Journal of Nonlinear and Convex Analysis Volume 11, Number 2, 2010, 199–213

U-CONVEXITY OF ψ -DIRECT SUMS OF BANACH SPACES

KEN-ICHI MITANI

ABSTRACT. We shall characterize the U-convexity of the ψ -direct sum $(X_1 \oplus \cdots \oplus X_n)_{\psi}$ of Banach spaces X_1, \ldots, X_n , where ψ is a continuous convex function on $\Delta_n (= \{(t_1, t_2, \ldots, t_{n-1}) \in \mathbb{R}^{n-1} : t_j \geq 0 \ (\forall j), \ \sum_{j=1}^{n-1} t_j \leq 1\})$ with some appropriate conditions.

1. INTRODUCTION AND PRELIMINARIES

A norm $\|\cdot\|$ on \mathbb{C}^n is said to be *absolute* if

 $||(x_1, x_2, \dots, x_n)|| = ||(|x_1|, |x_2|, \dots, |x_n|)||$

for all $x_1, x_2, \ldots, x_n \in \mathbb{C}$, and normalized if $||(1, 0, \ldots, 0)|| = ||(0, 1, 0, \ldots, 0)|| = \cdots = ||(0, \ldots, 0, 1)|| = 1$. Let AN_n be the family of all absolute normalized norms on \mathbb{C}^n . Recently, Saito, Kato and Takahashi [12] showed that for any absolute normalized norms on \mathbb{C}^n there corresponds a continuous convex function on $\Delta_n (= \{(t_1, t_2, \ldots, t_{n-1}) \in \mathbb{R}^{n-1} : t_j \geq 0 \ (\forall j), \sum_{j=1}^{n-1} t_j \leq 1\})$ with some appropriate conditions, as follows. For any $|| \cdot || \in AN_n$ we define

(1.1)
$$\psi(s_1, \dots, s_{n-1}) = ||(1 - \sum_{i=1}^{n-1} s_i, s_1, \dots, s_{n-1})|| \quad ((s_1, \dots, s_{n-1}) \in \Delta_n).$$

Then ψ is a continuous convex function on Δ_n , and satisfies the following conditions:

$$(A_0) \quad \psi(0,0,\ldots,0) = \psi(1,0,0,\ldots,0) = \psi(0,1,0,\ldots,0)$$
$$= \cdots = \psi(0,\ldots,0,1) = 1,$$

$$(A_{1}) \quad \psi(s_{1}, \dots, s_{n-1}) \geq (s_{1} + \dots + s_{n-1})\psi\left(\frac{s_{1}}{s_{1} + \dots + s_{n-1}}, \dots, \frac{s_{n-1}}{s_{1} + \dots + s_{n-1}}\right),$$

(A_{2})
$$\psi(s_{1}, \dots, s_{n-1}) \geq (1 - s_{1})\psi\left(0, \frac{s_{2}}{1 - s_{1}}, \dots, \frac{s_{n-1}}{1 - s_{1}}\right), \quad \text{if } s_{1} \neq 1,$$

$$(A_2) \quad \psi(s_1, \dots, s_{n-1}) \ge (1 - s_1)\psi\left(0, \frac{s_2}{1 - s_1}, \dots, \frac{s_{n-1}}{1 - s_1}\right), \quad \text{if } s_1 \neq \dots$$

$$(A_n) \quad \psi(s_1, \dots, s_{n-1}) \ge (1 - s_{n-1})\psi\left(\frac{s_1}{1 - s_{n-1}}, \dots, \frac{s_{n-2}}{1 - s_{n-1}}, 0\right), \quad \text{if } s_{n-1} \ne 1.$$

2010 Mathematics Subject Classification. 46B20.

Copyright © 2010 Yokohama Publishers http://www.ybook.co.jp

Key words and phrases. U-convexity, absolute norm, direct sum.

Let Ψ_n be the set of all continuous convex functions ψ on Δ_n satisfying (A_0) , (A_1) , ..., (A_n) . Conversely, for every $\psi \in \Psi_n$, we define

$$\| (x_1, x_2, \dots, x_n) \|_{\psi}$$

$$= \begin{cases} (|x_1| + \dots + |x_n|)\psi\left(\frac{|x_2|}{|x_1| + \dots + |x_n|}, \dots, \frac{|x_n|}{|x_1| + \dots + |x_n|}\right) & \text{if } (x_1, \dots, x_n) \neq (0, \dots, 0), \\ 0 & \text{if } (x_1, \dots, x_n) = (0, \dots, 0). \end{cases}$$

Then $\|\cdot\|_{\psi} \in AN_n$ and satisfies (1.1). Hence AN_n and Ψ_n are in a one-to-one correspondence under (1.1).

For any Banach spaces X_1, X_2, \ldots, X_n , we define the ψ -direct sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$ to be their direct sum equipped with the norm

$$||(x_1, x_2, \dots, x_n)||_{\psi} = ||(||x_1||, ||x_2||, \dots, ||x_n||)||_{\psi}$$

for $x_1 \in X_1, \ldots, x_n \in X_n$. This extends the notion of the ℓ_p -direct sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_p$ of Banach spaces. In [5, 11, 13], the authors characterized the strict, uniform, and uniform non-squareness of $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$ by means of the associate function ψ . Smoothness and uniform smoothness of $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$ are treated in [3, 9].

Let X be a Banach space. Let X^* be the dual space of X, $S_X = \{x \in X : \|x\| = 1\}$, and for $x \in X$ with $x \neq 0$, $D(X, x) = \{\alpha \in S_{X^*} : \langle \alpha, x \rangle = \|x\|\}$. A Banach space X is called a *u-space* if for any $x, y \in S_X$ with $\|x + y\| = 2$, we have D(X, x) = D(Y, y) (see [3]). A Banach space X is called a *U-space* if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that for any $x, y \in S_X$, we have $\|x + y\| \leq 2(1 - \delta)$ whenever $\langle \alpha, y \rangle < 1 - \varepsilon$ for some $\alpha \in D(X, x)$ (see [7]). Gao and Lau [4] showed that if a Banach space X is a *U*-space, then X has uniform normal structure.

In this paper, we characterize the U-convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$. We first characterize the U-convexity of $(\mathbb{C}^n, \|\cdot\|_{\psi})$ by means of ψ . Namely, we show that $(\mathbb{C}^n, \|\cdot\|_{\psi})$ is a U-space (resp. a u-space) if and only if ψ is a u-function (see the notation of u-function in §2 and §3). We next prove that $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$ is a u-space if and only if X_1, X_2, \ldots, X_n are u-spaces and ψ is a u-function. Moreover, we show that $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$ is a U-space if and only if X_1, X_2, \ldots, X_n are U-spaces and ψ is a u-function.

Let I be an index set and $\{X_i\}_{i \in I}$ be a family of Banach spaces. We define the Banach space $\ell_{\infty}(I, X_i)$ by

$$\ell_{\infty}(I, X_i) = \left\{ \{x_i\} \in \prod_{i \in I} X_i : \|\{x_i\}\| = \sup_{i \in I} \|x_i\| < \infty \right\}.$$

Let \mathcal{U} be an ultrafilter in I and let $N_{\mathcal{U}} = \{\{x_i\} \in \ell_{\infty}(I, X_i) : \lim_{\mathcal{U}} ||x_i|| = 0\}$. The *ultraproduct* of $\{X_i\}$ is the quotient space $\ell_{\infty}(I, X_i)/N_{\mathcal{U}}$ equipped with the quotient norm. Note that for each $\{x_i\}_{\mathcal{U}}$ in the ultraproduct of $\{X_i\}$, we have $||\{x_i\}_{\mathcal{U}}|| = \lim_{\mathcal{U}} ||x_i||$. In particular, for a Banach space X, the *ultrapower* denoted by $X_{\mathcal{U}}$ is the ultraproduct of $\{X_i\}$ if $I = \mathbb{N}$ and $X_i = X$ for all $i \in \mathbb{N}$ (for details see [3, 4]). Dhompongsa, Kaewkhao and Saejung [3] showed the following.

Proposition 1.1 ([3]). Let X be a Banach space and X^* the dual space of X. Then (i) If X^* is a u-space, then X is a u-space.

(ii) If X is a U-space, then X is a u-space. The converse holds, whenever dim $X < \infty$.

(iii) X is a U-space if and only if $X_{\mathcal{U}}$ is a u-space.

Proposition 1.2 ([3]). Let X_1, X_2, \ldots, X_n be Banach spaces and $\psi \in \Psi_n$. Then $((X_1 \oplus \cdots \oplus X_n)_{\psi})_{\mathcal{U}}$ is isometric to $((X_1)_{\mathcal{U}} \oplus \cdots \oplus (X_n)_{\mathcal{U}})_{\psi}$.

Let f be a continuous convex function from a convex subset C of a real Banach space X into \mathbb{R} . We denote by $\partial f(x)$ the subdifferential of f at $x \in C$; $\partial f(x) = \{a \in X^* : f(y) \ge f(x) + \langle a, y - x \rangle \text{ for } y \in C\}$. For $n \in \mathbb{N}$ with $n \ge 2$, put $I_n = \{0, 1, \ldots, n-1\}$. We also put $p_0 = (0, 0, \ldots, 0) \in \Delta_n$ and

$$p_j = (0, \dots, 0, \stackrel{(j)}{1}, 0, \dots, 0) \in \Delta_n,$$

where j = 1, 2, ..., n - 1.

Definition 1.3 ([8]). For each $\psi \in \Psi_n$, we define the extended function $\widetilde{\psi}$ of ψ as

$$\widetilde{\psi}(t) = \sup \left\{ \begin{aligned} s &= (s_1, s_2, \dots, s_{n-1}) \in \Delta_n, \\ \psi(s) + \langle a, t - s \rangle : & a \in \partial \psi(s), \\ \psi(s) + \langle a, p_j - s \rangle \ge 0 \text{ for } j \in I_n \end{aligned} \right\}$$

for all $t \in \mathbb{R}^{n-1}$.

Then $\widetilde{\psi}$ has the following properties:

- (1) $\widetilde{\psi}(t) = \psi(t)$ holds for all $t \in \Delta_n$.
- (2) $\widetilde{\psi}$ is a convex function on \mathbb{R}^{n-1} with $\widetilde{\psi}(t) < \infty$ for all $t \in \mathbb{R}^{n-1}$.
- (3) For every $t = (t_1, t_2, \ldots, t_n) \in \Delta_n$, $a \in \partial \widetilde{\psi}(t)$ if and only if $a \in \psi(t)$ and $\psi(t) + \langle a, p_j t \rangle \ge 0$ for all $j \in I_n$.

(4) If
$$n = 2$$
, then

$$\widetilde{\psi}(t) = \begin{cases} 1-t & \text{if } t < 0, \\ \psi(t) & \text{if } 0 \le t \le 1, \\ t & \text{if } t > 1 \end{cases}$$

and

$$\partial \widetilde{\psi}(t) = \begin{cases} [-1, \psi_R'(0)] & \text{if } t = 0, \\ [\psi_L'(t), \psi_R'(t)] & \text{if } 0 < t < 1, \\ [\psi_L'(1), 1] & \text{if } t = 1, \end{cases}$$

where $\psi'_L(t)$ (resp. $\psi'_R(t)$) is the left (resp. right) derivative of ψ at t (see [8]).

The following was proved by Bonsall and Duncan [2].

Lemma 1.4 ([2]). For each $t \in [0,1]$, put $x(t) = \frac{1}{\psi(t)}(1-t,t)$. Then

$$D(\mathbb{C}^2, x(t)) = \begin{cases} \left\{ \begin{pmatrix} 1\\c(1+a) \end{pmatrix} : a \in \partial \widetilde{\psi}(0), |c| = 1 \right\}, & \text{if } t = 0, \\ \left\{ \begin{pmatrix} \psi(t) - at\\\psi(t) + a(1-t) \end{pmatrix} : a \in \partial \widetilde{\psi}(t) \right\}, & \text{if } 0 < t < 1, \\ \left\{ \begin{pmatrix} c(1-a)\\1 \end{pmatrix} : a \in \partial \widetilde{\psi}(1), |c| = 1 \right\}, & \text{if } t = 1 \end{cases}$$

holds.

In [8], Mitani, Saito and Suzuki gave the n-dimensional version of Lemma 1.4. Lemma 1.5 ([8], p. 106). Let $\psi \in \Psi_n$. For every $t = (t_1, t_2, \dots, t_{n-1}) \in \Delta_n$, we put

$$t_0 = 1 - \sum_{i=1}^{n-1} t_i$$
 and $x(t) = \frac{1}{\psi(t)} (t_0, t_1, \dots, t_{n-1}) \in \mathbb{C}^n$.

Then

$$D(\mathbb{C}^{n}, x(t)) = \left\{ \begin{pmatrix} e^{i\theta_{0}}(\psi(t) + \langle a, p_{0} - t \rangle) \\ e^{i\theta_{1}}(\psi(t) + \langle a, p_{1} - t \rangle) \\ \vdots \\ e^{i\theta_{n-1}}(\psi(t) + \langle a, p_{n-1} - t \rangle) \end{pmatrix} \right\} \begin{array}{c} a \in \partial \widetilde{\psi}(t), \\ \theta_{j} \in [0, 2\pi) \\ \vdots \\ for \ j \in I_{n} \ with \ t_{j} = 0, \\ \theta_{j} = 0 \\ for \ j \in I_{n} \ with \ t_{j} > 0 \end{array} \right\}$$

Moreover, Mitani, Oshiro and Saito [9] gave the following.

Lemma 1.6 ([9], p.154). Let X_1, X_2, \ldots, X_n be Banach spaces and $\psi \in \Psi_n$. For every $x = (x_1, x_2, \ldots, x_n) \in S_{(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}}$,

$$D((X_{1} \oplus X_{2} \oplus \dots \oplus X_{n})_{\psi}, x) = \left\{ \begin{pmatrix} a_{1}f_{1} \\ a_{2}f_{2} \\ \vdots \\ a_{n}f_{n} \end{pmatrix} : \begin{array}{l} (a_{1}, \dots, a_{n}) \in D(\mathbb{C}^{n}, (\|x_{1}\|, \|x_{2}\|, \dots, \|x_{n}\|)), \\ \vdots & f_{i} \in D(X_{i}, x_{i}) \text{ for } i \text{ with } x_{i} \neq 0, \\ f_{i} \in S_{X_{i}^{*}} \text{ for } i \text{ with } x_{i} = 0 \end{array} \right\}$$

2. U-convexity of absolute norms on \mathbb{C}^2

Definition 2.1. A function $\psi \in \Psi_2$ is said to be a *u*-function if, for every s and t with $0 \leq s < t \leq 1$, $\tilde{\psi}$ is differentiable at s and t, whenever ψ is affine on [s, t].

Our aim in this section is to prove that $(\mathbb{C}^2, \|\cdot\|_{\psi})$ is a u-space if and only if ψ is a u-function.

Remark 2.2. Our definition of u-function is different from that of u-function of Dhompongsa, Kaewkhao and Saejung [3], where a function $\psi \in \Psi_2$ is said to be a *u*-function in the sense of Dhompongsa, Kaewkhao and Saejung (in short, DKS) if

for all interval $[s,t] \subset (0,1)$, ψ is differentiable at s and t whenever ψ is affine on [s,t]. In [3], they proved that for any Banach spaces X and Y and any $\psi \in \Psi_2$, $(X \oplus Y)_{\psi}$ is a u-space (resp. U-space) if and only if X and Y are u-spaces (resp. U-spaces) and ψ is a u-function in the sense of DKS. In particular, for any $\psi \in \Psi_2$, $(\mathbb{C}^2, \|\cdot\|_{\psi})$ is a u-space if and only if ψ is a u-function in the sense of DKS. However, we can construct a counter-example of this result. We put

$$\psi_0(t) = \begin{cases} -\frac{1}{2}t + 1, & \text{if } 0 \le t \le \frac{1}{3}, \\ \frac{3}{2}t^2 - \frac{3}{2}t + \frac{7}{6}, & \text{if } \frac{1}{3} < t \le \frac{2}{3}, \\ \frac{1}{2}t + \frac{1}{2}, & \text{if } \frac{2}{3} < t \le 1. \end{cases}$$

Then it is obvious that $\psi_0 \in \Psi_2$ and ψ_0 is differentiable on (0, 1). Hence ψ_0 is a u-function in the sense of DKS. However, $(\mathbb{C}^2, \|\cdot\|_{\psi_0})$ is not a u-space. Indeed, we consider the two points x(0) and $x(\frac{1}{3})$ in \mathbb{C}^2 . Clearly, $\|x(0)\|_{\psi_0} = \|x(\frac{1}{3})\|_{\psi_0} = 1$ and $\|x(0) + x(\frac{1}{3})\|_{\psi_0} = 2$. Note that $\partial \widetilde{\psi}_0(0) = [-1, -\frac{1}{2}]$ and $\partial \widetilde{\psi}_0(\frac{1}{3}) = \{-\frac{1}{2}\}$. Then, by Lemma 1.4, we have

$$D(\mathbb{C}^2, x(0)) = \left\{ \left(\begin{array}{c} 1\\ c(1+a) \end{array} \right) : a \in [-1, -\frac{1}{2}], |c| = 1 \right\}$$

and

$$D(\mathbb{C}^2, x(\frac{1}{3})) = \left\{ \begin{pmatrix} 1\\ \frac{1}{2} \end{pmatrix} \right\}.$$

Hence $D(\mathbb{C}^2, x(0)) \neq D(\mathbb{C}^2, x(\frac{1}{3}))$. Thus $(\mathbb{C}^2, \|\cdot\|_{\psi_0})$ is not a u-space.

Smoothness of the points 0 and 1 for ψ is important to characterize the U-convexity of $(\mathbb{C}^2, \|\cdot\|_{\psi})$. Let us present the correct version.

Theorem 2.3. Let $\psi \in \Psi_2$. Then the following are equivalent:

(i) $(\mathbb{C}^2, \|\cdot\|_{\psi})$ is a u-space.

1

(ii) For every s and t with $0 \le s < t \le 1$, we have $\partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$, whenever ψ is affine on [s, t].

(iii) ψ is a *u*-function.

Proof. (i) \Rightarrow (ii): Assume that $(\mathbb{C}^2, \|\cdot\|_{\psi})$ is a u-space. Fix s and t with $0 \le s < t \le 1$. There is no case when s = 0 and t = 1. Let ψ be affine on [s, t]. As the proof of Theorem 14 in [3], we have $\|x(s)\|_{\psi} = \|x(t)\|_{\psi} = 1$ and $\|x(s) + x(t)\|_{\psi} = 2$. Hence it follows from the assumption that $D(\mathbb{C}^2, x(s)) = D(\mathbb{C}^2, x(t))$. We show $\partial \tilde{\psi}(s) = \partial \tilde{\psi}(t)$. Take any $a \in \partial \tilde{\psi}(s)$. If 0 < s < t < 1, then from Lemma 1.4,

$$f := \begin{pmatrix} \psi(s) - as \\ \psi(s) + a(1-s) \end{pmatrix} \in D(\mathbb{C}^2, x(s)).$$

By $f \in D(\mathbb{C}^2, x(t))$ and Lemma 1.4, there exists $b \in \partial \widetilde{\psi}(t)$ satisfying

$$f = \left(\begin{array}{c} \psi(t) - bt\\ \psi(t) + b(1-t) \end{array}\right).$$

So $\psi(s) - as = \psi(t) - bt$ and $\psi(s) + a(1 - s) = \psi(t) + b(1 - t)$. These imply a = b. Hence we have $a \in \partial \widetilde{\psi}(t)$. If 0 < s < t = 1, then $f \in D(\mathbb{C}^2, x(s))$. By $f \in D(\mathbb{C}^2, x(1))$ and Lemma 1.4, there exist c with |c| = 1 and $b \in \partial \widetilde{\psi}(1)$ such that

$$f = \left(\begin{array}{c} c(1-b) \\ 1 \end{array}\right).$$

So $\psi(s) - as = c(1-b)$ and $\psi(s) + a(1-s) = 1$. Note that $\psi(s) - as = 1-b$ because $\psi(s) - as \ge 0$ and $1 - b \ge 0$. Hence a = b, that is, $a \in \partial \widetilde{\psi}(1)$. In other cases, we similarly have $a \in \partial \widetilde{\psi}(t)$. Hence $\partial \widetilde{\psi}(s) \subset \partial \widetilde{\psi}(t)$. Similarly, $\partial \widetilde{\psi}(s) \supset \partial \widetilde{\psi}(t)$. Thus we have (i) \Rightarrow (ii).

(ii) \Rightarrow (i): Assume that the assertion (ii) holds. We show that $(\mathbb{C}^2, \|\cdot\|_{\psi})$ is a u-space. Take any $x = (x_0, x_1)$ and $y = (y_0, y_1) \in S_{(\mathbb{C}^2, \|\cdot\|_{\psi})}$ with $\|x + y\|_{\psi} = 2$. Put

$$s = \frac{|x_1|}{|x_0| + |x_1|}$$
 and $t = \frac{|y_1|}{|y_0| + |y_1|}$

Without loss of generality, we may assume that $s \leq t$. As the proof of Theorem 14 in [3], we have

$$2 \le \|(|x_0| + |y_0|, |x_1| + |y_1|)\|_{\psi}$$

= $(|x_0| + |y_0| + |x_1| + |y_1|)\psi((1 - \lambda)s + \lambda t)$
 $\le (|x_0| + |y_0| + |x_1| + |y_1|)\{(1 - \lambda)\psi(s) + \lambda\psi(t)\}$
= $\|x\|_{\psi} + \|y\|_{\psi} = 2,$

where $\lambda = (|y_0| + |y_1|)/(|x_0| + |y_0| + |x_1| + |y_1|)$. So ψ is affine on [s, t]. Hence it follows from the assumption that $\partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$.

We first show $D(\mathbb{C}^2, x(s)) = D(\mathbb{C}^2, x(t))$. We consider the case when 0 < s < t < 1. Take any $f \in D(\mathbb{C}^2, x(s))$. By Lemma 1.4, there exists $a \in \partial \widetilde{\psi}(s)$ satisfying

$$f = \left(\begin{array}{c} \psi(s) - as\\ \psi(s) + a(1-s) \end{array}\right).$$

From $a \in \partial \widetilde{\psi}(s)$ and $a \in \partial \widetilde{\psi}(t)$, we have $\psi(s) - \psi(t) = a(s-t)$, which implies $\psi(s) - as = \psi(t) - at$ and $\psi(s) + a(1-s) = \psi(t) + a(1-t)$. Hence it follows from $a \in \partial \widetilde{\psi}(t)$ and Lemma 1.4 that

$$f = \begin{pmatrix} \psi(t) - at \\ \psi(t) + a(1-t) \end{pmatrix} \in D(\mathbb{C}^2, x(t))$$

We next consider the case when 0 = s < t < 1. Take any $f \in D(\mathbb{C}^2, x(0))$. Then there exist $a \in \partial \tilde{\psi}(0)$ and c with |c| = 1 satisfying

$$f = \left(\begin{array}{c} 1\\ c(1+a) \end{array}\right).$$

By $a \in \partial \widetilde{\psi}(0)$ and $a \in \partial \widetilde{\psi}(t)$, we obtain $\psi(0) - \psi(t) = a(0-t)$, which implies $1 = \psi(t) - at$ and $1 + a = \psi(t) + a(1-t)$. Similarly, by $-1 \in \partial \widetilde{\psi}(0) = \partial \widetilde{\psi}(t)$, we

obtain $1 = \psi(t) + t$ and $0 = \psi(t) - (1 - t)$. Hence a = -1, that is, $c(1 + a) = 0 = \psi(t) + a(1 - t)$. Hence we have from Lemma 1.4,

$$f = \begin{pmatrix} \psi(t) - at \\ \psi(t) + a(1-t) \end{pmatrix} \in D(\mathbb{C}^2, x(t))$$

In other cases, we similarly have $f \in D(\mathbb{C}^2, x(t))$. Hence we have $D(\mathbb{C}^2, x(s)) \subset D(\mathbb{C}^2, x(t))$. Similarly, we have $D(\mathbb{C}^2, x(s)) \supset D(\mathbb{C}^2, x(t))$. Hence $D(\mathbb{C}^2, x(s)) = D(\mathbb{C}^2, x(t))$. Namely,

(2.1)
$$D(\mathbb{C}^2, (|x_0|, |x_1|)) = D(\mathbb{C}^2, (|y_0|, |y_1|))$$

Similarly, we consider the points x and $\frac{x+y}{2}$, and we can obtain

(2.2)
$$D(\mathbb{C}^2, (|x_0|, |x_1|)) = D(\mathbb{C}^2, (|(x_0 + y_0)/2|, |(x_1 + y_1)/2|)).$$

We next show $D(\mathbb{C}^2, x) = D(\mathbb{C}^2, y)$. Fix $f = (\alpha_0, \alpha_1) \in D(\mathbb{C}^2, x)$. Put ρ_i, η_i and ξ_i as $\rho_i = \arg x_i \in [0, 2\pi), \eta_i = \arg y_i \in [0, 2\pi)$ and $\xi_i = \arg (x_i + y_i)/2 \in [0, 2\pi)$ for all i = 0, 1, where $\arg 0 = 0$. Then we have from (2.1) and (2.2),

$$g := (e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1) \in D(\mathbb{C}^2, (|y_0|, |y_1|))$$

and

$$h := (e^{i(\rho_0 - \xi_0)} \alpha_0, e^{i(\rho_1 - \xi_1)} \alpha_1) \in D(\mathbb{C}^2, (x+y)/2).$$

Note that $D(\mathbb{C}^2, (x+y)/2) \subset D(\mathbb{C}^2, x) \cap D(\mathbb{C}^2, y)$. Then by $h \in D(\mathbb{C}^2, x)$, we have

$$1 = \operatorname{Re}\langle h, x \rangle = \operatorname{Re}(e^{i(\rho_0 - \xi_0)}\alpha_0 x_0) + \operatorname{Re}(e^{i(\rho_1 - \xi_1)}\alpha_1 x_1)$$

$$\leq |e^{i(\rho_0 - \xi_0)}\alpha_0 x_0| + |e^{i(\rho_1 - \xi_1)}\alpha_1 x_1| \leq ||f|| ||x||_{\psi} = 1,$$

which implies $e^{i(\rho_i - \xi_i)} \alpha_i x_i \ge 0$ for all i = 0, 1. We similarly have from $h \in D(\mathbb{C}^2, y)$, $e^{i(\rho_i - \xi_i)} \alpha_i y_i \ge 0$ for all i = 0, 1.

From these results we show $e^{i\eta_i}\alpha_i = e^{i\rho_i}\alpha_i$ for all i with $x_i \neq 0$ and $y_i \neq 0$. Let $x_i \neq 0$ and $y_i \neq 0$. We may assume $\alpha_i \neq 0$. Then we have $e^{i(\rho_i - \xi_i)}\alpha_i x_i = e^{i(2\rho_i - \xi_i)}\alpha_i |x_i| \geq 0$. Hence we obtain

(2.3)
$$e^{i(2\rho_i - \xi_i)}\alpha_i \ge 0.$$

Also, we have $e^{i(\rho_i - \xi_i)} \alpha_i y_i = e^{i(\rho_i - \xi_i + \eta_i)} \alpha_i |y_i| \ge 0$. Hence we obtain

(2.4)
$$e^{i(\rho_i - \xi_i + \eta_i)} \alpha_i \ge 0.$$

From (2.3) and (2.4) we have $e^{i(\rho_i - \eta_i)} \ge 0$ and so $\rho_i = \eta_i$. Thus $e^{i\eta_i}\alpha_i = e^{i\rho_i}\alpha_i$. Moreover we show $(e^{i\eta_0}\alpha_0, e^{i\eta_1}\alpha_1) \in D(\mathbb{C}^2, (|y_0|, |y_1|))$. To do it, we show

(2.5)
$$(e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1) \in D(\mathbb{C}^2, (|y_0|, |y_1|)).$$

We consider the case where $x_0 \neq 0$ and $y_0 \neq 0$. By $e^{i\eta_0}\alpha_0 = e^{i\rho_0}\alpha_0$, we have $g = (e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1)$. Hence we get (2.5). We consider the case where $x_0 = 0$. Then by $(e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1) \in D(\mathbb{C}^2, (|x_0|, |x_1|))$, we have

$$\langle (e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1), (0, |x_1|) \rangle = \langle (e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1), (0, |x_1|) \rangle = 1.$$

Also, we have

$$\|(e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1)\| = \|(e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1)\| = 1.$$

Hence $(e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1) \in D(\mathbb{C}^2, (|x_0|, |x_1|))$. Thus by (2.1), we have (2.5). We consider the case where $y_0 = 0$. Then by $(e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1) \in D(\mathbb{C}^2, (|y_0|, |y_1|))$, we have

$$\langle (e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1), (0, |y_1|) \rangle = \langle (e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1), (0, |y_1|) \rangle = 1.$$

Hence we obtain (2.5). Thus (2.5) holds for all cases. Similarly, we can obtain $(e^{i\eta_0}\alpha_0, e^{i\eta_1}\alpha_1) \in D(\mathbb{C}^2, (|y_0|, |y_1|))$ by using (2.5). Hence $f = (\alpha_0, \alpha_1) \in D(\mathbb{C}^2, y)$. Therefore we have $D(\mathbb{C}^2, x) \subset D(\mathbb{C}^2, y)$. Similarly, $D(\mathbb{C}^2, x) \supset D(\mathbb{C}^2, y)$. Thus we have (ii) \Rightarrow (i).

(ii) \Rightarrow (iii): Assume that assertion (ii) holds. Put *s* and *t* with $0 \leq s < t \leq 1$. Let ψ be affine on [s, t]. Then it follows from the assumption that $\partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$. By $\widetilde{\psi}'_L(s) \in \partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$, we have $\widetilde{\psi}'_L(t) \leq \widetilde{\psi}'_L(s) \leq \widetilde{\psi}'_R(t)$, where $\widetilde{\psi}'_L(t)$ (resp. $\widetilde{\psi}'_R(t)$) is the left (resp. right) derivative of $\widetilde{\psi}$ at *t*. We also have by the convexity of $\widetilde{\psi}$, $\widetilde{\psi}'_L(s) \leq \widetilde{\psi}'_R(s) \leq \widetilde{\psi}'_L(t) \leq \widetilde{\psi}'_R(t)$. These imply that $\widetilde{\psi}$ is differentiable at *s*. Similarly, $\widetilde{\psi}$ is differentiable at *t*. Thus we have (ii) \Rightarrow (iii).

(iii) \Rightarrow (ii): Assume that ψ is a u-function. Take s and t with $0 \le s < t \le 1$. Let ψ be affine on [s, t]. From $\widetilde{\psi}'_R(s) = \widetilde{\psi}'_L(t)$ and the differentiability, we get $\partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$. Thus we have (iii) \Rightarrow (ii).

3. U-convexity of absolute norms on \mathbb{C}^n

In this section, we characterize the U-convexity of $(\mathbb{C}^n, \|\cdot\|_{\psi})$. To do it, we shall introduce the following.

Definition 3.1. $\psi \in \Psi_n$ is said to be a *u*-function if, for any $s, t \in \Delta_n$ with $s \neq t$, then $\partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$, whenever ψ is affine on [s, t].

When n = 2, this coincides with the notion of u-function in Definition 2.1, by Theorem 2.3.

Theorem 3.2. Let $\psi \in \Psi_n$. Then the following are equivalent: (i) $(\mathbb{C}^n, \|\cdot\|_{\psi})$ is a u-space. (ii) ψ is a u-function.

Proof. (i) \Rightarrow (ii): For each $t = (t_1, t_2, \dots, t_{n-1}) \in \Delta_n$, we put

$$t_0 = 1 - \sum_{i=1}^{n-1} t_i$$
 and $x(t) = \frac{1}{\psi(t)} (t_0, t_1, \dots, t_{n-1}).$

Assume that $(\mathbb{C}^n, \|\cdot\|_{\psi})$ is a u-space. Fix $s = (s_1, \ldots, s_{n-1}) \in \Delta_n$ and $t = (t_1, \ldots, t_{n-1}) \in \Delta_n$ with $s \neq t$. Let ψ be affine on [s, t]. As the proof of Theorem 2.3, we obtain $\|x(s) + x(t)\|_{\psi} = 2$. Hence we have from the assumption, $D(\mathbb{C}^n, x(s)) = D(\mathbb{C}^n, x(t))$. We show $\partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$. Take any $a \in \partial \widetilde{\psi}(s)$. By

Lemma 1.5,

$$f := \begin{pmatrix} \psi(s) + \langle a, p_0 - s \rangle \\ \psi(s) + \langle a, p_1 - s \rangle \\ \vdots \\ \psi(s) + \langle a, p_{n-1} - s \rangle \end{pmatrix} \in D(\mathbb{C}^n, x(s)).$$

Hence it follows from $f \in D(\mathbb{C}^n, x(t))$ and Lemma 1.5 that there exist $c_0, c_1, \ldots, c_{n-1}$ with $|c_j| = 1(\forall j)$ and $b \in \partial \widetilde{\psi}(t)$ satisfying

$$f = \begin{pmatrix} c_0(\psi(t) + \langle b, p_0 - t \rangle) \\ c_1(\psi(t) + \langle b, p_1 - t \rangle) \\ \vdots \\ c_{n-1}(\psi(t) + \langle b, p_{n-1} - t \rangle) \end{pmatrix}$$

.

So we have $\psi(s) + \langle a, p_j - s \rangle = c_j(\psi(t) + \langle b, p_j - t \rangle)$ for all $j \in I_n$. Note that since $\psi(t) + \langle b, p_j - t \rangle \ge 0$ for all $j \in I_n$, we have for all $j \in I_n$, $\psi(s) + \langle a, p_j - s \rangle = \psi(t) + \langle b, p_j - t \rangle$. Hence we have for all $u \in \mathbb{R}^{n-1}$,

$$\begin{split} \widetilde{\psi}(u) &- \widetilde{\psi}(t) - \langle a, u - t \rangle \\ &= \widetilde{\psi}(u) - \widetilde{\psi}(s) - \langle a, u - s \rangle + \widetilde{\psi}(s) - \widetilde{\psi}(t) + \langle a, t - s \rangle \\ &\geq \psi(s) - \psi(t) + \langle a, t - s \rangle & (by \ a \in \partial \widetilde{\psi}(s)) \\ &= \psi(s) - \psi(t) + \langle a, \sum_{t=0}^{n-1} t_j p_j - s \rangle & (by \ t = \sum_{t=0}^{n-1} t_j p_j) \\ &= \sum_{t=0}^{n-1} t_j (\psi(s) + \langle a, p_j - s \rangle) - \psi(t) \\ &= \sum_{t=0}^{n-1} t_j (\psi(t) + \langle b, p_j - t \rangle) - \psi(t) = 0, \end{split}$$

which implies $a \in \partial \widetilde{\psi}(t)$. Hence $\partial \widetilde{\psi}(s) \subset \partial \widetilde{\psi}(t)$. Similarly, $\partial \widetilde{\psi}(s) \supset \partial \widetilde{\psi}(t)$. Thus ψ is a u-function.

(ii) \Rightarrow (i): For each $x = (x_0, x_1, \dots, x_{n-1}) \in \mathbb{C}^n$, we put |x| as $|x| = (|x_0|, |x_1|, \dots, |x_{n-1}|)$. Assume that ψ is a u-function. We show that $(\mathbb{C}^n, \|\cdot\|_{\psi})$ is a u-space. Take any $x = (x_0, x_1, \dots, x_{n-1}) \in S_{(\mathbb{C}^n, \|\cdot\|_{\psi})}$ and $y = (y_0, y_1, \dots, y_{n-1}) \in S_{(\mathbb{C}^n, \|\cdot\|_{\psi})}$ with $\|x + y\|_{\psi} = 2$. For each i, put s_i and t_i as

$$s_i = \frac{|x_i|}{\sum_{j=0}^{n-1} |x_j|}$$
 and $t_i = \frac{|y_i|}{\sum_{j=0}^{n-1} |x_j|}$.

We also put $s = (s_1, \ldots, s_{n-1}) \in \Delta_n$, $t = (t_1, \ldots, t_{n-1}) \in \Delta_n$ and

$$\lambda = \frac{\sum_{j=0}^{n-1} |y_j|}{\sum_{j=0}^{n-1} (|x_j| + |y_j|)}$$

Then since

$$2 \le \|(|x_0| + |y_0|, |x_1| + |y_1|, \dots, |x_{n-1}| + |y_{n-1}|)\|_{\psi}$$

= $\sum_{j=0}^{n-1} (|x_j| + |y_j|) \psi ((1 - \lambda)s + \lambda t)$
 $\le \sum_{j=0}^{n-1} (|x_j| + |y_j|) \{(1 - \lambda)\psi(s) + \lambda\psi(t)\}$
= $\|x\|_{\psi} + \|y\|_{\psi} = 2,$

it follows that ψ is affine on [s, t]. So $\partial \widetilde{\psi}(s) = \partial \widetilde{\psi}(t)$. We first show $D(\mathbb{C}^n, x(s)) = D(\mathbb{C}^n, x(t))$. Fix $f \in D(\mathbb{C}^n, x(s))$. Then there exist $a \in \partial \widetilde{\psi}(s)$ and $\{c_j\}_{j=0}^{n-1}$ such that

$$f = \begin{pmatrix} c_0(\psi(s) + \langle a, p_0 - s \rangle) \\ c_1(\psi(s) + \langle a, p_1 - s \rangle) \\ \vdots \\ c_{n-1}(\psi(s) + \langle a, p_{n-1} - s \rangle) \end{pmatrix}$$

where $c_j = 1$ for $j \in I_n$ with $s_j > 0$, and $|c_j| = 1$ for $j \in I_n$ with $s_j = 0$. In order to show $f \in D(\mathbb{C}^n, x(t))$, from Lemma 1.5, it is enough to show the following: (a): $a \in \partial \widetilde{\psi}(t)$,

(b): For all $i \in I_n$, we have $\psi(s) + \langle a, p_i - s \rangle = \psi(t) + \langle a, p_i - t \rangle$,

(c): For all $i \in I_n$ with $t_i > 0$, we have $c_i = 1$ or $\psi(s) + \langle a, p_i - s \rangle = 0$.

The assertion (a) is clear. We also have from $a \in \partial \psi(s)$ and $a \in \partial \psi(t)$, $\psi(t) - \psi(s) = \langle a, t - s \rangle$, which implies (b). We show the assertion (c). Assume that $t_0 > 0$. Then we show that $c_0 = 1$ or $\psi(s) + \langle a, p_0 - s \rangle = 0$. If $s_0 > 0$, then $c_0 = 1$. Let $s_0 = 0$. Put g and h as

$$g = \begin{pmatrix} \psi(s) + \langle a, p_0 - s \rangle \\ \psi(s) + \langle a, p_1 - s \rangle \\ \vdots \\ \psi(s) + \langle a, p_{n-1} - s \rangle \end{pmatrix} \quad \text{and} \quad h = \begin{pmatrix} 0 \\ \psi(s) + \langle a, p_1 - s \rangle \\ \vdots \\ \psi(s) + \langle a, p_{n-1} - s \rangle \end{pmatrix}.$$

From Lemma 1.5, (a) and (b), we have $g \in D(\mathbb{C}^n, x(s))$ and $g \in D(\mathbb{C}^n, x(t))$. By $s_0 = 0$, we have $\langle h, x(s) \rangle = \langle g, x(s) \rangle = 1$, which implies $h \in D(\mathbb{C}^n, x(s))$. Hence, by Lemma 1.5, there exists $c \in \partial \tilde{\psi}(s)$ such that

$$h = \begin{pmatrix} \psi(s) + \langle c, p_0 - s \rangle \\ \vdots \\ \psi(s) + \langle c, p_{n-1} - s \rangle \end{pmatrix}$$

Since $c \in \partial \tilde{\psi}(t)$ and $\psi(t) + \langle c, p_i - t \rangle = \psi(s) + \langle c, p_i - s \rangle$ for every $i \in I_n$, we have $h \in D(\mathbb{C}^n, x(t))$. Hence $0 = \langle g, x(t) \rangle - \langle h, x(t) \rangle = t_0(\psi(t) + \langle a, p_0 - t \rangle)$. Therefore we have by $t_0 > 0$, $\psi(s) + \langle a, p_0 - s \rangle = \psi(t) + \langle a, p_0 - t \rangle = 0$. Similarly, for all $i = 1, 2, \ldots, n-1$ with $t_i > 0$, we have $c_i = 1$ or $\psi(s) + \langle a, p_i - s \rangle = 0$. Thus $D(\mathbb{C}^n, x(s)) = D(\mathbb{C}^n, x(t))$, that is,

(3.1)
$$D(\mathbb{C}^n, |x|) = D(\mathbb{C}^n, |y|).$$

Similarly,

(3.2)
$$D(\mathbb{C}^n, |x|) = D(\mathbb{C}^n, |(x+y)/2|).$$

We next show $D(\mathbb{C}^n, x) = D(\mathbb{C}^n, y)$. Fix $f = (\alpha_1, \ldots, \alpha_{n-1}) \in D(\mathbb{C}^n, x)$. Put ρ_i, η_i and ξ_i as $\rho_i = \arg x_i \in [0, 2\pi), \eta_i = \arg y_i \in [0, 2\pi)$ and $\xi_i = \arg (x_i + y_i)/2 \in [0, 2\pi)$ for all *i*, where $\arg 0 = 0$. Then by (3.1) and (3.2), we have

$$g := (e^{i\rho_0}\alpha_0, \dots, e^{i\rho_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |x|) = D(\mathbb{C}^n, |y|),$$

and

$$h := (e^{i(\rho_0 - \xi_0)} \alpha_0, \dots, e^{i(\rho_{n-1} - \xi_{n-1})} \alpha_{n-1}) \in D(\mathbb{C}^n, (x+y)/2)$$

Note that $D(\mathbb{C}^n, (x+y)/2) \subset D(\mathbb{C}^n, x) \cap D(\mathbb{C}^n, y)$. Then by $h \in D(\mathbb{C}^n, x)$, we have

$$1 = \operatorname{Re}\langle h, x \rangle = \sum_{i=0}^{n-1} \operatorname{Re}(e^{i(\rho_i - \xi_i)} \alpha_i x_i)$$
$$\leq \sum_{i=0}^{n-1} |e^{i(\rho_i - \xi_i)} \alpha_i x_i| \leq ||f|| ||x||_{\psi} = 1$$

which implies $e^{i(\rho_i - \xi_i)} \alpha_i x_i \ge 0$ for all *i*. Similarly, we have by $h \in D(\mathbb{C}^n, y)$, $e^{i(\rho_i - \xi_i)} \alpha_i y_i \ge 0$ for all *i*.

Moreover we show that $e^{i\rho_i}\alpha_i = e^{i\eta_i}\alpha_i$ for all i with $x_i \neq 0$ and $y_i \neq 0$. Let $x_i \neq 0$ and $y_i \neq 0$. We may assume $\alpha_i \neq 0$. Then $e^{i(\rho_i - \xi_i)}\alpha_i x_i = e^{i(2\rho_i - \xi_i)}\alpha_i |x_i| \geq 0$ and hence $e^{i(2\rho_i - \xi_i)}\alpha_i \geq 0$. We also have $e^{i(\rho_i - \xi_i)}\alpha_i y_i = e^{i(\rho_i - \xi_i + \eta_i)}\alpha_i |y_i| \geq 0$ and hence $e^{i(\rho_i - \xi_i + \eta_i)}\alpha_i \geq 0$. These imply $e^{i(\rho_i - \eta_i)} \geq 0$. Hence $\rho_i = \eta_i$ and so $e^{i\rho_i}\alpha_i = e^{i\eta_i}\alpha_i$.

From this result, we show $(e^{i\eta_0}\alpha_0,\ldots,e^{i\eta_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n,|y|)$. To do it, we show

(3.3)
$$(e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |y|).$$

Let $x_0 \neq 0$ and $y_0 \neq 0$. Then by $e^{i\rho_0}\alpha_0 = e^{i\eta_0}\alpha_0$, we have

$$g = (e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1})$$

By $g \in D(\mathbb{C}^n, |y|)$, we have (3.3). Let $x_0 = 0$. By $(e^{i\rho_0}\alpha_0, \dots, e^{i\rho_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |x|)$ we have

$$\langle (e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1}), (0, |x_1|, \dots, |x_{n-1}|) \rangle$$

= $\langle (e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1}), (0, |x_1|, \dots, |x_{n-1}|) \rangle = 1$

and

$$\|(e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1})\| = \|(e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1})\| = 1.$$

and hence

$$(e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |x|).$$

Thus by (3.1) we obtain (3.3). If $y_0 = 0$, then by $(e^{i\rho_0}\alpha_0, \ldots, e^{i\rho_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |y|)$, we have

$$\langle (e^{i\eta_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1}), (0, |y_1|, \dots, |y_{n-1}|) \rangle$$

= $\langle (e^{i\rho_0}\alpha_0, e^{i\rho_1}\alpha_1, \dots, e^{i\rho_{n-1}}\alpha_{n-1}), (0, |y_1|, \dots, |y_{n-1}|) \rangle = 1.$

Hence we have (3.3). Thus (3.3) holds for all cases. Similarly, we obtain

 $(e^{i\eta_0}\alpha_0, e^{i\eta_1}\alpha_1, e^{i\rho_2}\alpha_2, \dots, e^{i\rho_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |y|)$

by using (3.3). In the same way, we can show that for each i,

$$(e^{i\eta_0}\alpha_0, \dots, e^{i\eta_{i-1}}\alpha_{i-1}, e^{i\eta_i}\alpha_i, e^{i\rho_{i+1}}\alpha_{i+1}, \dots, e^{i\rho_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |y|).$$

Hence we have

$$(e^{i\eta_0}\alpha_0, e^{i\eta_1}\alpha_1, \dots, e^{i\eta_{n-1}}\alpha_{n-1}) \in D(\mathbb{C}^n, |y|)$$

and so $f = (\alpha_0, \ldots, \alpha_{n-1}) \in D(\mathbb{C}^n, y)$. Therefore we have $D(\mathbb{C}^n, x) \subset D(\mathbb{C}^n, y)$. Similarly, $D(\mathbb{C}^n, x) \supset D(\mathbb{C}^n, y)$. Thus $(\mathbb{C}^n, \|\cdot\|_{\psi})$ is a u-space and this completes the proof.

As a direct consequence of Proposition 1.1 and Theorem 3.2, we obtain the following.

Theorem 3.3. Let $\psi \in \Psi_n$. Then the following are equivalent: (i) $(\mathbb{C}^n, \|\cdot\|_{\psi})$ is a U-space. (ii) ψ is a u-function.

4. U-convexity of $(X_1 \oplus \cdots \oplus X_n)_{\psi}$

In this section, we characterize the U-convexity of $(X_1 \oplus \cdots \oplus X_n)_{\psi}$.

Theorem 4.1. Let X_1, X_2, \ldots, X_n be Banach spaces and $\psi \in \Psi_n$. Then the following are equivalent:

(i) $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$ is a u-space.

(ii) X_1, X_2, \ldots, X_n and $(\mathbb{C}^n, \|\cdot\|_{\psi})$ are u-spaces.

(iii) X_1, X_2, \ldots, X_n are u-spaces and ψ is a u-function.

Proof. From Theorem 3.2, it is enough to show (ii) \Rightarrow (i). Assume that X_1, X_2, \ldots, X_n and $(\mathbb{C}^n, \|\cdot\|_{\psi})$ are *u*-spaces. We put $X = (X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$. Fix $x = (x_1, x_2, \ldots, x_n) \in S_X$ and $y = (y_1, y_2, \ldots, y_n) \in S_X$ with $\|x + y\|_{\psi} = 2$. We also put $z = (\|x_1\|, \|x_2\|, \ldots, \|x_n\|)$ and $w = (\|y_1\|, \|y_2\|, \ldots, \|y_n\|)$. We shall show $D(X, x) \subset D(X, y)$. Fix

$$f = \begin{pmatrix} a_1 f_1 \\ a_2 f_2 \\ \vdots \\ a_n f_n \end{pmatrix} \in D(X, x),$$

where $(a_1, \ldots, a_n) \in D(\mathbb{C}^n, z)$, $f_i \in D(X_i, x_i)$ for $i \in I_n$ with $x_i \neq 0$, and $f_i \in S_{X_i^*}$ for $i \in I_n$ with $x_i = 0$. For each $i \in I_n$ with $y_i \neq 0$, take a $g_i \in D(X_i, y_i)$. For each $i \in I_n$ with $y_i = 0$, take a $g'_i \in S_{X_i}$. Moreover, we put

$$h_{i} = \begin{cases} f_{i}, \text{ if } & a_{i} \neq 0, \\ g_{i}, \text{ if } & a_{i} = 0 \text{ and } y_{i} \neq 0, \\ g'_{i}, \text{ if } & a_{i} = 0 \text{ and } y_{i} = 0, \end{cases}$$

for each $i \in I_n$. Note that

$$f = \left(\begin{array}{c} a_1 h_1 \\ \vdots \\ a_n h_n \end{array}\right).$$

In order to show $f \in D(X, y)$, from Lemma 1.6, it is enough to show the following: (a): $(a_1, a_2, \ldots, a_n) \in D(\mathbb{C}^n, w)$,

(b): For $i \in I_n$ with $y_i \neq 0, h_i \in D(X_i, y_i)$,

(c): For $i \in I_n$ with $y_i = 0, h_i \in S_{X_i}$.

Obviously, the assertion (c) holds. We show (a). From $2 = ||x+y||_{\psi} \le ||z+w||_{\psi} \le 2$, we obtain $||z+w||_{\psi} = 2$ and $||z||_{\psi} = ||w||_{\psi} = 1$. Hence, since $(\mathbb{C}^n, ||\cdot||_{\psi})$ is a u-space, we have

(4.1)
$$D(\mathbb{C}^n, z) = D(\mathbb{C}^n, w),$$

which implies (a). Similarly, we have

(4.2)
$$D(\mathbb{C}^n, (||(x_1+y_1)/2||, \dots, ||(x_n+y_n)/2||)) = D(\mathbb{C}^n, z).$$

We next show (b). Fix $i \in I_n$ with $y_i \neq 0$. If $a_i = 0$, then $h_i = g_i \in D(X_i, y_i)$. Let $a_i \neq 0$. Assume that $x_i = 0$. Then both (a_1, \ldots, a_n) and $(a_1, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_n)$ belong to $D(\mathbb{C}^n, z)$. From (4.1), they also belong to $D(\mathbb{C}^n, w)$. Hence

$$a_i ||y_i|| = \langle (a_1, \dots, a_n), w \rangle - \langle (a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n), w \rangle = 0$$

which is a contradiction. So $x_i \neq 0$. Note that $a_i \neq 0$ and

$$(a_1,\ldots,a_n) \in D(\mathbb{C}^n, (||(x_1+y_1)/2||,\ldots,||(x_n+y_n)/2||)).$$

Hence, by Lemma 1.6, we can take an element

$$k = (k_1, \dots, k_n) \in D\left(X, \frac{x+y}{2}\right)$$

with $k_i \neq 0$. Note that $D\left(X, \frac{x+y}{2}\right) \subset D(X, x) \cap D(X, y)$. Hence by $k \in D(X, x)$, we have

$$1 = \sum_{i=1}^{n} \operatorname{Re}(k_i(x_i)) \le \sum_{i=1}^{n} |k_i(x_i)| \le \sum_{i=1}^{n} ||k_i|| ||x_i|| \le 1$$

which implies $k_i(x_i) = ||k_i|| ||x_i||$. Similarly $k_i(y_i) = ||k_i|| ||y_i||$. These imply

$$2 = \frac{k_i}{\|k_i\|} \left(\frac{x_i}{\|x_i\|} + \frac{y_i}{\|y_i\|} \right) \le \left\| \frac{x_i}{\|x_i\|} + \frac{y_i}{\|y_i\|} \right\| \le 2,$$

and so

$$\left\|\frac{x_i}{\|x_i\|} + \frac{y_i}{\|y_i\|}\right\| = 2.$$

Since X_i is a u-space, we have $D\left(X_i, \frac{x_i}{\|x_i\|}\right) = D\left(X_i, \frac{y_i}{\|y_i\|}\right)$, which implies $D(X_i, x_i) = D(X_i, y_i)$. Hence $h_i = f_i \in D(X_i, y_i)$. Therefore we have (b). Thus $f \in D(X, y)$, and so $D(X, x) \subset D(X, y)$. We similarly have $D(X, x) \supset D(X, y)$. Thus X is a u-space. This completes the proof.

Corollary 4.2 (cf. [3]). Let X and Y be Banach spaces and $\psi \in \Psi_2$. Then the following are equivalent:

- (i) $(X \oplus Y)_{\psi}$ is a u-space.
- (ii) X, Y and $(\mathbb{C}^2, \|\cdot\|_{\psi})$ are u-spaces.
- (iii) X and Y are u-spaces and ψ is a u-function.

As a direct consequence of Proposition 1.1, Proposition 1.2 and Theorem 4.1, we obtain the following.

Theorem 4.3. Let X_1, X_2, \ldots, X_n be Banach spaces and $\psi \in \Psi_n$. Then the following are equivalent:

(i) $(X_1 \oplus X_2 \oplus \cdots \oplus X_n)_{\psi}$ is a U-space.

(ii) X_1, X_2, \ldots, X_n and $(\mathbb{C}^n, \|\cdot\|_{\psi})$ are U-spaces.

(iii) X_1, X_2, \ldots, X_n are U-spaces and ψ is a u-function.

Corollary 4.4 (cf. [3]). Let X and Y be Banach spaces and $\psi \in \Psi_2$. Then the following are equivalent:

(i) $(X \oplus Y)_{\psi}$ is a U-space.

(ii) X, Y and $(\mathbb{C}^2, \|\cdot\|_{\psi})$ are U-spaces.

(iii) X and Y are U-spaces, and ψ is a u-function.

References

- B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd ed., North-Holland, Amsterdam-New York-Oxford, 1985.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Series, Vol.10, 1973.
- [3] S. Dhompongsa, A. Kaewkhao and S. Saejung, Uniform smoothness and U-convexity of ψdirect sums, J. Nonlinear Convex Anal. 6 (2005), 327–338.
- [4] J. Gao and K. S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), 41–56.
- M. Kato, K. -S. Saito and T. Tamura, On \u03c6-direct sums of Banach spaces and convexity, J. Austral. Math. Soc. 75 (2003), 413–422.
- [6] M. Kato, K. -S. Saito and T. Tamura, Uniform non-squareness of ψ-direct sums of Banach spaces X ⊕_ψ Y, Math. Inequal. Appl. 7 (2004), 429–437.
- [7] K. S. Lau, Best approximation by closed sets in Banach spaces, J. Approx. Theory. 23 (1978), 29–36.
- [8] K. Mitani, K. -S. Saito and T. Suzuki, Smoothness of absolute norms on Cⁿ, J. Convex. Anal. 10 (2003), 89–107.
- [9] K. Mitani, S. Oshiro and K. -S. Saito, Smoothness of ψ-direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147–157.
- [10] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
- [11] K. -S. Saito and M. Kato, Uniform convexity of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1–11.
- [12] K. -S. Saito, M. Kato and Y. Takahashi, Absolute norms on Cⁿ, J. Math. Anal. Appl. 252 (2000), 879–905.
- [13] Y. Takahashi, M. Kato and K. -S. Saito, Strict convexity of absolute normes on C² and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179–186.

Manuscript received July 16, 2008 revised June 11, 2010

K.-I. MITANI

Department of Applied Chemistry and Biotechnoloty, Fucluty of Engineering Niigata Institute of Technology, Kashiwazaki 945-1195, Japan *E-mail address:* mitani@adm.niit.ac.jp