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U-CONVEXITY OF ψ-DIRECT SUMS OF BANACH SPACES

KEN-ICHI MITANI

Abstract. We shall characterize the U-convexity of the ψ-direct sum (X1⊕· · ·⊕
Xn)ψ of Banach spaces X1, . . . , Xn, where ψ is a continuous convex function

on ∆n(= {(t1, t2, . . . , tn−1) ∈ Rn−1 : tj ≥ 0 (∀j),
∑n−1
j=1 tj ≤ 1}) with some

appropriate conditions.

1. Introduction and preliminaries

A norm ‖ · ‖ on Cn is said to be absolute if

‖(x1, x2, . . . , xn)‖ = ‖(|x1|, |x2|, . . . , |xn|)‖

for all x1, x2, . . . , xn ∈ C, and normalized if ‖(1, 0, . . . , 0)‖ = ‖(0, 1, 0, . . . , 0)‖ =
· · · = ‖(0, . . . , 0, 1)‖ = 1. Let ANn be the family of all absolute normalized norms
on Cn. Recently, Saito, Kato and Takahashi [12] showed that for any absolute
normalized norms on Cn there corresponds a continuous convex function on ∆n(=
{(t1, t2, . . . , tn−1) ∈ Rn−1 : tj ≥ 0 (∀j),

∑n−1
j=1 tj ≤ 1}) with some appropriate

conditions, as follows. For any ‖ · ‖ ∈ ANn we define

(1.1) ψ(s1, . . . , sn−1) = ||(1−
n−1∑
i=1

si, s1, . . . , sn−1)|| ((s1, . . . , sn−1) ∈ ∆n).

Then ψ is a continuous convex function on ∆n, and satisfies the following conditions:

ψ(0, 0, . . . , 0) = ψ(1, 0, 0, . . . , 0) = ψ(0, 1, 0, . . . , 0)(A0)

= · · · = ψ(0, . . . , 0, 1) = 1,

ψ(s1, . . . , sn−1) ≥(A1)

(s1 + · · ·+ sn−1)ψ
(

s1
s1 + · · ·+ sn−1

, . . . ,
sn−1

s1 + · · ·+ sn−1

)
,

if s1 + · · ·+ sn−1 6= 0,

ψ(s1, . . . , sn−1) ≥ (1− s1)ψ
(

0,
s2

1− s1
, . . . ,

sn−1

1− s1

)
, if s1 6= 1,(A2)

...
...

ψ(s1, . . . , sn−1) ≥ (1− sn−1)ψ
(

s1
1− sn−1

, . . . ,
sn−2

1− sn−1
, 0
)
, if sn−1 6= 1.(An)
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Let Ψn be the set of all continuous convex functions ψ on ∆n satisfying (A0), (A1),
. . . , (An). Conversely, for every ψ ∈ Ψn, we define

‖(x1, x2, . . . , xn)‖ψ

=

{
(|x1|+ · · ·+ |xn|)ψ

(
|x2|

|x1|+···+|xn| , . . . ,
|xn|

|x1|+···+|xn|

)
if (x1, . . . , xn) 6= (0, . . . , 0),

0 if (x1, . . . , xn) = (0, . . . , 0).

Then ‖ · ‖ψ ∈ ANn and satisfies (1.1). Hence ANn and Ψn are in a one-to-one
correspondence under (1.1).

For any Banach spaces X1, X2, . . . , Xn, we define the ψ-direct sum (X1 ⊕X2 ⊕
· · · ⊕Xn)ψ to be their direct sum equipped with the norm

‖(x1, x2, . . . , xn)‖ψ = ‖(‖x1‖, ‖x2‖, . . . , ‖xn‖)‖ψ
for x1 ∈ X1, . . . , xn ∈ Xn. This extends the notion of the `p-direct sum (X1 ⊕X2 ⊕
· · · ⊕ Xn)p of Banach spaces. In [5, 11, 13], the authors characterized the strict,
uniform, and uniform non-squareness of (X1 ⊕ X2 ⊕ · · · ⊕ Xn)ψ by means of the
associate function ψ. Smoothness and uniform smoothness of (X1⊕X2⊕· · ·⊕Xn)ψ
are treated in [3, 9].

Let X be a Banach space. Let X∗ be the dual space of X, SX = {x ∈ X :
‖x‖ = 1}, and for x ∈ X with x 6= 0, D(X,x) = {α ∈ SX∗ : 〈α, x〉 = ‖x‖}. A
Banach space X is called a u-space if for any x, y ∈ SX with ‖x + y‖ = 2, we
have D(X,x) = D(Y, y) (see [3]). A Banach space X is called a U -space if for any
ε > 0, there exists a δ > 0 such that for any x, y ∈ SX , we have ‖x+ y‖ ≤ 2(1− δ)
whenever 〈α, y〉 < 1 − ε for some α ∈ D(X,x) (see [7]). Gao and Lau [4] showed
that if a Banach space X is a U-space, then X has uniform normal structure.

In this paper, we characterize the U-convexity of (X1⊕X2⊕· · ·⊕Xn)ψ. We first
characterize the U-convexity of (Cn, ‖ · ‖ψ) by means of ψ. Namely, we show that
(Cn, ‖ · ‖ψ) is a U-space (resp. a u-space) if and only if ψ is a u-function (see the
notation of u-function in §2 and §3). We next prove that (X1⊕X2⊕· · ·⊕Xn)ψ is a
u-space if and only if X1, X2, . . . , Xn are u-spaces and ψ is a u-function. Moreover,
we show that (X1 ⊕X2 ⊕ · · · ⊕Xn)ψ is a U-space if and only if X1, X2, . . . , Xn are
U-spaces and ψ is a u-function.

Let I be an index set and {Xi}i∈I be a family of Banach spaces. We define the
Banach space `∞(I,Xi) by

`∞(I,Xi) =

{
{xi} ∈

∏
i∈I

Xi : ‖{xi}‖ = sup
i∈I

‖xi‖ <∞

}
.

Let U be an ultrafilter in I and let NU = {{xi} ∈ `∞(I,Xi) : limU ‖xi‖ = 0} . The
ultraproduct of {Xi} is the quotient space `∞(I,Xi)/NU equipped with the quotient
norm. Note that for each {xi}U in the ultraproduct of {Xi}, we have ‖{xi}U‖ =
limU ‖xi‖. In particular, for a Banach space X, the ultrapower denoted by XU is
the ultraproduct of {Xi} if I = N and Xi = X for all i ∈ N (for details see [3, 4]).
Dhompongsa, Kaewkhao and Saejung [3] showed the following.

Proposition 1.1 ([3]). Let X be a Banach space and X∗ the dual space of X. Then
(i) If X∗ is a u-space, then X is a u-space.
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(ii) If X is a U-space, then X is a u-space. The converse holds, whenever dim
X <∞.
(iii) X is a U-space if and only if XU is a u-space.

Proposition 1.2 ([3]). Let X1, X2, . . . , Xn be Banach spaces and ψ ∈ Ψn. Then
((X1 ⊕ · · · ⊕Xn)ψ)U is isometric to ((X1)U ⊕ · · · ⊕ (Xn)U )ψ.

Let f be a continuous convex function from a convex subset C of a real Banach
space X into R. We denote by ∂f(x) the subdifferential of f at x ∈ C; ∂f(x) =
{a ∈ X∗ : f(y) ≥ f(x) + 〈a, y − x〉 for y ∈ C}. For n ∈ N with n ≥ 2, put
In = {0, 1, . . . , n− 1}. We also put p0 = (0, 0, . . . , 0) ∈ ∆n and

pj = (0, . . . , 0,
(j)

1 , 0, . . . , 0) ∈ ∆n,

where j = 1, 2, . . . , n− 1.

Definition 1.3 ([8]). For each ψ ∈ Ψn, we define the extended function ψ̃ of ψ as

ψ̃(t) = sup

ψ(s) + 〈a, t− s〉 :
s = (s1, s2, . . . , sn−1) ∈ ∆n,
a ∈ ∂ψ(s),
ψ(s) + 〈a, pj − s〉 ≥ 0 for j ∈ In


for all t ∈ Rn−1.

Then ψ̃ has the following properties:

(1) ψ̃(t) = ψ(t) holds for all t ∈ ∆n.
(2) ψ̃ is a convex function on Rn−1 with ψ̃(t) <∞ for all t ∈ Rn−1.
(3) For every t = (t1, t2, . . . , tn) ∈ ∆n, a ∈ ∂ψ̃(t) if and only if a ∈ ψ(t) and

ψ(t) + 〈a, pj − t〉 ≥ 0 for all j ∈ In.
(4) If n = 2, then

ψ̃(t) =


1− t if t < 0,
ψ(t) if 0 ≤ t ≤ 1,
t if t > 1

and

∂ψ̃(t) =


[− 1, ψ′R(0)] if t = 0,
[ψ′L(t), ψ′R(t)] if 0 < t < 1,
[ψ′L(1), 1] if t = 1,

where ψ′L(t) (resp. ψ′R(t)) is the left (resp. right) derivative of ψ at t (see
[8]).

The following was proved by Bonsall and Duncan [2].
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Lemma 1.4 ([2]). For each t ∈ [0, 1], put x(t) = 1
ψ(t)(1− t, t). Then

D
(
C2, x(t)

)
=



{(
1

c(1 + a)

)
: a ∈ ∂ψ̃(0), |c| = 1

}
, if t = 0,{(

ψ(t)− at

ψ(t) + a(1− t)

)
: a ∈ ∂ψ̃(t)

}
, if 0 < t < 1,{(

c(1− a)
1

)
: a ∈ ∂ψ̃(1), |c| = 1

}
, if t = 1

holds.

In [8], Mitani, Saito and Suzuki gave the n-dimensional version of Lemma 1.4.

Lemma 1.5 ([8], p. 106). Let ψ ∈ Ψn. For every t = (t1, t2, . . . , tn−1) ∈ ∆n, we
put

t0 = 1−
n−1∑
i=1

ti and x(t) =
1

ψ(t)
(t0, t1, . . . , tn−1) ∈ Cn.

Then

D
(
Cn, x(t)

)

=




eiθ0
(
ψ(t) + 〈a, p0 − t〉

)
eiθ1
(
ψ(t) + 〈a, p1 − t〉

)
...

eiθn−1
(
ψ(t) + 〈a, pn−1 − t〉

)
 :

a ∈ ∂ψ̃(t),
θj ∈ [0, 2π)

for j ∈ In with tj = 0,
θj = 0

for j ∈ In with tj > 0

 .

Moreover, Mitani, Oshiro and Saito [9] gave the following.

Lemma 1.6 ([9], p.154). Let X1, X2, . . . , Xn be Banach spaces and ψ ∈ Ψn. For
every x = (x1, x2, . . . , xn) ∈ S(X1⊕X2⊕···⊕Xn)ψ ,

D
(
(X1 ⊕X2 ⊕ · · · ⊕Xn)ψ, x

)
=




a1f1

a2f2
...

anfn

 :
(a1, . . . , an) ∈ D

(
Cn, (‖x1‖, ‖x2‖, . . . , ‖xn‖)

)
,

fi ∈ D(Xi, xi) for i with xi 6= 0,
fi ∈ SX∗

i
for i with xi = 0

 .

2. U-convexity of absolute norms on C2

Definition 2.1. A function ψ ∈ Ψ2 is said to be a u-function if, for every s and t

with 0 ≤ s < t ≤ 1, ψ̃ is differentiable at s and t, whenever ψ is affine on [s, t].

Our aim in this section is to prove that
(
C2, ‖ · ‖ψ

)
is a u-space if and only if ψ

is a u-function.

Remark 2.2. Our definition of u-function is different from that of u-function of
Dhompongsa, Kaewkhao and Saejung [3], where a function ψ ∈ Ψ2 is said to be a
u-function in the sense of Dhompongsa, Kaewkhao and Saejung (in short, DKS) if
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for all interval [s, t] ⊂ (0, 1), ψ is differentiable at s and t whenever ψ is affine on
[s, t]. In [3], they proved that for any Banach spaces X and Y and any ψ ∈ Ψ2,
(X ⊕ Y )ψ is a u-space (resp. U-space) if and only if X and Y are u-spaces (resp.
U-spaces) and ψ is a u-function in the sense of DKS. In particular, for any ψ ∈ Ψ2,
(C2, ‖·‖ψ) is a u-space if and only if ψ is a u-function in the sense of DKS. However,
we can construct a counter-example of this result. We put

ψ0(t) =


−1

2 t+ 1, if 0 ≤ t ≤ 1
3 ,

3
2 t

2 − 3
2 t+ 7

6 , if 1
3 < t ≤ 2

3 ,

1
2 t+ 1

2 , if 2
3 < t ≤ 1.

Then it is obvious that ψ0 ∈ Ψ2 and ψ0 is differentiable on (0, 1). Hence ψ0 is a
u-function in the sense of DKS. However, (C2, ‖ · ‖ψ0) is not a u-space. Indeed, we
consider the two points x(0) and x(1

3) in C2. Clearly, ‖x(0)‖ψ0 = ‖x(1
3)‖ψ0 = 1 and

‖x(0) + x(1
3)‖ψ0 = 2. Note that ∂ψ̃0(0) = [−1,−1

2 ] and ∂ψ̃0(1
3) = {−1

2}. Then, by
Lemma 1.4, we have

D
(
C2, x(0)

)
=
{(

1
c(1 + a)

)
: a ∈ [−1,−1

2 ], |c| = 1
}

and

D
(
C2, x(1

3)
)

=
{(

1
1
2

)}
.

Hence D
(
C2, x(0)

)
6= D

(
C2, x(1

3)
)
. Thus

(
C2, ‖ · ‖ψ0

)
is not a u-space.

Smoothness of the points 0 and 1 for ψ is important to characterize the U-
convexity of

(
C2, ‖ · ‖ψ

)
. Let us present the correct version.

Theorem 2.3. Let ψ ∈ Ψ2. Then the following are equivalent:
(i)
(
C2, ‖ · ‖ψ

)
is a u-space.

(ii) For every s and t with 0 ≤ s < t ≤ 1, we have ∂ψ̃(s) = ∂ψ̃(t), whenever ψ is
affine on [s, t].
(iii) ψ is a u-function.

Proof. (i)⇒(ii): Assume that
(
C2, ‖·‖ψ

)
is a u-space. Fix s and t with 0 ≤ s < t ≤ 1.

There is no case when s = 0 and t = 1. Let ψ be affine on [s, t]. As the proof
of Theorem 14 in [3], we have ‖x(s)‖ψ = ‖x(t)‖ψ = 1 and ‖x(s) + x(t)‖ψ = 2.
Hence it follows from the assumption that D

(
C2, x(s)

)
= D

(
C2, x(t)

)
. We show

∂ψ̃(s) = ∂ψ̃(t). Take any a ∈ ∂ψ̃(s). If 0 < s < t < 1, then from Lemma 1.4,

f :=
(

ψ(s)− as
ψ(s) + a(1− s)

)
∈ D

(
C2, x(s)

)
.

By f ∈ D
(
C2, x(t)

)
and Lemma 1.4, there exists b ∈ ∂ψ̃(t) satisfying

f =
(

ψ(t)− bt
ψ(t) + b(1− t)

)
.
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So ψ(s) − as = ψ(t) − bt and ψ(s) + a(1 − s) = ψ(t) + b(1 − t). These imply
a = b. Hence we have a ∈ ∂ψ̃(t). If 0 < s < t = 1, then f ∈ D

(
C2, x(s)

)
. By

f ∈ D
(
C2, x(1)

)
and Lemma 1.4, there exist c with |c| = 1 and b ∈ ∂ψ̃(1) such that

f =
(
c(1− b)

1

)
.

So ψ(s)−as = c(1−b) and ψ(s)+a(1−s) = 1. Note that ψ(s)−as = 1−b because
ψ(s) − as ≥ 0 and 1 − b ≥ 0. Hence a = b, that is, a ∈ ∂ψ̃(1). In other cases, we
similarly have a ∈ ∂ψ̃(t). Hence ∂ψ̃(s) ⊂ ∂ψ̃(t). Similarly, ∂ψ̃(s) ⊃ ∂ψ̃(t). Thus we
have (i)⇒(ii).

(ii)⇒(i): Assume that the assertion (ii) holds. We show that
(
C2, ‖·‖ψ

)
is a u-space.

Take any x = (x0, x1) and y = (y0, y1) ∈ S(C2,‖·‖ψ) with ‖x+ y‖ψ = 2. Put

s =
|x1|

|x0|+ |x1|
and t =

|y1|
|y0|+ |y1|

.

Without loss of generality, we may assume that s ≤ t. As the proof of Theorem 14
in [3], we have

2 ≤ ‖(|x0|+ |y0|, |x1|+ |y1|)‖ψ
= (|x0|+ |y0|+ |x1|+ |y1|)ψ

(
(1− λ)s+ λt

)
≤ (|x0|+ |y0|+ |x1|+ |y1|){(1− λ)ψ(s) + λψ(t)}
= ‖x‖ψ + ‖y‖ψ = 2,

where λ = (|y0| + |y1|)/(|x0| + |y0| + |x1| + |y1|). So ψ is affine on [s, t]. Hence it
follows from the assumption that ∂ψ̃(s) = ∂ψ̃(t).

We first show D
(
C2, x(s)

)
= D

(
C2, x(t)

)
. We consider the case when 0 < s <

t < 1. Take any f ∈ D
(
C2, x(s)

)
. By Lemma 1.4, there exists a ∈ ∂ψ̃(s) satisfying

f =
(

ψ(s)− as
ψ(s) + a(1− s)

)
.

From a ∈ ∂ψ̃(s) and a ∈ ∂ψ̃(t), we have ψ(s) − ψ(t) = a(s − t), which implies
ψ(s)− as = ψ(t)− at and ψ(s) + a(1− s) = ψ(t) + a(1− t). Hence it follows from
a ∈ ∂ψ̃(t) and Lemma 1.4 that

f =
(

ψ(t)− at
ψ(t) + a(1− t)

)
∈ D(C2, x(t)

)
.

We next consider the case when 0 = s < t < 1. Take any f ∈ D(C2, x(0)
)
. Then

there exist a ∈ ∂ψ̃(0) and c with |c| = 1 satisfying

f =
(

1
c(1 + a)

)
.

By a ∈ ∂ψ̃(0) and a ∈ ∂ψ̃(t), we obtain ψ(0) − ψ(t) = a(0 − t), which implies
1 = ψ(t) − at and 1 + a = ψ(t) + a(1 − t). Similarly, by −1 ∈ ∂ψ̃(0) = ∂ψ̃(t), we
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obtain 1 = ψ(t) + t and 0 = ψ(t) − (1 − t). Hence a = −1, that is, c(1 + a) = 0 =
ψ(t) + a(1− t). Hence we have from Lemma 1.4,

f =
(

ψ(t)− at
ψ(t) + a(1− t)

)
∈ D

(
C2, x(t)

)
.

In other cases, we similarly have f ∈ D
(
C2, x(t)

)
. Hence we have D

(
C2, x(s)

)
⊂

D
(
C2, x(t)

)
. Similarly, we have D

(
C2, x(s)

)
⊃ D

(
C2, x(t)

)
. Hence D

(
C2, x(s)

)
=

D
(
C2, x(t)

)
. Namely,

D
(
C2, (|x0|, |x1|)

)
= D

(
C2, (|y0|, |y1|)

)
(2.1)

Similarly, we consider the points x and x+y
2 , and we can obtain

D
(
C2, (|x0|, |x1|)

)
= D

(
C2, (|(x0 + y0)/2|, |(x1 + y1)/2|)

)
.(2.2)

We next show D
(
C2, x

)
= D

(
C2, y

)
. Fix f = (α0, α1) ∈ D

(
C2, x

)
. Put ρi, ηi and

ξi as ρi = arg xi ∈ [0, 2π), ηi = arg yi ∈ [0, 2π) and ξi = arg (xi + yi)/2 ∈ [0, 2π) for
all i = 0, 1, where arg 0 = 0. Then we have from (2.1) and (2.2),

g := (eiρ0α0, e
iρ1α1) ∈ D

(
C2, (|y0|, |y1|)

)
and

h := (ei(ρ0−ξ0)α0, e
i(ρ1−ξ1)α1) ∈ D

(
C2, (x+ y)/2

)
.

Note that D
(
C2, (x+y)/2

)
⊂ D

(
C2, x

)
∩D

(
C2, y

)
. Then by h ∈ D

(
C2, x

)
, we have

1 = Re〈h, x〉 = Re(ei(ρ0−ξ0)α0x0) + Re(ei(ρ1−ξ1)α1x1)

≤ |ei(ρ0−ξ0)α0x0|+ |ei(ρ1−ξ1)α1x1| ≤ ‖f‖‖x‖ψ = 1,

which implies ei(ρi−ξi)αixi ≥ 0 for all i = 0, 1. We similarly have from h ∈ D
(
C2, y

)
,

ei(ρi−ξi)αiyi ≥ 0 for all i = 0, 1.
From these results we show eiηiαi = eiρiαi for all i with xi 6= 0 and yi 6= 0.

Let xi 6= 0 and yi 6= 0. We may assume αi 6= 0. Then we have ei(ρi−ξi)αixi =
ei(2ρi−ξi)αi|xi| ≥ 0. Hence we obtain

ei(2ρi−ξi)αi ≥ 0.(2.3)

Also, we have ei(ρi−ξi)αiyi = ei(ρi−ξi+ηi)αi|yi| ≥ 0. Hence we obtain

ei(ρi−ξi+ηi)αi ≥ 0.(2.4)

From (2.3) and (2.4) we have ei(ρi−ηi) ≥ 0 and so ρi = ηi. Thus eiηiαi = eiρiαi.
Moreover we show (eiη0α0, e

iη1α1) ∈ D(C2, (|y0|, |y1|)). To do it, we show

(eiη0α0, e
iρ1α1) ∈ D(C2, (|y0|, |y1|)).(2.5)

We consider the case where x0 6= 0 and y0 6= 0. By eiη0α0 = eiρ0α0, we have
g = (eiη0α0, e

iρ1α1). Hence we get (2.5). We consider the case where x0 = 0. Then
by (eiρ0α0, e

iρ1α1) ∈ D(C2, (|x0|, |x1|)), we have

〈(eiη0α0, e
iρ1α1), (0, |x1|)〉 = 〈(eiρ0α0, e

iρ1α1), (0, |x1|)〉 = 1.

Also, we have
‖(eiη0α0, e

iρ1α1)‖ = ‖(eiρ0α0, e
iρ1α1)‖ = 1.
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Hence (eiη0α0, e
iρ1α1) ∈ D(C2, (|x0|, |x1|)). Thus by (2.1), we have (2.5). We con-

sider the case where y0 = 0. Then by (eiρ0α0, e
iρ1α1) ∈ D(C2, (|y0|, |y1|)), we have

〈(eiη0α0, e
iρ1α1), (0, |y1|)〉 = 〈(eiρ0α0, e

iρ1α1), (0, |y1|)〉 = 1.

Hence we obtain (2.5). Thus (2.5) holds for all cases. Similarly, we can obtain
(eiη0α0, e

iη1α1) ∈ D(C2, (|y0|, |y1|)) by using (2.5). Hence f = (α0, α1) ∈ D(C2, y).
Therefore we have D(C2, x) ⊂ D(C2, y). Similarly, D(C2, x) ⊃ D(C2, y). Thus we
have (ii)⇒(i).

(ii)⇒(iii): Assume that assertion (ii) holds. Put s and t with 0 ≤ s < t ≤ 1. Let
ψ be affine on [s, t]. Then it follows from the assumption that ∂ψ̃(s) = ∂ψ̃(t). By
ψ̃′L(s) ∈ ∂ψ̃(s) = ∂ψ̃(t), we have ψ̃′L(t) ≤ ψ̃′L(s) ≤ ψ̃′R(t), where ψ̃′L(t) (resp. ψ̃′R(t))
is the left (resp. right) derivative of ψ̃ at t. We also have by the convexity of ψ̃,
ψ̃′L(s) ≤ ψ̃′R(s) ≤ ψ̃′L(t) ≤ ψ̃′R(t). These imply that ψ̃ is differentiable at s. Similarly,
ψ̃ is differentiable at t. Thus we have (ii)⇒(iii).

(iii)⇒(ii): Assume that ψ is a u-function. Take s and t with 0 ≤ s < t ≤ 1. Let ψ be
affine on [s, t]. From ψ̃′R(s) = ψ̃′L(t) and the differentiability, we get ∂ψ̃(s) = ∂ψ̃(t).
Thus we have (iii)⇒(ii). �

3. U-convexity of absolute norms on Cn

In this section, we characterize the U-convexity of (Cn, ‖ · ‖ψ). To do it, we shall
introduce the following.

Definition 3.1. ψ ∈ Ψn is said to be a u-function if, for any s, t ∈ ∆n with s 6= t,
then ∂ψ̃(s) = ∂ψ̃(t), whenever ψ is affine on [s, t].

When n = 2, this coincides with the notion of u-function in Definition 2.1, by
Theorem 2.3.

Theorem 3.2. Let ψ ∈ Ψn. Then the following are equivalent:
(i) (Cn, ‖ · ‖ψ) is a u-space.
(ii) ψ is a u-function.

Proof. (i)⇒(ii): For each t = (t1, t2, . . . , tn−1) ∈ ∆n, we put

t0 = 1−
n−1∑
i=1

ti and x(t) =
1

ψ(t)
(t0, t1, . . . , tn−1) .

Assume that (Cn, ‖ · ‖ψ) is a u-space. Fix s = (s1, . . . , sn−1) ∈ ∆n and t =
(t1, . . . , tn−1) ∈ ∆n with s 6= t. Let ψ be affine on [s, t]. As the proof of The-
orem 2.3, we obtain ‖x(s) + x(t)‖ψ = 2. Hence we have from the assumption,
D
(
Cn, x(s)

)
= D

(
Cn, x(t)

)
. We show ∂ψ̃(s) = ∂ψ̃(t). Take any a ∈ ∂ψ̃(s). By
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Lemma 1.5,

f :=


ψ(s) + 〈a, p0 − s〉
ψ(s) + 〈a, p1 − s〉

...
ψ(s) + 〈a, pn−1 − s〉

 ∈ D
(
Cn, x(s)

)
.

Hence it follows from f ∈ D
(
Cn, x(t)

)
and Lemma 1.5 that there exist c0, c1, . . . , cn−1

with |cj | = 1(∀j) and b ∈ ∂ψ̃(t) satisfying

f =


c0(ψ(t) + 〈b, p0 − t〉)
c1(ψ(t) + 〈b, p1 − t〉)

...
cn−1(ψ(t) + 〈b, pn−1 − t〉)

 .

So we have ψ(s) + 〈a, pj − s〉 = cj(ψ(t) + 〈b, pj − t〉) for all j ∈ In. Note that since
ψ(t) + 〈b, pj − t〉 ≥ 0 for all j ∈ In, we have for all j ∈ In, ψ(s) + 〈a, pj − s〉 =
ψ(t) + 〈b, pj − t〉. Hence we have for all u ∈ Rn−1,

ψ̃(u)− ψ̃(t)− 〈a, u− t〉

= ψ̃(u)− ψ̃(s)− 〈a, u− s〉+ ψ̃(s)− ψ̃(t) + 〈a, t− s〉

≥ ψ(s)− ψ(t) + 〈a, t− s〉 ( by a ∈ ∂ψ̃(s))

= ψ(s)− ψ(t) + 〈a,
n−1∑
t=0

tjpj − s〉 ( by t =
n−1∑
t=0

tjpj)

=
n−1∑
t=0

tj(ψ(s) + 〈a, pj − s〉)− ψ(t)

=
n−1∑
t=0

tj(ψ(t) + 〈b, pj − t〉)− ψ(t)

= ψ(t) + 〈b,
n−1∑
t=0

tjpj − t〉 − ψ(t) = 0,

which implies a ∈ ∂ψ̃(t). Hence ∂ψ̃(s) ⊂ ∂ψ̃(t). Similarly, ∂ψ̃(s) ⊃ ∂ψ̃(t). Thus ψ
is a u-function.

(ii)⇒(i): For each x = (x0, x1, . . . , xn−1) ∈ Cn, we put |x| as |x| =
(|x0|, |x1|, . . . , |xn−1|). Assume that ψ is a u-function. We show that (Cn, ‖ · ‖ψ) is
a u-space. Take any x = (x0, x1, . . . , xn−1) ∈ S(Cn,‖·‖ψ) and y = (y0, y1, . . . , yn−1) ∈
S(Cn,‖·‖ψ) with ‖x+ y‖ψ = 2. For each i, put si and ti as

si =
|xi|∑n−1
j=0 |xj |

and ti =
|yi|∑n−1
j=0 |xj |

.
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We also put s = (s1, . . . , sn−1) ∈ ∆n, t = (t1, . . . , tn−1) ∈ ∆n and

λ =

∑n−1
j=0 |yj |∑n−1

j=0 (|xj |+ |yj |)
.

Then since

2 ≤ ‖(|x0|+ |y0|, |x1|+ |y1|, . . . , |xn−1|+ |yn−1|)‖ψ

=
n−1∑
j=0

(|xj |+ |yj |)ψ
(
(1− λ)s+ λt

)
≤

n−1∑
j=0

(|xj |+ |yj |){(1− λ)ψ(s) + λψ(t)}

= ‖x‖ψ + ‖y‖ψ = 2,

it follows that ψ is affine on [s, t]. So ∂ψ̃(s) = ∂ψ̃(t). We first show D
(
Cn, x(s)

)
=

D
(
Cn, x(t)

)
. Fix f ∈ D

(
Cn, x(s)

)
. Then there exist a ∈ ∂ψ̃(s) and {cj}n−1

j=0 such
that

f =


c0
(
ψ(s) + 〈a, p0 − s〉

)
c1
(
ψ(s) + 〈a, p1 − s〉

)
...

cn−1

(
ψ(s) + 〈a, pn−1 − s〉

)
 ,

where cj = 1 for j ∈ In with sj > 0, and |cj | = 1 for j ∈ In with sj = 0. In order
to show f ∈ D

(
Cn, x(t)

)
, from Lemma 1.5, it is enough to show the following:

(a): a ∈ ∂ψ̃(t),
(b): For all i ∈ In, we have ψ(s) + 〈a, pi − s〉 = ψ(t) + 〈a, pi − t〉,
(c): For all i ∈ In with ti > 0, we have ci = 1 or ψ(s) + 〈a, pi − s〉 = 0.
The assertion (a) is clear. We also have from a ∈ ∂ψ̃(s) and a ∈ ∂ψ̃(t), ψ(t)−ψ(s) =
〈a, t− s〉, which implies (b). We show the assertion (c). Assume that t0 > 0. Then
we show that c0 = 1 or ψ(s) + 〈a, p0 − s〉 = 0. If s0 > 0, then c0 = 1. Let s0 = 0.
Put g and h as

g =


ψ(s) + 〈a, p0 − s〉
ψ(s) + 〈a, p1 − s〉

...
ψ(s) + 〈a, pn−1 − s〉

 and h =


0

ψ(s) + 〈a, p1 − s〉
...

ψ(s) + 〈a, pn−1 − s〉

 .

From Lemma 1.5, (a) and (b), we have g ∈ D
(
Cn, x(s)

)
and g ∈ D

(
Cn, x(t)

)
. By

s0 = 0, we have 〈h, x(s)〉 = 〈g, x(s)〉 = 1, which implies h ∈ D
(
Cn, x(s)

)
. Hence,

by Lemma 1.5, there exists c ∈ ∂ψ̃(s) such that

h =

 ψ(s) + 〈c, p0 − s〉
...

ψ(s) + 〈c, pn−1 − s〉

 .
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Since c ∈ ∂ψ̃(t) and ψ(t) + 〈c, pi − t〉 = ψ(s) + 〈c, pi − s〉 for every i ∈ In, we have
h ∈ D

(
Cn, x(t)

)
. Hence 0 = 〈g, x(t)〉 − 〈h, x(t)〉 = t0(ψ(t) + 〈a, p0 − t〉). Therefore

we have by t0 > 0, ψ(s) + 〈a, p0 − s〉 = ψ(t) + 〈a, p0 − t〉 = 0. Similarly, for all
i = 1, 2, . . . , n − 1 with ti > 0, we have ci = 1 or ψ(s) + 〈a, pi − s〉 = 0. Thus
D
(
Cn, x(s)

)
= D

(
Cn, x(t)

)
, that is,

D
(
Cn, |x|

)
= D

(
Cn, |y|

)
.(3.1)

Similarly,

D
(
Cn, |x|

)
= D

(
Cn, |(x+ y)/2|

)
.(3.2)

We next show D
(
Cn, x

)
= D

(
Cn, y

)
. Fix f = (α1, . . . , αn−1) ∈ D

(
Cn, x

)
. Put ρi, ηi

and ξi as ρi = arg xi ∈ [0, 2π), ηi = arg yi ∈ [0, 2π) and ξi = arg (xi+yi)/2 ∈ [0, 2π)
for all i, where arg 0 = 0. Then by (3.1) and (3.2), we have

g := (eiρ0α0, . . . , e
iρn−1αn−1) ∈ D

(
Cn, |x|

)
= D

(
Cn, |y|

)
,

and
h := (ei(ρ0−ξ0)α0, . . . , e

i(ρn−1−ξn−1)αn−1) ∈ D
(
Cn, (x+ y)/2

)
.

Note that D
(
Cn, (x + y)/2

)
⊂ D

(
Cn, x

)
∩ D

(
Cn, y

)
. Then by h ∈ D

(
Cn, x

)
, we

have

1 = Re〈h, x〉 =
n−1∑
i=0

Re(ei(ρi−ξi)αixi)

≤
n−1∑
i=0

|ei(ρi−ξi)αixi| ≤ ‖f‖‖x‖ψ = 1,

which implies ei(ρi−ξi)αixi ≥ 0 for all i. Similarly, we have by h ∈ D
(
Cn, y

)
,

ei(ρi−ξi)αiyi ≥ 0 for all i.
Moreover we show that eiρiαi = eiηiαi for all i with xi 6= 0 and yi 6= 0. Let xi 6= 0

and yi 6= 0. We may assume αi 6= 0. Then ei(ρi−ξi)αixi = ei(2ρi−ξi)αi|xi| ≥ 0 and
hence ei(2ρi−ξi)αi ≥ 0. We also have ei(ρi−ξi)αiyi = ei(ρi−ξi+ηi)αi|yi| ≥ 0 and hence
ei(ρi−ξi+ηi)αi ≥ 0. These imply ei(ρi−ηi) ≥ 0. Hence ρi = ηi and so eiρiαi = eiηiαi.

From this result, we show (eiη0α0, . . . , e
iηn−1αn−1) ∈ D

(
Cn, |y|

)
. To do it, we

show

(eiη0α0, e
iρ1α1, . . . , e

iρn−1αn−1) ∈ D
(
Cn, |y|

)
.(3.3)

Let x0 6= 0 and y0 6= 0. Then by eiρ0α0 = eiη0α0, we have

g = (eiη0α0, e
iρ1α1, . . . , e

iρn−1αn−1).

By g ∈ D
(
Cn, |y|

)
, we have (3.3). Let x0 = 0. By (eiρ0α0, . . . , e

iρn−1αn−1) ∈
D
(
Cn, |x|

)
we have

〈(eiη0α0, e
iρ1α1, . . . , e

iρn−1αn−1), (0, |x1|, . . . , |xn−1|)〉
= 〈(eiρ0α0, e

iρ1α1, . . . , e
iρn−1αn−1), (0, |x1|, . . . , |xn−1|)〉 = 1

and

‖(eiη0α0, e
iρ1α1, . . . , e

iρn−1αn−1)‖ = ‖(eiρ0α0, e
iρ1α1, . . . , e

iρn−1αn−1)‖ = 1.
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and hence
(eiη0α0, e

iρ1α1, . . . , e
iρn−1αn−1) ∈ D

(
Cn, |x|

)
.

Thus by (3.1) we obtain (3.3). If y0 = 0, then by (eiρ0α0, . . . , e
iρn−1αn−1) ∈

D
(
Cn, |y|

)
, we have

〈(eiη0α0, e
iρ1α1, . . . , e

iρn−1αn−1), (0, |y1|, . . . , |yn−1|)〉
= 〈(eiρ0α0, e

iρ1α1, . . . , e
iρn−1αn−1), (0, |y1|, . . . , |yn−1|)〉 = 1.

Hence we have (3.3). Thus (3.3) holds for all cases. Similarly, we obtain

(eiη0α0, e
iη1α1, e

iρ2α2, . . . , e
iρn−1αn−1) ∈ D

(
Cn, |y|

)
by using (3.3). In the same way, we can show that for each i,

(eiη0α0, . . . , e
iηi−1αi−1, e

iηiαi, e
iρi+1αi+1, . . . , e

iρn−1αn−1) ∈ D
(
Cn, |y|

)
.

Hence we have
(eiη0α0, e

iη1α1, . . . , e
iηn−1αn−1) ∈ D

(
Cn, |y|

)
and so f = (α0, . . . , αn−1) ∈ D

(
Cn, y

)
. Therefore we have D(Cn, x) ⊂ D(Cn, y).

Similarly, D
(
Cn, x

)
⊃ D

(
Cn, y

)
. Thus (Cn, ‖ · ‖ψ) is a u-space and this completes

the proof.
�

As a direct consequence of Proposition 1.1 and Theorem 3.2, we obtain the fol-
lowing.

Theorem 3.3. Let ψ ∈ Ψn. Then the following are equivalent:
(i) (Cn, ‖ · ‖ψ) is a U-space.
(ii) ψ is a u-function.

4. U-convexity of (X1 ⊕ · · · ⊕Xn)ψ

In this section, we characterize the U-convexity of (X1 ⊕ · · · ⊕Xn)ψ.

Theorem 4.1. Let X1, X2, . . . , Xn be Banach spaces and ψ ∈ Ψn. Then the fol-
lowing are equivalent:
(i) (X1 ⊕X2 ⊕ · · · ⊕Xn)ψ is a u-space.
(ii) X1, X2, . . . , Xn and (Cn, ‖ · ‖ψ) are u-spaces.
(iii) X1, X2, . . . , Xn are u-spaces and ψ is a u-function.

Proof. From Theorem 3.2, it is enough to show (ii)⇒ (i). Assume thatX1, X2, . . . , Xn

and (Cn, ‖ · ‖ψ) are u-spaces. We put X = (X1 ⊕ X2 ⊕ · · · ⊕ Xn)ψ. Fix x =
(x1, x2, . . . , xn) ∈ SX and y = (y1, y2, . . . , yn) ∈ SX with ‖x + y‖ψ = 2. We
also put z = (‖x1‖, ‖x2‖, . . . , ‖xn‖) and w = (‖y1‖, ‖y2‖, . . . , ‖yn‖). We shall show
D
(
X,x

)
⊂ D

(
X, y

)
. Fix

f =


a1f1

a2f2
...

anfn

 ∈ D(X,x),
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where (a1, . . . , an) ∈ D
(
Cn, z

)
, fi ∈ D(Xi, xi) for i ∈ In with xi 6= 0, and fi ∈

SX∗
i

for i ∈ In with xi = 0. For each i ∈ In with yi 6= 0, take a gi ∈ D(Xi, yi). For
each i ∈ In with yi = 0, take a g′i ∈ SXi . Moreover, we put

hi =


fi, if ai 6= 0,
gi, if ai = 0 and yi 6= 0,
g′i, if ai = 0 and yi = 0,

for each i ∈ In. Note that

f =

 a1h1
...

anhn

 .

In order to show f ∈ D(X, y), from Lemma 1.6, it is enough to show the following:
(a): (a1, a2, . . . , an) ∈ D(Cn, w),
(b): For i ∈ In with yi 6= 0, hi ∈ D(Xi, yi),
(c): For i ∈ In with yi = 0, hi ∈ SXi .
Obviously, the assertion (c) holds. We show (a). From 2 = ‖x+y‖ψ ≤ ‖z+w‖ψ ≤ 2,
we obtain ‖z+w‖ψ = 2 and ‖z‖ψ = ‖w‖ψ = 1. Hence, since (Cn, ‖·‖ψ) is a u-space,
we have

D(Cn, z) = D(Cn, w),(4.1)

which implies (a). Similarly, we have

D
(
Cn, (‖(x1 + y1)/2‖, . . . , ‖(xn + yn)/2‖)

)
= D(Cn, z).(4.2)

We next show (b). Fix i ∈ In with yi 6= 0. If ai = 0, then hi = gi ∈ D(Xi, yi). Let
ai 6= 0. Assume that xi = 0. Then both (a1, . . . , an) and (a1, . . . , ai−1, 0, ai+1, . . . , an)
belong to D(Cn, z). From (4.1), they also belong to D(Cn, w). Hence

ai‖yi‖ = 〈(a1, . . . , an), w〉 − 〈(a1, . . . , ai−1, 0, ai+1, . . . , an), w〉 = 0,

which is a contradiction. So xi 6= 0. Note that ai 6= 0 and

(a1, . . . , an) ∈ D
(
Cn, (‖(x1 + y1)/2‖, . . . , ‖(xn + yn)/2‖)

)
.

Hence, by Lemma 1.6, we can take an element

k = (k1, . . . , kn) ∈ D
(
X,

x+ y

2

)
with ki 6= 0. Note that D

(
X, x+y2

)
⊂ D(X,x) ∩ D(X, y). Hence by k ∈ D(X,x),

we have

1 =
n∑
i=1

Re(ki(xi)) ≤
n∑
i=1

|ki(xi)| ≤
n∑
i=1

‖ki‖‖xi‖ ≤ 1,

which implies ki(xi) = ‖ki‖‖xi‖. Similarly ki(yi) = ‖ki‖‖yi‖. These imply

2 =
ki
‖ki‖

(
xi
‖xi‖

+
yi
‖yi‖

)
≤
∥∥∥∥ xi
‖xi‖

+
yi
‖yi‖

∥∥∥∥ ≤ 2,

and so ∥∥∥∥ xi
‖xi‖

+
yi
‖yi‖

∥∥∥∥ = 2.
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Since Xi is a u-space, we have D
(
Xi,

xi
‖xi‖

)
= D

(
Xi,

yi
‖yi‖

)
, which implies

D(Xi, xi) = D(Xi, yi). Hence hi = fi ∈ D(Xi, yi). Therefore we have (b). Thus
f ∈ D(X, y), and so D(X,x) ⊂ D(X, y). We similarly have D(X,x) ⊃ D(X, y).
Thus X is a u-space. This completes the proof. �

Corollary 4.2 (cf. [3]). Let X and Y be Banach spaces and ψ ∈ Ψ2. Then the
following are equivalent:
(i) (X ⊕ Y )ψ is a u-space.
(ii) X,Y and (C2, ‖ · ‖ψ) are u-spaces.
(iii) X and Y are u-spaces and ψ is a u-function.

As a direct consequence of Proposition 1.1, Proposition 1.2 and Theorem 4.1, we
obtain the following.

Theorem 4.3. Let X1, X2, . . . , Xn be Banach spaces and ψ ∈ Ψn. Then the fol-
lowing are equivalent:
(i) (X1 ⊕X2 ⊕ · · · ⊕Xn)ψ is a U-space.
(ii) X1, X2, . . . , Xn and (Cn, ‖ · ‖ψ) are U-spaces.
(iii) X1, X2, . . . , Xn are U-spaces and ψ is a u-function.

Corollary 4.4 (cf. [3]). Let X and Y be Banach spaces and ψ ∈ Ψ2. Then the
following are equivalent:
(i) (X ⊕ Y )ψ is a U-space.
(ii) X,Y and (C2, ‖ · ‖ψ) are U-spaces.
(iii) X and Y are U-spaces, and ψ is a u-function.
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