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A MEAN ERGODIC THEOREM FOR NONLINEAR
SEMIGROUPS ON THE HILBERT BALL

EVA KOPECKÁ AND SIMEON REICH

Abstract. We establish a dual mean ergodic theorem for nonlinear continuous
semigroups of ρ-nonexpansive self-mappings of the Hilbert ball (B, ρ).

1. Introduction

The main purpose of this note is to establish a dual mean ergodic theorem (Theo-
rem 5.1 below) for nonlinear continuous semigroups of ρ-nonexpansive self-mappings
of the Hilbert ball (B, ρ). This theorem may be considered a Hilbert ball analogue
of a recently established dual mean ergodic theorem [32, Theorem 4.1] for nonlinear
continuous semigroups of nonexpansive self-mappings of uniformly smooth Banach
spaces. Dual mean ergodic theorems for a single nonexpansive mapping go back
to [5] and [36]. Recent results regarding nonlinear continuous semigroups on the
Hilbert ball and their asymptotic behavior can be found, for example, in [18], [7],
[6] and [8].

In the next section we recall several pertinent properties of the hyperbolic metric
ρ : B×B 7→ R+. Section 3 is devoted to nonlinear ρ-nonexpansive semigroups on B
and to their generation. In Section 4 we discuss Banach limits on the Banach space
of all real bounded functions defined on R+ and the concept of almost convergence.
The fifth and last section contains our main result as well as two corollaries.

2. The hyperbolic metric

In this section we collect several relevant properties of the hyperbolic metric on
the Hilbert ball. See [2, Section 9], [14, Theorem 2.10], [15] and [19] for more recent
results concerning (B, ρ).

Let (H, 〈·, ·〉) be a complex Hilbert space with inner product 〈·, ·〉 and induced
norm | · |, and let B := {x ∈ H : |x| < 1} be its open unit ball. We denote the sets
of natural numbers, the real line, the interval [0,∞) and the complex plane by N,
R, R+ and C, respectively. The hyperbolic metric ρ : B × B 7→ R+ [9, page 98] is
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defined by

(2.1) ρ(x, y) := argtanh
(
1− σ(x, y)

) 1
2 ,

where

(2.2) σ(x, y) :=
(1− |x|2)(1− |y|2)

|1− 〈x, y〉|2 , x, y ∈ B.

This metric is the infinite-dimensional analogue of the Poincaré metric on the open
unit disk {z ∈ C : |z| < 1}. We let B(a, r) := {x ∈ B : ρ(a, x) < r} stand
for the ρ-ball of center a and radius r. A subset of B is called ρ-bounded if it is
contained in a ρ-ball. We say that a mapping e : R 7→ B is a metric embedding of
the real line R into B if ρ(e(s), e(t)) = |s − t| for all real s and t. The image of
R under a metric embedding is called a metric line. The image of a real interval
[a, b] = {t ∈ R : a ≤ t ≤ b} under such a mapping is called a metric segment.
It is known [9, page 102] that for any two distinct points x and y in B, there is
a unique metric line (also called a geodesic) which passes through x and y. This
metric line determines a unique metric segment joining x and y. For each 0 ≤ t ≤ 1,
there is a unique point z on this metric segment such that ρ(x, z) = tρ(x, y) and
ρ(z, y) = (1 − t)ρ(x, y). This point will be denoted by (1 − t)x ⊕ ty. Similarly,
for r ≥ 0, we let (1 + r)x ª ry stand for the unique point z ∈ B that satisfies
ρ(z, x) = rρ(x, y) and ρ(z, y) = (1+r)ρ(x, y). This point lies on the unique geodesic
determined by x and y.

The following inequality [9, page 104] shows that the metric space (B, ρ) is hy-
perbolic in the sense of [27].

Lemma 2.1. For any four points a, b, x and y in B, and any number t ∈ [0, 1],

(2.3) ρ((1− t)a⊕ tx, (1− t)b⊕ ty) ≤ (1− t)ρ(a, b) + tρ(x, y).

Next, we mention another useful property of the hyperbolic metric.

Lemma 2.2. For any three points u, v, w ∈ B and any number 0 ≤ t ≤ 1,

(2.4) ρ(tv ⊕ (1− t)w, u)2 ≤ tρ(v, u)2 + (1− t)ρ(w, u)2 − t(1− t)ρ(v, w)2.

This is Lemma 2.3 on page 315 of [36]. It shows that the hyperbolic metric ρ is
hyperbolically uniformly convex [27, page 541].

Recall that the Möbius transformations of B [9, page 98] are biholomorphic map-
pings Ma : B 7→ B of the form

(2.5) Ma(z) =
(√

(1− |a|2)Qa + Pa

)
ma(z), z ∈ B,

where a ∈ B, Pa is the orthogonal projection of H onto the one-dimensional subspace
spanned by a, Qa = I − Pa, and ma(z) := (z + a)/(1 + 〈z, a〉). Every Möbius
transformation is an automorphism of B and hence a ρ-isometry. As a matter of
fact, any automorphism of B is of the form U ◦Ma for some unitary operator U on
H and a point a ∈ B [9, Theorem 14.1].

To each x ∈ B, we associate a Hilbert space Hx the elements of which are denoted
by {[x, y] : y ∈ B} [34, page 638]. Both the vector space structure and the inner
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product of Hx are determined by the mapping i : Hx 7→ H defined by

(2.6) i([x, y]) :=
(
ρ(x, y)/|M−x(y)|)M−x(y)

when y 6= x and by i([x, y]) := 0 when y = x. In particular, the inner product in
Hx is given by

(2.7) 〈[x, y], [x, z]〉 =
ρ(x, y) · ρ(x, z)

|M−x(y)||M−x(z)| 〈M−x(y),M−x(z)〉,

where y 6= x and z 6= x, and the norm of the element [x, y] ∈ Hx is ρ(x, y). The
spaces Hx and Hy, where x, y ∈ B, are isometric Hilbert spaces via, for example,
the isometry Ux,y : Hx 7→ Hy defined by

(2.8) Ux,y[x, z] := [y, My(M−x(z))], z ∈ B.

The vector [x, y] ∈ Hx may be identified with the vector v in the tangent space at
x for which expx(v) = y, where expx is the exponential map at x.

The following lemma is a special case of Corollary 2.6(a) on page 640 of [34].

Lemma 2.3. For any u, v, w ∈ B, define the function φ : [0, 1] 7→ R by

(2.9) φ(s) := ρ(sv ⊕ (1− s)w, u)2.

Then the derivative of φ at 1−,

(2.10) φ′(1−) := lim
s→1−

[φ(1)− φ(s)]/(1− s),

exists and equals 2 Re〈[v, u], [v, w]〉. Moreover, the convergence in

(2.11) lim
s→1−

[φ(1)− φ(s)]/(1− s)

is uniform for u ∈ D, where D is any ρ-bounded subset of B.

The following “law of cosines” is Lemma 2.2 on page 638 of [34].

Lemma 2.4. For any three points u, v, w ∈ B,

(2.12) ρ(v, w)2 ≥ ρ(u, v)2 + ρ(u,w)2 − 2 Re〈[u, v], [u,w]〉.
The last preparatory lemma we include in this section, the “second law of cosines”,

is Lemma 2.3 on page 639 of [34].

Lemma 2.5. For any three points u, v, w ∈ B,

(2.13) ρ(u, v)2 ≤ Re〈[u, v], [u,w]〉+ Re〈[v, u], [v, w]〉.
Proof. By Lemma 2.4, we have

(2.14) ρ(v, w)2 ≥ ρ(u, v)2 + ρ(u,w)2 − 2 Re〈[u, v], [u,w]〉
and

(2.15) ρ(u,w)2 ≥ ρ(u, v)2 + ρ(v, w)2 − 2 Re〈[v, u], [v, w]〉.
Adding these two inequalities, we obtain inequality (2.13). ¤
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3. Nonlinear semigroups

This section is devoted to nonlinear ρ-nonexpansive semigroups on B and to their
generation. We start with a discussion of coaccretive operators.

Recall (see [27] and [34]) that a possibly set-valued operator T ⊂ B × B with
domain D(T ) and range R(T ) is said to be coaccretive if

(3.1) ρ(x1, x2) ≤ ρ((1 + r)x1 ª ry1, (1 + r)x2 ª ry2)

for all y1 ∈ Tx1, y2 ∈ Tx2, and r > 0. Such operators are the Hilbert ball analogues
of the operators of the form T = I −A, where I denotes the identity operator and
A is an accretive operator on a Banach space. In this case, the operator T is also
said to be pseudo-contractive [4, page 876]. Let D be a subset of B. A mapping
T : D 7→ B is called ρ-nonexpansive if ρ(Tx1, Tx2) ≤ ρ(x1, x2) whenever x1 and x2

belong to D. It is known (see, for example, [9, page 91]) that each holomorphic
self-mapping of B is ρ-nonexpansive. Using Lemma 2.1, one can check that all
ρ-nonexpansive mappings are coaccretive. An interesting family of (possibly set-
valued) coaccretive operators is described on page 641 of [34]. These operators are
analogues of subdifferentials of convex functions in Hilbert space. In particular, if
RC : B 7→ C is the nearest point projection of B onto an arbitrary ρ-closed and
ρ-convex subset C of B, then the operator {(RCz, 2RCz ª z) : z ∈ B} ⊂ B × B is
coaccretive.

When the operator T is coaccretive, one can define, for each positive r, a single-
valued ρ-nonexpansive mapping Jr : R((1 + r)I ª rT ) 7→ D(T ), the resolvent of T ,
by

(3.2) Jr((1 + r)xª ry) = x,

where x ∈ D(T ) and y ∈ Tx. These mappings (which in normed linear spaces are
indeed the resolvents of the accretive operator A = I − T ) satisfy the following
resolvent identity for all t ≥ s > 0 and x ∈ D(Jt):

(3.3) Jtx = Js((s/t)x⊕ (1− s/t)Jtx).

Recall that a mapping T : D 7→ B is said to be firmly nonexpansive of the first
kind [9, page 124] if for each x and y in D, the function φ : [0, 1] 7→ [0,∞), defined
by

(3.4) φ(s) := ρ((1− s)x⊕ sTx, (1− s)y ⊕ sTy), 0 ≤ s ≤ 1,

is decreasing.
A proof of the following lemma (based on the resolvent identity (3.3)) can be

found in [16, Section 2].

Lemma 3.1. Any resolvent of a coaccretive operator is firmly nonexpansive of the
first kind.

We say that a coaccretive operator T ⊂ B× B is m-coaccretive if

(3.5) R((1 + r)I ª rT ) = B

for all positive r.
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Actually, given a coaccretive operator T , the assumption that (3.5) holds when
r = 1 already implies that it holds for all r > 0. Any ρ-nonexpansive mapping
T : B 7→ B is m-coaccretive.

A family S = {S(t)}t≥0 of ρ-nonexpansive self-mappings of the Hilbert ball (B, ρ)
is called a ρ-nonexpansive continuous (nonlinear) semigroup on B if it satisfies the
following four conditions:

(3.6) S(r + t) = S(r)S(t) for all r, t ≥ 0;

(3.7) S(0) = I;

(3.8) S(t)x is continuous in t for each x ∈ B;

(3.9) ρ(S(t)x, S(t)y) ≤ ρ(x, y) for each t ∈ R+ and for all x, y ∈ B.

The following proposition, which is a special case of [27, Theorem 8.1], shows
how an m-coaccretive operator generates a nonlinear semigroup on B. We denote
the ρ-closure of a subset D of B by ρ-cl(D).

Proposition 3.2. Let T ⊂ B× B be an m-coaccretive operator with domain D(T )
and resolvent Jr. If ρ-cl(D) = B, then T generates a ρ-nonexpansive continuous
semigroup on B via the exponential formula

(3.10) S(t)x = lim
n→∞ Jn

t/nx,

where t ≥ 0 and x ∈ B.

There are other ways to generate ρ-nonexpansive (and, in particular, holomor-
phic) continuous semigroups on (B, ρ) (and on other domains in Banach spaces).
See, for instance, the papers [26, 28, 29, 30, 18, 13] and the book [31]. We mention,
in particular, those semigroups which are generated via Cauchy problems (see, for
example, [28] and [18, Corollary 4.2]), and via exponential and other product for-
mulae (see, for example, [26], [28], [29] and [30]). More precisely, if f : B 7→ H
is bounded and uniformly continuous on each ρ-ball in B, then f is the genera-
tor of a ρ-nonexpansive continuous semigroup {S(t)}t≥0 on B if and only if f is
hyperbolically monotone ([29] and [13]). In this case,

(3.11) S(t)x = lim
n→∞

(
I + (t/n)f

)−n
x,

where t ≥ 0 and x ∈ B. Here the resolvent Tr = (I+rf)−1 of f is firmly nonexpansive
of the second kind [9, page 129]. That is, for each x and y in B, the function
ψ : [0, 1] 7→ [0,∞), defined by

(3.12) ψ(s) := ρ((1− s)x + sTrx, (1− s)y + Try), 0 ≤ s ≤ 1,

is decreasing [13, Lemma 4.2].
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We denote by Fix(S) the set of all fixed points (equivalently, stationary points)
of a semigroup S, that is, the set of all points x ∈ B such that S(t)x = x for all
t ∈ R+. It is known (see, for example, [38, Theorem 2.9] and [35, Theorem 3.2] for
even more general results) that if there is a ρ-bounded subset of B which is invariant
under a ρ-nonexpansive semigroup S, then S has a stationary point. This fact is
a Hilbert ball analogue of [21, Theorem 2] which is concerned with nonexpansive
semigroups in Banach spaces.

We end this section with another lemma which will be used in the proof of
Theorem 5.1, our main result.

Lemma 3.3. Let S = {S(t)}t≥0 be a ρ-nonexpansive continuous semigroup on
B with a nonempty fixed point set Fix(S). Let v ∈ Fix(S) and let M−v be the
corresponding Möbius transformation. Then for each point x ∈ B, both the limits
lim
t→∞ ρ(v, S(t)x) and lim

t→∞ |M−v(S(t)x)| exist.

Proof. Let the function g : R+ 7→ R+ be defined by g(t) := ρ(v, S(t)x), t ∈ R+.
Then g is decreasing because for each r ≥ 0 and t ≥ 0, we have g(t + r) =
ρ(v, S(t+r)x) = ρ(S(t+r)v, S(t+r)x) ≤ ρ(S(t)v, S(t)x) = ρ(v, S(t)x) = g(t). Since
ρ(v, S(t)x) = ρ(M−v(v),M−v(S(t)x)) = ρ(0,M−v(S(t)x)) = argtanh|M−v(S(t)x)|,
we also have |M−v(S(t)x)| = tanh ρ(v, S(t)x) = tanh g(t) and hence |M−v(S(t)x)|
decreases too. ¤

4. Almost convergence

In this section we briefly discuss Banach limits and the concept of almost con-
vergence.

Let (B, | · |) be the Banach space of all real bounded functions defined on the
interval R+ = [0,∞), equipped with the supremum norm. That is, for x ∈ B,

(4.1) |x| := sup {|x(s)| : s ∈ R+}.
It follows from the Hahn-Banach theorem that there are (linear) functionals Lim,

called Banach limits, which belong to the unit sphere of the dual space B∗, and have
the following four properties for every x, y ∈ B, all a, b ∈ R, and for each s0 ∈ R+

[1, page 33]:

(4.2) Lim (ax + by) = a Lim (x) + b Lim (y);

(4.3) Lim (x) ≥ 0 when x(s) ≥ 0 for all s ∈ R+;

(4.4) Lim (z) = Lim (x), where z(s) = x(s + s0) for all s ∈ R+;

(4.5) Lim (1) = 1.
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It follows that if x ∈ B and λ = lim
s→∞ x(s) exists, then Lim (x) = λ. Therefore

we will also sometimes write Lim (x) = Lim
s→∞ x(s).

Following in the footsteps of Lorentz [20], who introduced this notion for elements
of `∞, we say that an element x ∈ B is almost convergent and the number λ is called
its B-limit if λ = Lim (x) for every Banach limit Lim.

We now quote Theorem 3.2 in [32].

Proposition 4.1. Let g ∈ B be a measurable function. If g is almost convergent,
then

(4.6) lim
T→∞

1
T

c+T∫

c

g(s)ds

exists uniformly in c ≥ 0. Moreover, this limit coincides with the B-limit of g.

We also quote a result in the other direction [32, Theorem 3.3].

Proposition 4.2. Let g ∈ B be uniformly continuous. If the limit (4.6) exists
uniformly in c ≥ 0, then g is almost convergent.

Remark. An example due to I. Shafrir [37] shows that Proposition 4.2 does not
hold for all measurable g ∈ B.

We proceed with a Tauberian result.

Proposition 4.3. Let g ∈ B be uniformly continuous and almost convergent. If

(4.7) lim
t→∞ [g(t + r)− g(t)] = 0

for each r > 0, then lim
t→∞ g(t) exists.

Proof. We may and shall assume that the B-limit of g is zero. Given ε > 0, there
is a number T1 > 0 such that

(4.8)

∣∣∣∣∣∣
1
T1

c+T1∫

c

g(t)dt

∣∣∣∣∣∣
< ε/2

for all c ≥ 0. Since g is uniformly continuous, we can also find T2 > 0 so that
|g(t + r)− g(t)| < ε/2 for all t ≥ T2 and 0 ≤ r ≤ T1. Since obviously,

(4.9) g(t) =
1
T1

T1∫

0

g(t + r)dr +
1
T1

T1∫

0

[g(t)− g(t + r)]dr,

it follows that

(4.10) |g(t)| ≤
∣∣∣∣∣∣

1
T1

t+T1∫

t

g(r)dr

∣∣∣∣∣∣
+ ε/2 < ε

for all t ≥ T2. ¤
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Recall that a function K : R+ × R+ 7→ R is said to be a strongly regular kernel
(cf., for example, [10, page 50], [22, page 326], [23, page 270], [24, page 550] and
[33, page 58]) if it has the following three properties:

(4.11) sup {
∞∫

0

|K(s, t)|dt : s ≥ 0} < ∞;

(4.12) lim
s→∞

∞∫

0

K(s, t)dt = 1;

(4.13) lim
s→∞

∞∫

0

|K(s, t + r)−K(s, t)|dt = 0

for each r ≥ 0.
The following proposition follows, for example, from an argument on page 550 of

[24].

Proposition 4.4. If g ∈ B is almost convergent to λ ∈ R and K is a strongly
regular kernel, then

(4.14) lim
s→∞

∞∫

0

K(s, r)g(r)dr = λ.

5. A mean ergodic theorem

In this section we state and prove our main result (Theorem 5.1 below). It is a
dual mean ergodic theorem for nonlinear continuous semigroups of ρ-nonexpansive
self-mappings of the Hilbert ball (B, ρ). This is indeed a result of a dual nature
because, as can be seen from its proof, it deals, in fact, with convergence in the
tangent bundle of (B, ρ).

Theorem 5.1. Let (B, ρ) be the Hilbert ball equipped with the hyperbolic metric and
let S = {S(t)}t≥0 be a ρ-nonexpansive continuous semigroup on B. Assume that
Fix(S) 6= ∅. Then for each x ∈ B, there exists a unique point v ∈ Fix(S) such that,
for each y ∈ H,

(5.1) lim
T→∞

〈
1
T

c+T∫

c

M−v(S(t)x)dt, y

〉
= 0,

uniformly in c ≥ 0.

Proof. Fix a point x ∈ B and consider the functional g : B× [0,∞) 7→ R defined by

(5.2) g(z, t) := ρ(z, S(t)x)2, z ∈ B, t ≥ 0.

Since the ρ-nonexpansive semigroup S has a fixed point by assumption, the set
{S(t)x : t ≥ 0} is ρ-bounded and hence, for each fixed z ∈ B, the function g(z, t) is
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bounded in the variable t ∈ [0,∞). It is also hyperbolically uniformly convex, for
each fixed t ≥ 0, by Lemma 2.2.

Now let Lim be an arbitrary Banach limit on B and define a functional f : B 7→ R
by

(5.3) f(z) := Lim
t→∞ ρ(z, S(t)x)2, z ∈ B.

This continuous functional is also hyperbolically uniformly convex and f(z) → ∞
as |z| → 1. Therefore it attains its infimum over B at a unique point v ∈ B [9,
Proposition 18.2 on page 108]. We now observe that f is a Lyapunov function
for the semigroup S. Indeed, for any r ≥ 0 and z ∈ B, we have f(S(r)z) =
Lim
t→∞ ρ(S(r)z, S(t)x)2 = Lim

t→∞ ρ(S(r)z, S(t + r)x)2 ≤ Lim
t→∞ ρ(z, S(t)x)2 = f(z). Hence

v is a fixed point of S.
Next, consider another Banach limit L̃im on B and the corresponding functional

f̃ : B 7→ R defined by

(5.4) f̃(z) := L̃im
t→∞ ρ(z, S(t)x)2, z ∈ B.

This functional attains its infimum over B at ṽ ∈ Fix(S). Since lim
t→∞ ρ(w, S(t)x)2

exists for each w ∈ Fix(S), we have f(v) ≤ f(ṽ) = f̃(ṽ) ≤ f̃(v) = f(v). Hence
f(v) = f̃(ṽ) and so f attains its infimum over B at the same point v ∈ Fix(S) for
any Banach limit Lim.

Consider now the function φ : [0, 1] 7→ R defined by

(5.5) φ(s) := ρ(sv ⊕ (1− s)w, S(t)x)2, s ∈ [0, 1],

where w ∈ B. We know, by Lemma 2.3, that

(5.6) lim
s→1−

[φ(1)− φ(s)]/(1− s) = 2 Re〈[v, S(t)x], [v, w]〉,

uniformly in t ≥ 0. Therefore

(5.7) lim
s→1−

[f(v)− f(sv ⊕ (1− s)w)]/(1− s) = 2 Lim
t→∞ Re〈[v, S(t)x], [v, w]〉.

Since the point v minimizes f and since this last equality is true for all w ∈ B, it
follows that

(5.8) Lim
t→∞ Re〈[v, S(t)x], [v, w]〉 = 0

for all w ∈ B and for all Banach limits Lim.
Fix a point w ∈ B, and let c and T be two real numbers in the interval [0,∞).

Consider the function h : [0,∞) 7→ R, defined by

(5.9) h(s) := Re〈[v, w], [v, S(s)x]〉, s ∈ [0,∞).

This continuous function belongs to B and Lim
s→∞ h(s) = 0 for any Banach limit Lim.

Therefore h ∈ B is almost convergent to zero by definition and hence

(5.10) lim
T→∞

1
T

c+T∫

c

h(t)dt = 0,
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uniformly in c ≥ 0, by Proposition 4.1. Now recall that (see (2.7))
(5.11)

h(t) = Re〈[v, w], [v, S(t)x]〉 =
ρ(v, w)ρ(v, S(t)x)

|M−v(S(t)x)| · |M−v(w)|Re〈M−v(S(t)x),M−v(w)〉

for all t ≥ 0. Since both lim
t→∞ ρ(v, S(t)x) and lim

t→∞ |M−v(S(t)x)| exist by Lemma
3.3, it follows that

(5.12) lim
T→∞

1
T

c+T∫

c

Re〈M−v(S(t)x),M−v(w)〉dt = 0,

uniformly in c ≥ 0. In other words, for each y ∈ H,

(5.13) lim
T→∞

1
T

c+T∫

c

Re〈M−v(S(t)x), y〉dt = 0,

uniformly in c ≥ 0. The function p : [0,∞) 7→ H, defined by

(5.14) p(t) := M−v(S(t)x), 0 ≤ t < ∞,

is continuous and Bochner integrable [3] on each interval [c, c + T ]. Hence

(5.15) lim
T→∞

〈
1
T

c+T∫

c

M−v(S(t)x)dt, y

〉
= 0,

uniformly in c ≥ 0, as asserted.
To prove the uniqueness of v ∈ Fix(S), suppose that there is another point

ṽ ∈ Fix(S) such that

(5.16) lim
T→∞

〈
1
T

c+T∫

c

M−ṽ(S(t)x)dt, y

〉
= 0,

uniformly in c ≥ 0. Let

(5.17) h(t) := Re〈[v, ṽ], [v, S(t)x]〉, 0 ≤ t < ∞,

and

(5.18) h̃(t) := Re〈[ṽ, v], [ṽ, S(t)x]〉, 0 ≤ t < ∞.

Then

(5.19) lim
T→∞

1
T

c+T∫

c

h(t)dt = lim
T→∞

1
T

c+T∫

c

h̃(t)dt = 0.

Adding and using Lemma 2.5, we obtain

(5.20) ρ(v, ṽ)2 ≤ lim
T→∞

1
T

c+T∫

c

(h(t) + h̃(t))dt = 0

and so v = ṽ, as claimed. This completes the proof of Theorem 5.1. ¤
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As far as we know, the first dual mean ergodic theorem for a single nonexpansive
self-mapping of a Banach space appeared in [5] and its Hilbert ball analogue was
established on pages 316–317 of [36]. Theorem 5.1 confirms an indication, given
on page 327 of [36], that a result in its spirit is possible for those ρ-nonexpansive
semigroups generated by the exponential formula (3.10). We emphasize, however,
that our Theorem 5.1 holds for all those ρ-nonexpansive semigroups on B which
have a stationary point, irrespective of the way they are generated. It seems to be
new even in the finite-dimensional case. The proof of Theorem 5.1 may be con-
sidered an application of the “optimization method” [25]. It would be of interest
to determine if (dual) mean ergodic theorems can be established for semigroups of
ρ-nonexpansive and holomorphic self-mappings of other domains in Banach spaces,
and, in particular, of (finite) powers Bn of the Hilbert ball. The papers [11] and
[12] contain certain results in this direction for nonlinear semigroups with holo-
morphic generators. Information on the asymptotic behavior of fixed point free
ρ-nonexpansive semigroups on B can be found, for instance, in [27], [26], [7] and [8].

We conclude this note with two corollaries. The first one provides a Tauberian
condition for weak convergence of semigroup trajectories.

Corollary 5.2. Let S = {S(t)}t≥0 be a ρ-nonexpansive continuous semigroup on
the Hilbert ball (B, ρ) with a nonempty fixed point set Fix(S), and let x ∈ B. If

(5.21) lim
t→∞ [S(t + r)x− S(t)x] = 0

for each positive r, then S(t)x converges weakly as t →∞ to a fixed point of S.

Proof. Let v ∈ Fix(S) be the fixed point the existence of which is guaranteed by
Theorem 5.1. It follows from our assumptions that, for each r > 0,

(5.22) lim
t→∞ ρ(S(t + r)x, S(t)x) = 0,

and since the Möbius transformation M−v is a ρ-isometry, that

(5.23) lim
t→∞ ρ

(
M−v(S(t + r)x),M−v(S(t)x)

)
= 0

and

(5.24) lim
t→∞ [M−v(S(t + r)x)−M−v(S(t)x)] = 0.

Theorem 5.1 and Proposition 4.3 now imply that M−v(S(t)x) converges weakly as
t →∞ to the origin of H. Since Mv is weakly continuous [9, Lemma 21.3 on page
116], Mv ◦M−v = I, and Mv(0) = v, we conclude that the weak lim

t→∞ S(t)x = v, as
asserted. ¤

Since the hyperbolic metric ρ is lower semicontinuous with respect to the weak
topology [17], this result provides a ρ-nonexpansive retraction of B onto the fixed
point set of S. It also yields an alternative proof of [26, Corollary 1].

Our second corollary follows from Proposition 4.4.

Corollary 5.3. Let S = {S(t)}t≥0 be a ρ-nonexpansive continuous semigroup on
the Hilbert ball (B, ρ) with a nonempty fixed point set Fix(S), and let x ∈ B. Let
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v ∈ Fix(S) be the fixed point the existence of which is guaranteed by Theorem 5.1.
If the kernel K is strongly regular and

(5.25) R(s)x :=

∞∫

0

K(s, r)M−v(S(r)x)dr,

then R(s)x converges weakly as s →∞ to the origin of H.
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