takahashi, M. Kato and K. -S. Saito, Strict convexity of absolute normes on \mathbb{C}^{2} and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179-186.
K.-I. Mitani

Department of Applied Chemistry and Biotechnoloty, Fucluty of Engineering Niigata Institute of Technology, Kashiwazaki 945-1195, Japan

E-mail address: mitani@adm.niit.ac.jp

