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U-CONVEXITY OF #»-DIRECT SUMS OF BANACH SPACES

KEN-ICHI MITANI

ABSTRACT. We shall characterize the U-convexity of the i-direct sum (X16---®
X,)y of Banach spaces Xi,...,Xn, where ¢ is a continuous convex function
on Ap(= {(t1,ta, .. tn—1) € R 2ty > 0 (V4), Y7205 < 1}) with some
appropriate conditions.

1. INTRODUCTION AND PRELIMINARIES

A norm || - || on C" is said to be absolute if
(1,2, @)l = ([(l21]s |22, ]
for all x1,z9,...,2, € C, and normalized if ||(1,0,...,0)|] = ||(0,1,0,...,0)| =

<+ =(0,...,0,1)|| = 1. Let AN,, be the family of all absolute normalized norms
on C". Recently, Saito, Kato and Takahashi [12] showed that for any absolute
normalized norms on C” there corresponds a continuous convex function on A, (=

{(t1,t2, ..., th1) € R0t > 0 (V9), Z?:_ll t; < 1}) with some appropriate
conditions, as follows. For any || - || € AN,, we define

n—1
(L1 sty sn) = 1(1= sty sn-1)ll ((s1,.. ., 8n-1) € Ay).
=1

Then v is a continuous convex function on A,,, and satisfies the following conditions:

(Ag)  %(0,0,...,0) = ¥(1,0,0,...,0) = (0,1,0,...,0)
= =9(0,...,0,1) = 1,
(A1) (81,0, 8n-1) >

(31+...+3n_1)¢( 51 Sn—1 ),

R R
ifsl‘l‘"“f‘snfl?é())
S Sp— .
(AQ) ¢(51,~--73n—1)2(1—81)¢ O) 2 PR el ) 1f817é17
1—81 1—81
S1 Sn—2 .
(An) ¥(s1y..oy8n—1) > (1 — sp_1)¥ e ,0), ifsp1# 1.
1—sp1 I —sp-1
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Let W, be the set of all continuous convex functions ¥ on A,, satisfying (Ag), (A1),
.., (Ap). Conversely, for every ¢ € ¥,,, we define

(@1, 2, @n)lly

_ (|lz1| + -+ [za])y <|x1|+|?:--24|r|xn| yee e ‘xl‘f.g.f.ljr‘xn‘) if (z1,...,2,) # (0,...,0),

0 if (x1,...,25) =(0,...,0).
Then || - ||y € AN, and satisfies (1.1). Hence AN, and ¥, are in a one-to-one
correspondence under (1.1).

For any Banach spaces X, Xo, ..., X,, we define the ¢-direct sum (X; & X2 @
-+ ® Xy)y to be their direct sum equipped with the norm

||(=’131, L2y - - - 7xn)||¢ = H(Hx1H7 Hx2”7 R Hmn”)HTZJ

for 1 € Xy,..., 2, € X,,. This extends the notion of the £,-direct sum (X; ® Xo @
-+ @ X,)p of Banach spaces. In [5, 11, 13], the authors characterized the strict,
uniform, and uniform non-squareness of (X1 @ Xo @ --- @ X,,) by means of the
associate function ¢. Smoothness and uniform smoothness of (X1 ®Xo®---®X,,)y
are treated in [3, 9].

Let X be a Banach space. Let X* be the dual space of X, Sx = {z € X :
|z|| = 1}, and for x € X with z # 0, D(X,z) = {a € Sx+ : {(a,z) = ||z]|}. A
Banach space X is called a u-space if for any z,y € Sx with ||z + y|| = 2, we
have D(X,z) = D(Y,y) (see [3]). A Banach space X is called a U-space if for any
e > 0, there exists a § > 0 such that for any =,y € Sx, we have ||z +y| < 2(1 —9)
whenever (a,y) < 1 — ¢ for some a € D(X,z) (see [7]). Gao and Lau [4] showed
that if a Banach space X is a U-space, then X has uniform normal structure.

In this paper, we characterize the U-convexity of (X1 ® Xo @ -+ ® X,,),. We first
characterize the U-convexity of (C", || - ||;) by means of 1. Namely, we show that

(C™, ]| - |l) is a U-space (resp. a u-space) if and only if ¢ is a u-function (see the
notation of u-function in §2 and §3). We next prove that (X1 @ Xo®---® X,,)y is a
u-space if and only if X7, Xo,..., X, are u-spaces and 9 is a u-function. Moreover,

we show that (X1 ® Xo @ --- @ X,,)y is a U-space if and only if X1, Xo,...,X,, are
U-spaces and 1 is a u-function.

Let I be an index set and {X;};e; be a family of Banach spaces. We define the
Banach space { (1, X;) by

leel1, X,) = {{xi} € [T X : oo} = sup s < oo} .
icl el

Let U be an ultrafilter in I and let Ny = {{z;} € loo(L, X;) : limyy ||z;|| = 0} . The
ultraproduct of { X} is the quotient space {0 (I, X;)/Ny equipped with the quotient
norm. Note that for each {z;}y in the ultraproduct of {X;}, we have |[{z;}yu]| =
limy ||z;|. In particular, for a Banach space X, the ultrapower denoted by Xj is
the ultraproduct of {X;} if I = N and X; = X for all i € N (for details see [3, 4]).
Dhompongsa, Kaewkhao and Saejung [3] showed the following.

Proposition 1.1 ([3]). Let X be a Banach space and X* the dual space of X. Then
(i) If X* is a u-space, then X is a u-space.



U-CONVEXITY OF %-DIRECT SUMS OF BANACH SPACES 201

(ii) If X is a U-space, then X is a u-space. The converse holds, whenever dim
X < oo0.
(iii) X s a U-space if and only if Xy is a u-space.

Proposition 1.2 ([3]). Let X, Xo,...,X,, be Banach spaces and ¢ € V,,. Then
(X1 @ @ Xpn)yp)u is isometric to (X1)u ® -+ ® (Xn)u)yp-

Let f be a continuous convex function from a convex subset C' of a real Banach
space X into R. We denote by df(z) the subdifferential of f at z € C; 0f(z) =
{a € X*: fly) > f(z) + (a,y — z) fory € C}. For n € N with n > 2, put
I, ={0,1,...,n—1}. We also put pp = (0,0,...,0) € A, and

where j =1,2,...,n— 1.
Definition 1.3 ([8]). For each ¢ € U,,, we define the extended function @Z of 1 as

- 8:(81>S27"'a8n71) EATLa
P(t) =sup Q ¥(s) + (a,t —s) : a € I(s),
$(3) + {arps — ) > 0for j € I

for all t € R 1.

Then QZ has the following properties:

(1) ¥(t) = ¥(t) holds for all t € A,,.

(2) 4 is a convex function on R"! with t(t) < oo for all ¢ € R™ 1.

(3) For every t = (t1,t2,...,tn) € Ay, a € 81;(75) if and only if a € ¥(t) and
Y(t) + (a,pj —t) > 0 for all j € I,.

(4) If n =2, then

1—-t if t<0,
P(t) =) if 0<t<1,

t if t>1
and
N [— 1,%(0)] if t=0,
oY(t) = § W), YvRr(H)] if 0<t<1,
W11 i =1,

where 7 (t) (resp. ¢'5(t)) is the left (resp. right) derivative of ¢ at ¢ (see
[8])-

The following was proved by Bonsall and Duncan [2].
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Lemma 1.4 ([2]). For each t € [0,1], put z(t) = %(1 —t,t). Then

1 )):aE&Z(O),\d:l}, it =0,

c(l+a
D(C2,z(t)) = @b(tzé}(i)a_(lai ) ) ac an(t)} L ifo<t<l,

C(ll_a) ) :aea{pv(l),\c]—l}, ift=1

holds.
In [8], Mitani, Saito and Suzuki gave the n-dimensional version of Lemma 1.4.

Lemma 1.5 ([8], p. 106). Let i) € U,,. For every t = (t1,t2,...,th—1) € Ay, we

put
n—1
1
to=1-Y t and w(t) == (to,t1,...,tn1) € C".
— ¥(t)
Then
D(C”,x(t))
¢ (1) + {a, po — 1)) a € o)
_ e (1) + {a.p1 — 1)) . ;r[(?y 267? with tj =0
= . . n 73— Y%
0,y : 9j =0
€ (¢(t) + (@, pn—1— t>) for j eI, witht; >0

Moreover, Mitani, Oshiro and Saito [9] gave the following.

Lemma 1.6 ([9], p.154). Let X1, X2,..., X, be Banach spaces and » € V,,. For

every © = (x1,x2,...,%y) € S(X169X2®--~€BXTL)W
D(X1®Xo® - ® Xn)y, )
a1 f1
T @0 € D (] ol ).

= . : fi € D(X;, ;) for i with z; # 0,
: fi € Sx* for i with x; =0
anfn !
2. U-CONVEXITY OF ABSOLUTE NORMS ON C2

Definition 2.1. A function ¢ € W3 is said to be a u-function if, for every s and ¢
with 0 < s <t <1, ¢ is differentiable at s and ¢, whenever 1) is affine on [s, ¢].

Our aim in this section is to prove that (C?,]| - ||,;) is a u-space if and only if 1
is a u-function.

Remark 2.2. Our definition of u-function is different from that of u-function of
Dhompongsa, Kaewkhao and Saejung [3], where a function ¢ € ¥j is said to be a
u-function in the sense of Dhompongsa, Kaewkhao and Saejung (in short, DKS) if
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for all interval [s,t] C (0,1), v is differentiable at s and ¢ whenever v is affine on
[s,t]. In [3], they proved that for any Banach spaces X and Y and any ¢ € Wq,
(X ®@Y)y is a u-space (resp. U-space) if and only if X and Y are u-spaces (resp.
U-spaces) and 1) is a u-function in the sense of DKS. In particular, for any ¢ € o,
(C2, |- |ly) is a u-space if and only if ¢ is a u-function in the sense of DKS. However,
we can construct a counter-example of this result. We put

1 : 1
—3t+1, if 0<t<q,
Yo(t) =3 32 —3t+ L1, if f<t<3,
1 1 : 2

Then it is obvious that 1y € W and 1)y is differentiable on (0,1). Hence 1)y is a
u-function in the sense of DKS. However, (C?,|| - ||y,) is not a u-space. Indeed, we
consider the two points z(0) and z(%) in C2. Clearly, [|z(0)||y, = [[#(3)[ly, = 1 and
|2(0) + z(3)|lyy = 2. Note that dio(0) = [-1,—%] and Oo(3) = {—3}. Then, by
Lemma 1.4, we have

D(C2,2(0)) = {( c(11+a) > cael-1,-1,|d = 1}

{0l

Hence D(C?, z(0)) # D(C? x(3)). Thus (C2, | - ||y) is not a u-space.

and

D(CQ,x(%))

Smoothness of the points 0 and 1 for v is important to characterize the U-
convexity of (C?, || -||y). Let us present the correct version.

Theorem 2.3. Let ¢ € Wy. Then the following are equivalent:

(i) (C%, | - 1ly) is a u-space.

(ii) For every s and t with 0 < s < t < 1, we have 09 (s) = dP(t), whenever v is
affine on [s,t].

(iii) ¢ is a u-function.

Proof. (i)=(ii): Assume that (C?, ||-||;) is a u-space. Fix s and t with0 < s < ¢ < 1.
There is no case when s = 0 and ¢ = 1. Let ¢ be affine on [s,t]. As the proof
of Theorem 14 in [3], we have |z(s)|ly = ||z(¢)|ly = 1 and ||z(s) + z(t)|y = 2.
Hence it follows from the assumption that D(C? z(s)) = D(C? z(t)). We show

A(s) = Op(t). Take any a € OY(s). If 0 < s < ¢ < 1, then from Lemma 1.4,

_ ¥(s) —as 2
f= < 0(s) +a(l — s) ) € D(C? z(s)).

By f € D(C? z(t)) and Lemma 1.4, there exists b € 81}(1&) satisfying

f= ( w(tz)ﬁ(—it-)bzlbi t) ) ‘
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So ¥(s) —as = () — bt and (s) + a(l — s) = (t) + b(1 — ). These imply
a = b. Hence we have a € 9Y(t). If 0 < s <t = 1, then f € D(C? z(s)). By
f € D(C? z(1)) and Lemma 1.4, there exist ¢ with |c| = 1 and b € 9¢(1) such that

f:<c(11—b) )

So ¢(s) —as = ¢(1—b) and 9(s) +a(l—s) = 1. Note that ¢/(s) —as = 1 —b because
¥(s)—as > 0and 1 —b > 0. Hence a = b, that is, a € 9¢(1). In other cases, we
similarly have a € d(t). Hence d1(s) C 9u(t). Similarly, 0 (s) D 81(t). Thus we
have (i)=-(ii).

(ii)=>(i): Assume that the assertion (ii) holds. We show that (C?, ||-||) is a u-space.
Take any x = (z9,21) and y = (yo,y1) € S(cz,||.|,) With [z +ylly = 2. Put

= A and t= L
o] + |1 lyol + [y1]
Without loss of generality, we may assume that s < ¢t. As the proof of Theorem 14
in [3], we have
2 < |[(lzol + [yol, [z1] + [y1 ) [l

= (Jzol + ol + 1] + [y D ((1 = A)s + At)

< (lzo| + lyol + |1l + |y DI = A)b(s) + A (2)}

= llzlly + llylly = 2,
where A = (|yo| + [y1])/(|zo| + [vo| + |z1] + |y1]). So ¢ is affine on [s,t]. Hence it

follows from the assumption that 9y (s) = 0y (t).
We first show D(C? z(s)) = D(C? x(t)). We consider the case when 0 < s <

t < 1. Take any f € D((CZ, x(s)) By Lemma 1.4, there exists a € 0&(3) satisfying

_ ¥(s) —as
f= ( P(s) +a(l—s) )
From a € 0¢(s) and a € du(t), we have 1(s) — ¥(t) = a(s — t), which implies

¥(s) —as =P(t) — at and P(s) +a(l — s) = ¢(t) + a(l —t). Hence it follows from
a € 09(t) and Lemma 1.4 that

_ Y(t) —at
f= ( o) + a1 — 1) ) € D(C?,z(t)).

We next consider the case when 0 = s < ¢ < 1. Take any f € D(C? z(0)). Then
there exist a € 0¢(0) and ¢ with |¢| = 1 satisfying

= (atn )

By a € 99(0) and a € 9Y(t), we obtain ¥(0) — ¥(t) = a(0 — ), which implies
1=(t) —at and 1+ a = ¥(t) + a(1 — t). Similarly, by —1 € d1(0) = d(t), we
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obtain 1 = ¢(¢) +t and 0 = ¢(t) — (1 — ¢). Hence a = —1, that is, ¢(1 +a) =0 =
¥(t) + a(1 — t). Hence we have from Lemma 1.4,

P(t) — at
f= ( s ) e D(C, (1)),

In other cases, we similarly have f € D(C? z(t)). Hence we have D(C? z(s)) C
D(C?,z(t)). Similarly, we have D(C? z(s)) D D(C? z(t)). Hence D(C? z(s))
D(C?,z(t)). Namely,

(21) D(627(|$0|7|$1|)) :D(627(|y0|a|y1|))
Similarly, we consider the points x and xQﬁ, and we can obtain
(2.2) D(C?, (|xol, |z11)) = D(C?, (|(zo + 30) /2], |(x1 + y1)/2]))-

We next show D((CQ,:n) = D((CQ,y). Fix f = (g, 1) € D((CQ,:I:). Put p;,n; and
& as p; =arg x; € [0,2m),m; = arg y; € [0,27) and & = arg (z; +v;)/2 € [0,27) for
all i = 0,1, where arg 0 = 0. Then we have from (2.1) and (2.2),

g = (eipoao’eimal) € D((C27 (’yo‘v ‘ylb)

and
hi= (¢80 ag, 01800y € D(C2, (2 + y)/2).
Note that D(C?, (z+y)/2) C D(C?,2) N D(C?,y). Then by h € D(C?, z), we have
1 = Re(h, z) = Re(e"P =) an20) + Re(e' P~y 1)
< | agag| + [P gz | < [ £l fla]ly = 1,
which implies e*?i~$) a;z; > 0 for all i = 0,1. We similarly have from h € D(C2, y),
ei(pffi)aiyi >0 forall7=0,1. 4 4
From these results we show e"iq; = e'Piq; for all ¢ with x; # 0 and y; # 0.

Let z; # 0 and y; # 0. We may assume «; 7 0. Then we have elPi=8) oy =
e"(2Pi=&) oy 2;| > 0. Hence we obtain

(2.3) ei(2Pi=€) ¢ > 0,
Also, we have e'(Pi=&)q,y; = ei(pi_5i+”i)ai|yi| > 0. Hence we obtain
(2.4) ei(ﬂi—€i+m‘)ai > 0.

From (2.3) and (2.4) we have Qi(Pi_"i) > 0 and so p; = 7;. Thus e"iq; = eiq;.
Moreover we show (e ag, e ay) € D(C?, (|yo|, |y1])). To do it, we show
(2.5) (€™ ag, e ar) € D(C?, (|yol, |y1l)).

We consider the case where z9 # 0 and yo # 0. By eMagy = eaq, we have
g = (e"ag, e ay). Hence we get (2.5). We consider the case where zg = 0. Then
by (e, eray) € D(C?, (|zol, |71])), we have

(™ a0, ¢?ay), (0, 1)) = (a0, ¥ ), (0, o1 ])) = 1.

Also, we have ' ‘ . A
l(e™ a0, ¢ ar)]l = [(€ag, ¢ ar)] = 1.
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Hence (e™ag, eray) € D(C?, (|zo|, |z1])). Thus by (2.1), we have (2.5). We con-
sider the case where yg = 0. Then by (e ag, e’ ay) € D(C?, (|yo|, |y1])), we have

((e™Pao, e ar), (0, [y ]) = (0, €7 an), (0, ) = 1.

Hence we obtain (2.5). Thus (2.5) holds for all cases. Similarly, we can obtain
(eMag, e ay) € D(CZ2, (|yo|,|y1|)) by using (2.5). Hence f = (ag,a1) € D(C2,y).
Therefore we have D(C2,z) C D(C2,y). Similarly, D(C2,z) > D(C?,y). Thus we
have (ii)=(i).

(ii)=-(iii): Assume that assertion (ii) holds. Put s and ¢ with 0 < s < ¢ < 1. Let
¥ be affine on [s,¢]. Then it follows from the assumption that (ZJ(S) = 812(152 B
0 (5) € O0(s) = DU(2), we have $1,(£) < B (5) < Dg(t), where i (t) (resp. D(2))
is the left (resp. rlght) derivative of ¢ at t. We also have by the convexity of 1/1,
) L( s) < R( s) < L( ) < R( ). These imply that ¢ is differentiable at s. Similarly,
¢ is differentiable at t. Thus we have (ii)=>(iii).

(iii)=-(ii): Assume that 1) is a u-function. Take s and ¢ with 0 < s <t < 1. Let ¢ be

affine on [s,t]. From d}R( ) = 1,Z)L( ) and the differentiability, we get 0v(s) = 9 (t).
Thus we have (iii)=-(ii). O

3. U-CONVEXITY OF ABSOLUTE NORMS ON C"

In this section, we characterize the U-convexity of (C", || - ||). To do it, we shall
introduce the following.

Definition 3.1. ¢ € U,, is said to be a u-function if, for any s, € A,, with s # {,
then 0v(s) = 0v(t), whenever 1) is affine on [s, t].

When n = 2, this coincides with the notion of u-function in Definition 2.1, by
Theorem 2.3.

Theorem 3.2. Let ¢ € V,,. Then the following are equivalent:

(i) (C™ |- llp) is a u-space.
(i) ¢ is a u-function.

Proof. (1)=-(ii): For each t = (t1,t2,...,tn—1) € Ay, we put

n—1

1
to=1—> t; and =(t) = —— (to,t1,...,tn-1).
2t o0 "
Assume that (C™,| - |ly) is a u-space. Fix s = (s1,...,8,-1) € A, and t =

(t1,...,th—1) € A, with s # t. Let 1 be affine on [s,t]. As the proof of The-
orem 2.3, we obtain |z(s) + x(t)||y, = 2. Hence we have from the assumption,

D(C™, z(s)) = D(C™,x(t)). We show d(s) = OY(t). Take any a € du(s). By
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Lemma 1.5,

P(s) + {a,po — s)
f= vie)+ <(:1,p1 ~9) € D(C",x(s)).
1/}(8) + <a7pn—1 - 3>

Hence it follows from f € D((C”, x(t)) and Lemma 1.5 that there exist cg, ¢1,...,¢n_1
with |¢;| = 1(Vj) and b € d(t) satisfying

co(¢(t) + (b, po — 1))

fo| At

cn—1((t) + (b, pn—1 — 1))

So we have 1 (s) + (a,p; — s) = ¢;(¥(t) + (b,pj; — t)) for all j € I,,. Note that since
P(t) + (b,p; —t) > 0 for all j € I,, we have for all j € I, ¥(s) + (a,p; — s) =
¥(t) + (b, pj — t). Hence we have for all u € R"1,

P(w) — (t) — {a,u—t)
= (u) — ¥(s) — (a,u— s) +(s) — P(t) + (a,t — s)
> (s) = o(t) + (a,t — s) ( by a € d(s))
n—1 n—1
= (s) — () + (a, Y t;p; — 5) (by t=>) t;p;)
t=0 t=0
n—1
= > tj(¥(s) + (a,pj — s)) — ()
t=0
n—1
= > (@) +(b,p; — 1)) — (1)
t=0

n—1
Y(t) + (b, Yty — ) — (1) =0,
t=0

which implies a € d¢(t). Hence 8i(s) C dip(t). Similarly, i(s) D dip(t). Thus 1

is a u-function.

(i))=(@1): For each = = (zo,x1,...,2p—1) € C", we put |z| as |z| =
(lzol, 1], - ., |@n—1]). Assume that ¢ is a u-function. We show that (C", || - ||) is
a u-space. Take any x = (zo,21,...,%n-1) € S(cn ||,) and ¥ = (Yo, Y1,-- -+ Yn—1) €

S(cn |-,) With ||z +ylly, = 2. For each i, put s; and ¢; as

|yi|

Z?:o |5
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We also put s = (s1,...,8,-1) € Ap, t = (t1,...,th—1) € A, and
-1
>0 lyjl
-1 M
> =0 (=51 + ly;1)

Then since

< [ICzol + lyol, [za] + [yl - [en—a] + [yn-1D)lly

?
L

(Jz;] + [y ((1 = A)s + At)

3 <.
Il
,_. o

Z |25 + [y DL = N v(s) + Agp(t) }
7=0
= llzlly + lylly = 2,

it follows that 1) is affine on [s,t]. So (s) = (). We first show D(C™ z(s)) =
D(C",z(t)). Fix f € D(C",z(s)). Then there exist a € d(s) and {cj}?;(} such
that

co(t(s) + (a,po — 5)
c1(P(s) + (@, p1 = 5)

Cn—1(¢(8) + ‘<a’7pn—1 - S>)

where ¢; = 1 for j € I, with s; > 0, and |¢;| = 1 for j € I,, with s; = 0. In order
to show f € D(C”, x(t)), from Lemma 1.5, it is enough to show the following:

(a): a € OY(t),

(b): For all i € I,,, we have ¢(s) + (a,p; — s) = (t) + (a,p; — t),

(c): For all i € I,, with ¢; > 0, we have ¢; = 1 or 9(s) + (a,p; — s) = 0.

The assertion (a) is clear. We also have from a € 9¢(s) and a € d9(t), 1(t) —i(s) =
(a,t — s), which implies (b). We show the assertion (c). Assume that to > 0. Then
we show that ¢g = 1 or ¥(s) + (a,pg — s) = 0. If 59 > 0, then ¢y = 1. Let sp = 0.
Put g and h as

Y(s) + (a,po — s) 0
g= ¢(5) =+ <?7p1 - S> and b — w(s) + <?“7p1 - S>
(s) + <a,.pn_1 —5) Y(s) + <a,.pn_1 —5)

From Lemma 1.5, (a) and (b), we have g € D(C",z(s)) and g € D(C",z(t)). By
so = 0, we have (h,z(s)) = (g,z(s)) = 1, which implies h € D(C",z(s)). Hence,
by Lemma 1.5, there exists ¢ € 91 (s) such that

¥(s) + (e, po — 5)

h = ;
¥(s) + (¢, pn—1 — )
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Since ¢ € dP(t) and Y(t) + (¢, p; — t) = 1(s) + (¢, pi — s) for every i € I,,, we have
h € D(C",z(t)). Hence 0 = (g,z(t)) — (h,z(t)) = to(¥(t) + (a,po — t)). Therefore
we have by tg > 0, ¥(s) + (a,po — s) = ¥(t) + (a,po — t) = 0. Similarly, for all
i=1,2,....,n—1 with t;, > 0, we have ¢; = 1 or ¥(s) + (a,p; — s) = 0. Thus
D(C",z(s)) = D(C",z(t)), that is,

(3.1) D(C™,|z]) = D(C™, |y|).
Similarly,
(3.2) D(C", |z|) = D(C", |(z +y)/2]).

We next show D(C”,x) = D((C”,y). Fix f =(a1,...,ap-1) € D((C",J:). Put p;, n;
and &; as p; = arg x; € [0,27),n; = arg y; € [0,27) and & = arg (z;+vy;)/2 € [0,27)
for all 4, where arg 0 = 0. Then by (3.1) and (3.2), we have
g:=(ea,...,e""a,_1) € D(C", |z[) = D(C", |y),

and ‘ '

h = (eZ(PO*fO)OZO7 . el(Pn—l*fn—l)an_l) c D(cn’ (w + y)/z)
Note that D((C”,(x + y)/2) C D((C",m) N D((C",y). Then by h € D((C",x), we
have

1 = Re(h, ) ZRe Wpi=8) ;1))

n—1
<Y eS| < || fllllly = 1,
i=0
which implies ¢Pi=¢)q;z; > 0 for all i. Similarly, we have by h € D(C”,y),
ei(f”'*&)aiyi > 0 for all 7.

Moreover we show that e?iq; = e q; for all i with ; # 0 and y; # 0. Let a; # 0
and y; # 0. We may assume o; # 0. Then e!(?i—&)qz; = emm_gi)ai\xﬂ > 0 and
hence ¢i(2ri=¢)q; > 0. We also have e'(Pi—&)q,y; = ei(pi_fi+’7")ai|yi| > 0 and hence
ei(pi_5i+m)ai > 0. These imply ¢iPi=mi) > (). Hence pi =n; and so ePia; = iy

From this result, we show (e"ag,...,e" 1o, 1) € D((C”, \y|) To do it, we
show
(3.3) (e™ap, e ay,...,e" " a,_1) € D(C™,|y]).

Let 29 # 0 and yo # 0. Then by ¢y = ey, we have
g=(eMag, eay,... e a, 1).

By g € D(C",|y|), we have (3.3). Let 9 = 0. By (e/™ay,...,e" " tay_1) €
D(C™, |z|) we have

((e’mao, ePla,. .., eip”—lan_l), 0,]z1], .-+ |Tn-1]))
= <(eip°a0, eay,. .., ei”"*lan,l), 0, 1],y |xn-1])) =1
and

\|(ei"0ao,eip1a1, e ,ei”"‘lan_l)H = H(ei"oao,eimal, .. .,eip”—lan_l)H =1.
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and hence

(e"ag, e ay, ..., e tay_q) € D(C™, |z]).
Thus by (3.1) we obtain (3.3). If yo = 0, then by (eiay,...,e" ta, 1) €
D((C”, |y|), we have

((e™ag, ean,... e an_1), (0, [yil,. -, [yn-1l))
= ((e"ag, e ay, ..., e " ta, 1), (0, |ly1l,. .., |yn_1])) = 1.
Hence we have (3.3). Thus (3.3) holds for all cases. Similarly, we obtain
(emoao, eMay, eay, .. ., eip"*lozn_l) € D((C", |y\)
by using (3.3). In the same way, we can show that for each 1,
(€™ag,. .. e ta; 1, Moy ePitlag, ... P la, 1) € D(C", |yl).
Hence we have
(Mg, eMay, ... e 1a, )€ D((C”, ]y\)
and so f = (ao,...,an—1) € D(C",y). Therefore we have D(C",z) C D(C",y).
Similarly, D(C",z) > D(C",y). Thus (C", |- ||4) is a u-space and this completes

the proof.
O

As a direct consequence of Proposition 1.1 and Theorem 3.2, we obtain the fol-
lowing.

Theorem 3.3. Let ¢ € V,,. Then the following are equivalent:
(i) (C™, |- llp) is a U-space.
(ii) ¥ is a u-function.

4. U-CONVEXITY OF (X1 @ - ® Xy)y
In this section, we characterize the U-convexity of (X1 @ --- ® Xy,)y.

Theorem 4.1. Let X1, Xs,..., X, be Banach spaces and iy € V,,. Then the fol-
lowing are equivalent:

(i) (X1 @ Xo®-- @ Xy)y is a u-space.

(i) X1, Xo,..., Xy and (C*, || - ||l4) are u-spaces.

(iii) Xy, Xo, ..., X, are u-spaces and v is a u-function.

Proof. From Theorem 3.2, it is enough to show (ii) = (i). Assume that X, Xs,..., X,
and (C",| - |l4) are u-spaces. We put X = (X1 ® Xo® --- ® X,,)y. Fix z =
(x1,22,...,2p) € Sx and y = (y1,Y2,...,yn) € Sx with ||z + y[ly, = 2. We
also put z = (|lz1]], [|z2l,- .-, [lznl]) and w =y, [[g2ll, - -, [ynll). We shall show
D(X,x) - D(X,y). Fix

a1 fi

az f2

f= _ € D(X,z),

anfn
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where (aq,...,a,) € D(C”,z), fi € D(X;,x;) fori € I, with x; # 0, and f; €
SX? for i € I,, with x; = 0. For each i € I,, with y; # 0, take a g; € D(X;, ;). For
each ¢ € I, with y; = 0, take a ¢g; € Sx,. Moreover, we put

fi, it a; #0,
hi =< g;, if a; =0and y; #0,
gi, if a;=0andy; =0,
for each i € I,,. Note that
a1h1
f =
anhn
In order to show f € D(X,y), from Lemma 1.6, it is enough to show the following:
(a): (a1,az,...,a,) € D(C", w),
(b): For i € I, with y; # 0, h; € D(Xi,yi),
(c): For i € I, with y; =0, h; € Sx,.
Obviously, the assertion (c) holds. We show (a). From 2 = ||z+y||ly < [|z+w|y < 2,

we obtain ||z +wl||y = 2 and ||z||y = ||w|y = 1. Hence, since (C", |- ||) is a u-space,
we have

(4.1) D(C",z) = D(C",w),

which implies (a). Similarly, we have

(42) D, (1 +90)/2], - |(@n +30)/2])) = D(C™, 2).

We next show (b). Fix i € I, with y; # 0. If a; = 0, then h; = g; € D(X;,y;). Let
a; # 0. Assume that z; = 0. Then both (ay,...,a,) and (a1, ...,a;-1,0,ai+1,...,an)
belong to D(C™, z). From (4.1), they also belong to D(C",w). Hence

aZHyZH = <(a1a s 7an)7w> - <<a17 ey @i—1,0, Q5415 - 7an)7w> =0,
which is a contradiction. So x; # 0. Note that a; # 0 and
(a1,...,an) € D(C", ([(z1 +y1) /2], -, [I(zn +yn)/2]]))-
Hence, by Lemma 1.6, we can take an element
k= (ku,... k) ED(X,m;y)

with &; # 0. Note that D(X, L;y) C D(X,z) N D(X,y). Hence by k € D(X, z),

we have
1= Re(ki(z:)) <Y ki) <D [lkilllzil] < 1,
i=1 i=1 =1

which implies k;(x;) = ||k;||||«i]|. Similarly &;(y;) = ||kil|||y:|l- These imply

o ki (Cb“z +yi)§‘ Ti o Vi ‘SQ,
&Il \ sl ol llzill Nyl
and so
fﬂi+yz”:2
lzill Nyl
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Since X; is a u-space, we have D<Xi’ﬁ> = D(Xi,”‘ly/—?”), which implies

D(X;,z;) = D(X;,y;). Hence h; = f; € D(X;,y;). Therefore we have (b). Thus
f € D(X,y), and so D(X,z) C D(X,y). We similarly have D(X,z) D D(X,y).
Thus X is a u-space. This completes the proof. O

Corollary 4.2 (cf. [3]). Let X and Y be Banach spaces and v € V. Then the
following are equivalent:

(i) (X ®Y)y is a u-space.

(ii) X,Y and (C?,|| - ||y) are u-spaces.

(iii) X and Y are u-spaces and v is a u-function.

As a direct consequence of Proposition 1.1, Proposition 1.2 and Theorem 4.1, we
obtain the following.

Theorem 4.3. Let X1, Xs,...,X, be Banach spaces and iy € V,,. Then the fol-
lowing are equivalent:

(i) (X1 ®Xo®---® Xy,)y is a U-space.

(i) X1, Xo,..., Xy, and (C", || - ||) are U-spaces.

(iii) Xy, Xo,..., X, are U-spaces and 1) is a u-function.

Corollary 4.4 (cf. [3]). Let X and Y be Banach spaces and ¢ € Wa. Then the
following are equivalent:

(i) (X ®Y)y is a U-space.

(ii) X,Y and (C?,|| - ||ly) are U-spaces.

(iii) X and Y are U-spaces, and v is a u-function.
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