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ALMOST CONVERGENCE AND A DUAL ERGODIC THEOREM
FOR NONLINEAR SEMIGROUPS

SIMEON REICH AND AYA WALLWATER

Abstract. We use Banach limits and the concept of almost convergence to
establish a dual mean ergodic theorem for nonexpansive nonlinear semigroups in
uniformly smooth Banach spaces.

1. Introduction

The main purpose of this note is to establish a dual mean ergodic theorem for
continuous nonlinear semigroups of nonexpansive mappings in uniformly smooth
Banach spaces (Theorem 4.1 below). This is a continuous analog of the discrete
dual ergodic theorem presented in [4]. Since the proof uses Banach limits, we
devote the next section of our note to them. Section 3 is devoted to the concept of
almost convergence introduced by Lorentz in [5]. After proving our main result in
Section 4, we deduce from it a version of the mean ergodic theorem for nonlinear
semigroups in Hilbert space (Corollary 4.2).

2. Banach limits

Consider the space (B, ‖·‖) of all real bounded functions defined on the interval
[0,∞), equipped with the supremum norm. That is, for each x ∈ B,

(2.1) ‖x‖ := sup {|x (s)| : s ≥ 0} .

It is well known that B is a Banach space.
Let p : B → R be the functional defined by

(2.2) p (x) := inf
n; α1,...,αn

[
lim sup

s→∞
1
n

n∑

k=1

x (s + αk)

]
,

where n is a natural number and {α1, ..., αn} is an arbitrary set of n positive num-
bers.

It is not difficult to check that p is a sublinear and positively homogeneous func-
tional over B.

It now follows from the Hahn-Banach theorem [1, p. 33] that to each function
x ∈ B, one can assign a real number Lim

s→∞x (s) so that for every x, y ∈ B and for
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every a, b ∈ R and s0 ≥ 0,

(2.3) −p (−x) ≤ Lim
s→∞x (s) ≤ p (x) ;

(2.4) Lim
s→∞ [ax (s) + by (s)] = aLim

s→∞x (s) + bLim
s→∞ y (s) ;

(2.5) Lim
s→∞x (s) ≥ 0 when x (s) ≥ 0 for all s ≥ 0;

(2.6) Lim
s→∞x (s + s0) = Lim

s→∞x (s) ;

(2.7) Lim
s→∞ 1 = 1.

Defining the linear functional Lim on B by

Lim (x) := Lim
s→∞x (s) , x ∈ B,

we see that Lim belongs to the dual space B∗ of B and that ‖Lim‖ = 1. We call
any such functional a Banach limit on B. If x ∈ B and L = lim

s→∞x(s) exists, then

Lim (x) = L.
Next, we relate Banach limits to Gâteaux differentiability. Let E be an arbitrary

real Banach space.

Definition 2.1. We say that g : E × [0,∞) → R is Gâteaux differentiable in the
variable x in E, uniformly in t ≥ 0, if for each x in E and y in the unit sphere of
E, the limit

g′x (x, t) (y) = lim
r→0

g (x + ry, t)− g (x, t)
r

exists uniformly in t ≥ 0.

Lemma 2.2. Let g : E × [0,∞) → R be Gâteaux differentiable in the variable x in
E, uniformly in t ≥ 0, and bounded in the variable t ∈ [0,∞). Let Lim be a Banach
limit and define f : E → R by f (x) = Lim

t→∞ g (x, t) .Then f is Gâteaux differentiable
at every point x in E and

f ′ (x) (y) = Lim
t→∞ g′x (x, t) (y)

for each x in E and y in the unit sphere of E.

Proof. Fix x ∈ E, y in the unit sphere of E, and ε > 0. There is a positive number
δ = δ (ε) such that, if |r| < δ, then

∣∣∣∣
g (x + ry, t)− g (x, t)

r
− g′x (x, t) (y)

∣∣∣∣ <
ε

2
.

for all t ≥ 0. Hence∣∣∣∣Lim
t→∞

[
g (x + ry, t)− g (x, t)

r
− g′x (x, t) (y)

]∣∣∣∣ ≤
ε

2
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and ∣∣∣∣
f (x + ry)− f (x)

r
− Lim

t→∞ g′x (x, t) (y)
∣∣∣∣ < ε

for all |r| < δ. Thus f is indeed Gâteaux differentiable at x and

f ′ (x) (y) = Lim
t→∞ g′x (x, t) (y)

as claimed. ¤

3. Almost convergence

Following G. G. Lorentz [5], who studied Banach limits on l∞, we say that x ∈ B
is almost convergent if Lim

s→∞x (s) is the same for every Banach limit Lim on B. In

this case we call Lim
s→∞x (s) the B-limit of x. If L = lim

s→∞x(s) exists, then x is clearly
almost convergent and its B-limit coincides with L.

The following proposition provides us with a characterization of almost conver-
gence in terms of the functional p : B → R.

Proposition 3.1. The function x ∈ B is almost convergent if and only if

p (x) = −p (−x) .

The discrete analog of this proposition is presented by Lorentz in [5, p. 169].
Proposition 3.1 can be proved using arguments analogous to his [12, p. 11].

Theorem 3.2. Let x ∈ B be a measurable function. If x is almost convergent, then

lim
T→∞

1
T

c+T∫

c

x (s) ds

exists uniformly in c ≥ 0. Moreover, this limit coincides with the B-limit of x.

Proof. Assume that x ∈ B is almost convergent. Then there exists a ∈ R such that
p (x) = −p (−x) = a. Fix ε > 0. The equality

p (x) = inf
n; α1,...,αn

[
lim sup

s→∞
1
n

n∑

k=1

x (s + αk)

]
= a

implies that there exist n;α1, ..., αn such that

lim
s→∞

(
sup
t≥s

1
n

n∑
k=1

x (t + αk)
)

= lim sup
s→∞

1
n

n∑
k=1

x (s + αk) < a + ε.

Therefore, for sufficiently large s, say s ≥ s0, we have

1
n

n∑

k=1

x (s + αk) < a + ε.

Substituting βk = αk + s0 and t = s− s0, we get

1
n

n∑

k=1

x (t + βk) < a + ε, ∀t ≥ 0.

We now obtain, for every c ≥ 0,
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T (a + ε) ≥
c+T∫

c

1
n

n∑

k=1

x (t + βk) dt =
1
n

n∑

k=1

c+T∫

c

x (t + βk) dt

=
tk=t+βk

1
n

n∑

k=1

c+T+βk∫

c+βk

x (tk) dtk

=

c+T∫

c

x (t) dt +
1
n

n∑

k=1




c+T+βk∫

c+T

x (t) dt−
c+βk∫

c

x (t) dt




≥
M=sup

s≥0
|x(s)|

c+T∫

c

x (t) dt− 2M

n

n∑

k=1

βk.

Hence, for every c ≥ 0, we have

1
T

c+T∫

c

x (t) dt ≤ a + ε +
1
T

(
2M

n

n∑

k=1

βk

)
.

Therefore, for any large enough T , we get

(3.1)
1
T

c+T∫

c

x (t) dt < a + 2ε, ∀c ≥ 0

On the other hand, the equality

−p (−x) = sup
n; α1,...,αn

[
lim inf

s→∞

1
n

n∑

k=1

x (s + αk)

]
= a

implies that there exist n;α1, ..., αn such that

lim
s→∞

(
inf
t≥s

1
n

n∑

k=1

x (t + αk)

)
= lim inf

s→∞

1
n

n∑

k=1

x (s + αk) > a− ε.

Therefore, for sufficiently large s, say s ≥ s̃0, we have

1
n

n∑

k=1

x (s + αk) > a− ε.

Substituting βk = αk + s̃0 and t = s− s̃0, we get

1
n

n∑

k=1

x (t + βk) > a− ε, ∀t ≥ 0.

For every c ≥ 0, we now have
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T (a− ε) ≤
c+T∫

c

1
n

n∑

k=1

x (t + βk) dt =
1
n

n∑

k=1

c+T∫

c

x (t + βk) dt

=
tk=t+βk

1
n

n∑

k=1

c+T+βk∫

c+βk

x (tk) dtk

=

c+T∫

c

x (t) dt +
1
n

n∑

k=1




c+T+βk∫

c+T

x (t) dt−
c+βk∫

c

x (t) dt




≤
M=sup

s≥0
|x(s)|

c+T∫

c

x (t) dt +
2M

n

n∑

k=1

βk.

Hence, for every c ≥ 0,

1
T

c+T∫

c

x (t) dt ≥ a− ε− 1
T

(
2M

n

n∑

k=1

βk

)
.

Therefore, for any large enough T , we obtain

(3.2)
1
T

c+T∫

c

x (t) dt > a− 2ε

for all c ≥ 0.
Combining (3.1) and (3.2), we see that if x is almost convergent to a ∈ R, then

lim
T→∞

1
T

c+T∫

c

x (t) dt = a,

uniformly in c ≥ 0, as claimed. ¤
In the other direction we have the following result.

Theorem 3.3. Let x ∈ B be a measurable function. If x is uniformly continuous
and the limit

lim
T→∞

1
T

c+T∫

c

x (s) ds

exists uniformly in c ≥ 0, then x is almost convergent.

Proof. Let x be a uniformly continuous function on [0,∞). Fix ε > 0 and assume
that

lim
T→∞

1
T

c+T∫

c

x (t) dt = a,
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uniformly in c ≥ 0. Then there exists T0 such that for all T ≥ T0 and c ≥ 0,

a− ε <
1
T

c+T∫

c

x (t) dt < a + ε.

Without loss of generality we may assume that T0 ≥ 1. Since x (s) is uniformly
continuous, there exists δ > 0 such that

|s− t| < δ ⇒ |x (s)− x (t)| < ε

T0

for all s, t ≥ 0. Fix n0 such that T0
n0

< δ. Let c ≥ 0 and consider the interval
[c, c + T0]. Define a partition of [c, c + T0] by

c = t0 < t1 < . . . < tn0 = c + T0,

where tk = c + T0
n0

k = c + αk and αk = T0
n0

k. Denote by U (x) and L (x) the upper
and lower Darboux sums, respectively, that is,

U (x) =
n0∑

i=1

x
(
tUi

)
(ti − ti−1)

and

L (x) =
n0∑

i=1

x
(
tLi

)
(ti − ti−1) ,

where
tUi = argmax {x (t) : t ∈ [ti−1, ti]}

and
tLi = argmin {x (t) : t ∈ [ti−1, ti]} .

Then

U (x)− L (x) ≤
n0∑

i=1

∣∣x (
tUi

)− x
(
tLi

)∣∣ |ti − ti−1| <
n0∑

i=1

ε

T0
|ti − ti−1|

=
ε

T0
T0 = ε

and

L (x) ≤
c+T0∫

c

x (t) dt ≤ U (x) .

On the one hand, we have

T0 (a + ε) >

c+T0∫

c

x (t) dt ≥ L(x) > U (x)− ε =
n0∑

i=1

x
(
tUi

) |ti − ti−1|︸ ︷︷ ︸
T0
n0

− ε

≥ T0

n0

n0∑

i=1

x (c + αi)− ε
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⇒ 1
n0

n0∑
i=1

x (c + αi) < a + ε
(
1 + 1

T0

)
.

On the other hand,

T0 (a− ε) <

c+T0∫

c

x (t) dt ≤ U(x) < L (x) + ε =
n0∑

i=1

x
(
tLi

) |ti − ti−1|︸ ︷︷ ︸
T0
n0

+ ε

≤ T0

n0

n0∑

i=1

x (c + αi) + ε

⇒ 1
n0

n0∑
i=1

x (c + αi) > a− ε
(
1 + 1

T0

)
.

Therefore ∀c ≥ 0,

a− 2ε ≤ a− ε

(
1 +

1
T0

)
<

1
n0

n0∑

i=1

x (c + αi) < a + ε

(
1 +

1
T0

)
≤ a + 2ε.

It follows that

a− 2ε ≤ lim inf
c→∞

1
n0

n0∑

i=1

x (c + αi) ≤ lim sup
c→∞

1
n0

n0∑

i=1

x (c + αi) ≤ a + 2ε.

Since

p (x) = inf
n; γ1,...,γn

[
lim sup

c→∞
1
n

n∑

k=1

x (c + γk)

]

and

−p (−x) = sup
m; β1,...,βm

[
lim inf
c→∞

1
m

m∑

k=1

x (c + βk)

]

we obtain

a− 2ε ≤ −p (−x) ≤ p (x) ≤ a + 2ε.

Since ε > 0 was arbitrary, it follows that

p (x) = −p (−x)

and hence x (s) is almost convergent by Proposition 3.1, as asserted. ¤

Remark. An example due to I. Shafrir [10] shows that Theorem 3.3 is not true
for all measurable x ∈ B.

4. Ergodic theory

In this section we formulate and prove our main result. Recall that a nonexpansive
continuous (nonlinear) semigroup on a Banach space E is a family S = {S (t)}t≥0

of (nonexpansive) self-mappings of E satisfying the following conditions:

(4.1) S (t + r) = S (t) S (r) for all t, r ≥ 0;
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(4.2) S (0) = I;

(4.3) S (t) x is continuous in t for each x ∈ E;

(4.4) ‖S (t) x− S (t) y‖ ≤ ‖x− y‖ for all t ≥ 0 and x, y ∈ E.

We denote by FixS the set of all common fixed points of S. That is,

FixS := {x ∈ E : S (t) x = x for all t ≥ 0} .

Let E∗ denote the dual of an arbitrary real Banach space (E, ‖ · ‖). We denote
the value of x∗ ∈ E∗ at x ∈ E either by x∗(x) or by 〈x, x∗〉. The duality mapping
J : E → 2E∗ is defined by

(4.5) Jx := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
We are now ready to formulate and prove our main result, where we use the

integral introduced by Bochner in [2].

Theorem 4.1. Let (E, ‖ · ‖) be a real uniformly smooth Banach space and let S =
{S (t)}t≥0 be a nonexpansive continuous semigroup on E. Assume that FixS 6= ∅.
Then for each x ∈ E, there exists a point v ∈ FixS such that, for each y ∈ E,

lim
T→∞

〈
y,

1
T

c+T∫

c

J (S (t) x− v) dt

〉
= 0,

uniformly in c ≥ 0.

Proof. Fix x ∈ E and consider the function g : E × [0,∞) → R defined by

(4.6) g (z, t) := ‖S (t) x− z‖2 , z ∈ E, t ≥ 0.

Since the nonexpansive semigroup S has a fixed point by assumption, this function
is clearly bounded, for each fixed z ∈ E, in the variable t ∈ [0,∞).

Now let Lim be an arbitrary Banach limit on B and define the function f : E → R
by

(4.7) f (z) := Lim
t→∞ ‖S (t) x− z‖2 , z ∈ E.

It is clear that f is a well-defined convex function and that

(4.8) lim
‖z‖→∞

f (z) = ∞.

We denote the set of minimizers of f over E by A.
Using the uniform smoothness of (E, ‖ · ‖) (which is equivalent to the uniform

Fréchet differentiability of ‖ · ‖2) and applying Lemma 2.2, we see that the du-
ality mapping J of E is single-valued and continuous, the function f is Gâteaux
differentiable at each point z ∈ E, and that

(4.9) f ′ (z) (y) = 2Lim
t→∞ 〈−y, J (S (t) x− z)〉
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for all y ∈ E.
Since the space E is reflexive, and the continuous and convex function f satisfies

(4.8), the set of minimizers A is non-empty, bounded, closed and convex.
We also observe that f is a Liapunov function for the semigroup S. Indeed, for

any r ≥ 0 and z ∈ E, we have

f (S (r) z) = Lim
t→∞ ‖S (t) x− S (r) z‖2 = Lim

t→∞ ‖S (t + r) x− S (r) z‖2

= Lim
t→∞ ‖S (r) S (t) x− S (r) z‖2 ≤ Lim

t→∞ ‖S (t) x− z‖2 = f (z) .

Hence A is invariant under S. Recalling that uniformly smooth Banach spaces have
the fixed point property for nonexpansive mappings and invoking either a common
fixed point theorem of Bruck [3, p. 59] or a more recent one by Suzuki [11, p. 1016],
we conclude that A must contain a fixed point v of S.

Consider now another Banach limit L̃im on B and the corresponding function
f̃ : E → R defined by

(4.10) f̃ (z) := L̃im
t→∞ ‖S (t) x− z‖2 , z ∈ E.

This function attains its minimum over E at a fixed point ṽ of S. Since
lim
t→∞ ‖S (t) x− w‖2 exists for all w ∈ FixS, we have

f (v) ≤ f (ṽ) = f̃ (ṽ) ≤ f̃ (v) = f (v) .

Hence f (v) = f̃ (ṽ) and so f attains its minimum over E at the same point v ∈ FixS
for any Banach limit Lim. Therefore, by (4.9),

(4.11) f ′ (v) (y) = 2Lim
t→∞ 〈−y, J (S (t) x− v)〉 = 0

for any Banach limit Lim and each y ∈ E.
Now fix a point y ∈ E, and let c and T be two numbers in [0,∞). Consider the

function h : [0,∞) → E∗ defined by

(4.12) h (t) := J (S (t) x− v) , 0 ≤ t < ∞,

and the function u : [0,∞) → R defined by

(4.13) u (s) := 〈y, h (s)〉 , s ∈ [0,∞) .

The function h is Bochner integrable and continuous, and the function u belongs to
B. Hence

(4.14)

〈
y,

c+T∫

c

h (t) dt

〉
=

c+T∫

c

〈y, h (t)〉 dt =

c+T∫

c

u (t) dt.

Since Lim
s→∞u (s) = 0 for any Banach limit Lim, the function u ∈ B is almost conver-

gent to 0 by definition and

(4.15) lim
T→∞

1
T

c+T∫

c

u (t) dt = 0,

uniformly in c ≥ 0, by Theorem 3.2.
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It now follows from (4.14) that

(4.16) lim
T→∞

〈
y,

1
T

c+T∫

c

J (S (t) x− v) dt

〉
= 0,

uniformly in c ≥ 0, as asserted. ¤
The proof of Theorem 4.1 may be considered an application of the so-called

“optimization method” [9].
In the special case where E is a Hilbert space, we see that the semigroup S =

{S (t)}t≥0 is weakly almost convergent to a fixed point of S.

Corollary 4.2. Let H be a real Hilbert space and let S = {S (t)}t≥0 be a nonex-
pansive continuous semigroup on H. Assume that FixS 6= ∅. Then there exists a
point v ∈ FixS such that, for each y ∈ H,

lim
T→∞

〈
y,

1
T

c+T∫

c

S (t) xdt

〉
= 〈y, v〉 ,

uniformly in c ≥ 0.

We do not know if Theorem 4.1 remains valid when the semigroup S is defined
only on a closed and convex subset of the Banach space E. However, Corollary 4.2
is known to hold in this case too (cf. [6, p. 327], [7, p. 270] and [8, p. 547]).
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