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FIXED POINT THEOREMS FOR NEW NONLINEAR MAPPINGS
IN A HILBERT SPACE

WATARU TAKAHASHI

ABSTRACT. In this paper, we first consider nonlinear mappings which are de-
duced from an equilibrium problem in a Hilbert space. Further, we deal with
fixed point theorems for the nonlinear mappings in a Hilbert space.

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. Then a mapping T : C — H is said to be nonexpansive if ||Tz — Ty|| < ||z — y||
for all z,y € C. A mapping F' is also said to be firmly nonexpansive if

|Fz — Fy||” < (z —y, Fx — Fy)

for all z,y € C; see, for instance, Browder [2], Goebel and Kirk [4], Goebel and
Reich [5], Reich and Shoikhet [11] and Takahashi [14]. It is known that a mapping
F : C — H is firmly nonexpansive if and only if

|Fa = Fyll* + (I = F)e = (I = F)y||* < ||z — y||*

for all z,y € C, where [ is the identity mapping on H. It is also known that a firmly
nonexpansive mapping F' is deduced from an equilibrium problem in a Hilbert space
as follows: Let C be a nonempty closed convex subset of H and let us assume that
a bifunction f: C' x C' — R satisfies the following conditons:

(A1) f(z,z)=0, VzxeC,

(A2) f is monotone, i.e., f(z,y) + f(y,z) <0, Vz,y e C;

(A3) limyo f(tz + (1 = t)z,y) < f(z,y), Va,y,z € C;

(A4) for each z € C, y — f(z,y) is convex and lower semicontinuous.

We know the following lemma; see, for instance, [1] and [3].

Lemma 1.1. Let C be a nonempty closed convex subset of H and let f be a bifunc-
tion from C x C into R satisfying (A1), (A2), (A3) and (A4). Then, for anyr >0
and © € H, there exists z € C' such that

1
f(z,y)+;<y—z,z—:v>20, VyGC

Further, if T,x ={z € C: f(z,y) + %(y —z,z—x) >0, Yy € C} for allr >0 and
x € H, then the following hold:

(1) T, is single-valued;
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(2) T, is firmly nonexpansive, i.e.,
1Tz = Toyl* < (Tow — Ty, —y), Va,y € H.
Recently, Kohsaka and Takahashi [8] introduced the following nonlinear mapping:
Let E be a smooth, strictly convex and reflexive Banach space, let J be the duality

mapping of £ and let C' be a nonempty closed convex subset of £/. Then, a mapping
S : C — FE is said to be nonspreading if

¢(Sx, Sy) + ¢(Sy, Sx) < ¢(Sz,y) + ¢(Sy, x)

for all z,y € C, where ¢(z,y) = ||z|* — 2(z, Jy) + ||y||* for all 2,y € E. They
considered such a mapping to study the resolvents of a maximal monotone operator
in the Banach space. In the case when E is a Hilbert space, we know that ¢(z,y) =
|z — yH2 for all z,y € E. So, a nonspreading mapping S in a Hilbert space H is
defined as follows:

2|5z — Sy||* < [|1Sz —y||* + ||z — Sy*

for all z,y € C.

In this paper, we first consider nonlinear mappings which are deduced from a
firmly nonexpansive mapping in a Hilbert space. Further, we deal with fixed point
theorems for the nonlinear mappings in a Hilbert space.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (-, -) and
norm || -||. In a Hilbert space, it is known that

(1) laz + (1 = a)yl* = aJz|* + (1 = @) [ly]* = (1 = a) & = y*

for all x,y € H and a € R; see, for instance, [16]. Further, in a Hilbert space, we
have that

(2) 2(z —y,z —w) = |lz —wl* + |y — 2> = |l = 2> = |ly — w|
for all x,y, z,w € H. Indeed, we have that
2(x—y,z —w) =2(x,2) — 2(z,w) —2(y, z) + 2 (y,w)
= (= [z + 2 {z, 2) = |2l1*) + (ll=]* = 2 (z, w) + [|[w]*)
+ (gl = 2 ¢y, 2) + 120%) + (= llyl® + 2 (y, w) — J[w]®)
= [lz = w|® + |y = 21* = | = 2|* = |y — w|]*.

Let C' be a closed convex subset of H and let T' be a mapping of C into H. We
denote by F(T) the set of all fixed points of T', that is, F(T) = {2z € C : Tz = z}.
We denote the strong convergence and the weak convergence of x, to x € H by
zn — ¢ and x, — x, respectively. A mapping T : C' — H is nonexpansive if

1Tz = Tyl <[l -yl
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forall z,y € C. We can prove from (1) that F'(T) is closed and convex. We also know
that if C' is a bounded closed convex subset of H and T : C' — C is nonexpansive,
then F(T) is nonempty. A mapping F : C' — H is firmly nonexpansive if

|Fa = Fy|® < (z — y, Fz — Fy)
for all z,y € C. A mapping S : C' — H is nonspreading if
2|8z — Syl* < ||z — yl* + [|lz — Sy||*

for all z,y € C. From Kohsaka and Takahashi [8], we know the following fixed point
theorems.

Theorem 2.1 ([8]). Let H be a Hilbert space, let C' be a nonempty closed convex
subset of H and let S be a nonspreading mapping of C into itself. Then the following
are equivalent:

(i) There exists x € C such that {S™z} is bounded;
(ii) F(S) is nonempty.

Theorem 2.2 ([8]). Let H be a Hilbert space, let C' be a nonempty closed convex
subset of H and let S be a nonspreading mapping of C into itself. Then F(S) is
closed and converz.

From Iemoto and Takahashi [6], we know the following lemma.

Lemma 2.3. Let C be a nonempty closed convex subset of H. Then a mapping
S : C' — H is nonspreading if and only if

1Sz — Syl < ||z — y|* + 2 (z — Sz,y — Sy)
for all z,y € C.

3. NONLINEAR MAPPINGS

Let H be a Hilbert space. Let C' be a nonempty closed convex subset of H and
let T' be a mapping of C into H. Then, we have the following equality:

(3) o= Tyl = |z —y — (Tx — Ty)|* — o — gl + 2z — y, Tz — Ty)
for all z,y € C. We have also from (2) that
(4)  2(e—y,To—Ty) = | —Tyl* + |y — Tall? — lo - Ta|2 - |}y - Ty
Further, we have that
5) e —y—(Tz=Ty)|* = |z = Tzl* +|ly - Ty|* — 2(z — Tz,y — Ty).
If T:C — H is firmly nonexpansive, then for any z,y € C,
1Tz = Ty||* < (z —y,Tx — Ty).
So, we have from (3) that
2|Te — Ty|* < 2(x —y, Tz — Ty)
[Tz = Tyl]? - |z — y — (T — Ty)|* + |}z — |1
< |ITw = Tyll? + 1o — >
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Then, we have

1T = Ty|* < [|lz -y
and hence

[Tz = Ty| < |lz —yll.

Such a mapping is nonexpansive. Thus, we can obtain other nonlinear operators
from a firmly nonexpansive mapping in a Hilbert space. Kohsaka and Takahahi
[8] obtained a nonspreading mapping from a firmly nonexpansive mapping. Let
T :C — H be a firmly nonexpansive mapping. Then, we have, for any =,y € C,

2| Tw — Ty||* < 2(x —y, Tz — Ty).
From (4), we obtain
2| Ta — Tyl* < o — Ty|* + lly — Tal* — o — Tz||* — |ly — Tyl
<llz = Tyl* + lly — Tl
So, we have
2| Ta = Ty|* < o = Tyl* + lly — Tx|*.

This is a nonspreading mapping. Further, we define a new nonlinear operator from
a firmly nonexpansive mapping. We have that for any x,y € C,

2| Te=Ty|* < 2(x —y,Tx — Ty)
— |[Tw = Ty|]? + || + | Ty|2 — 2T, Ty) < 2( — y, Tz — Ty)
— Tz - Ty|* — 2(Tz, Ty) < 2(x —y, Tz — Ty)
— ||Tz — Ty|* < 2(Tx, Ty) + 2(x —y,Tx — Ty).
So, we can define a new mapping called a metric mapping, i.e.,
Tz — Ty < 2(Tx, Ty) + 2(x — y, Tz — Ty)

for all x,y € C. Finally, we obtain another new nonlinear mapping from a firmly
nonexpansive mapping. We have from (3) and (5) that for any x,y € C,

4| Tz—Ty|?* < 4z —y, Tz — Ty)

= 4||Tz - Ty|?* < 2(x —y, Tz — Ty) + 2(x —y, Tz — Ty)
= ATz~ Ty|* < | Tz~ Tyl* ~ o —y — (T = Ty)|* + |z - y|?
+|Te = Ty|* + ||z — ylI* — llo = T|* — [ly = Tyl* + 2{x — T,y — Ty)
= 4|Tz —Ty|* < 2Tz — Ty|* + 2|z — y|* + 2(x — T,y — Ty)
= 2|Tz —Ty|* < 2llz —y|* + 2(x — Tz,y — Ty)
= [Tz =Tyl < |z = yl* + (z — T,y — Ty).

So, if T': C'— H is firmly nonexpansive, then T satislies that

1Tz = Ty|* < ||lz — y||* + (& — Tz,y — Ty)
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for all z,y € C. We call such a mapping a hybrid mapping. A hybrid mapping
T : C — H is different from a nonspreading mapping. In fact, from Lemma 2.3, we
know that for any z,y € C,

2Tz — Ty|* < |ly = Tx||* + ||z — Tyl
= [Tz = Ty|?* < |z —y| +2(z — Ta,y — Ty).

So, a hybrid mapping T : C' — H is different from a nonspreading mapping.
Let T : C' — H be a nonexpansive mapping and put A = I — 7. Then, we have
from [16] that A is 1/2-inverse strongly monotone, i.e.,

1
5 14z — Ay||* < (z -y, Az — Ay)

for all z,y € C. Let T : C — H be a nonspreading mapping and put A =1 —T.
Then, we have from Lemma 2.3 and (3) that for any z,y € C,

|Az — Ay||* = [lz — y — (Ax — Ay)|* — |z — y|* + 2(x — y, Az — Ay)
= ||Tx = Ty|? — ||z — ylI* + 2(x — y, Az — Ay)
< lz —ylI? +2(x — T,y — Ty) — |z — yl|* + 2(x — y, Az — Ay)
= 2(Azx, Ay) + 2(x — y, Az — Ay).

This implies that A is a metric mapping.

4. FIXED POINT THEOREMS FOR HYBRID MAPPINGS
In this section, we start with the following lemma.

Lemma 4.1. Let H be a Hilbert space and let C' be a nonempty closed convex subset
of H. Then a mapping T : C — H is hybrid if and only if

3Tz — Ty|* < ||z — yl* + lly — Tx||* + ||z — Tyl
for all z,y € C'.
Proof. We have from (5) and (4) that for any z,y € C,
| Tz—=Ty||” < ||z — y|* + (x — Ta,y — Ty)
= 2Tz - Ty|* < 2|z — y|* + 2z — Tz,y — Ty)
— 2||Tz —Ty|* < 2|z — y|* + |z — T=|
+lly —Tyl* = |z —y — (Tz - Ty)|?
— 2||Tz —Ty|* < 2|z — y|* + |z — T=|
+lly = Tyl* = |z — yl* = Tz = Ty|* + 2(x — y, Tz — Ty)
— 3Tz —Ty|* < |z -yl + lz — Tz|* + [ly — Tyl
+llz = Tyl* + |z = Ty|* = |z — T=l|* — |ly — Tyl?
— 3Tz —Ty|* < |z —ylP* + lly — T=|* + ||z — Tyl*.
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Using Lemma 4.1, we can show an example of hybrid mappings which is not
nonexpansive.

Example 4.2. Let H be a Hilbert space. Let A, B and C' be subsets of H which are
defined by

A={z e H:|z| <1};
B={zeH:|z|| <3}
C={zxeH:|z| <4}
Define a mapping T': C' — C by
Tr= {(]);Ax, ii E g’\ B.
Then, T is a hybrid mapping of C' into itself.

Proof. Checking three cases, we can prove that T is a hybrid mapping. In the case
of z,y € B, we have

(6) 3Tz — Ty|I* = 0 < [lz —y* + |y — T||* + [|l= — Ty*.
So, from Lemma 4.1, we have
1Tz —Ty|* < |l = ylI* + (& — T,y — Ty).
Similarly, in the case of x € B and y € C'\ B, we have
3|1 Tz — Tyl* = 3||Ty|* =3
<z =yl + lyll* + [l — Ty|?
= |lz = yl> + lly — Tz|* + ||z — Ty,
In the case of z,y € C'\ B, we have
|Paz — Pay||?* < {x — y, Paz — Pay).
As in Section 3, we have
[Paz — Pay||?* < [lz —yl|” + (x — Paz,y — Pay)
and hence
1Tz —Ty|* < |l — ylI* + (& — T,y — Ty).
So, T : C' — C is a hybrid mapping. Since T is not continuous, T : C' — C is not
nonexpansive. 0

Using the technique developed by Takahashi [13], we prove a fixed point theorem
for hybrid mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space, let C' be a nonempty closed convex subset of
H and letT be a hybrid mapping of C into itself. Then the following are equivalent:

(i) There exists x € C such that {T"x} is bounded;
(ii) F(T) is nonempty.
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Proof. Fix x € C. Then, for any y € C' and k € NU {0}, we have that
2 T* a—Ty|* < 2| T" e — y|? + 2(T*x — T2,y — Ty)

=2||T%x — y|> + | T*2 — Ty|* + | T* o —y||?

— | T" e = yl* = | 7" — Ty|?

=2||T%z — Ty||* + 4Tz — Ty, Ty —y) + 2| Ty — y|*

| TFz = Tyl + 1Tz — y|* — | T 2 — y|* = | T* e — Ty
So, we obtain that

|7 e — Ty|* < 3||T"x — Ty||* + 4T*2 — Ty, Ty — y)
+2|Ty =yl + | T e — y|* = || T 2 — y|*.

Summing these inequalities with respect to £k =0,1,2,...,n — 1, we have
n—1
3|T"x — Ty||* < 3||lz — Tyl|* + 40> T*x — nTy,Ty — )
k=0

+20|Ty — y|? + Tz — y|* — [|lz — y[|*
Deviding this inequality by n, we have

3 3
|77 = Ty|* < ~ o = Ty|* + 4(Sn(x) = Ty, Ty — y)
1 1
+ 2Ty —yl* + — T2 = y|* = o = y]*,
n n

where S, (z) = %ZZ;& T*z. Since {T"z} is bounded by assumption, {S,(z)} is
also bounded. Thus we have a subsequence {Sy,(x)} of {S,(x)} such that S,,(z)
converges weakly to u € C. Replacing n by n; and letting n; — co, we obtain

0 < 2|Ty — yl* +4(u — Ty, Ty — y).
Putting y = u, we have
0 < 2||Tu — ul|® + 4(u — Tu, Tu — u).
So, we have 0 < —2||Tw — u||?> and hence T'u = u. This completes the proof. O
Next, we show the demiclosedness of a hybrid mapping in a Hilbert space.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T be a hybrid mapping of C into itself. Then T is demiclosed, i.e.,
Ty = u and xy, — Txy, — 0 imply u € F(T).

Proof. Let {z,} C C be a sequence such that z,, = v and z,, — Tz, — 0 as n — oc.
Then the sequences {z,} and {T'z,} are bounded. Suppose that v # Tu. From
Opial’s theorem [9], we have

lim inf ||z, — u||* < lim inf ||z, — Tul?
n—oo n—oo
= liminf ||z, — Ty + Txn — Tul)?
n—oo

= liminf(||z, — Tan|* + || Tz, — Tul?
n—oo
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+ 2(xy — Txp, Tz, — Tu))
< lim inf (|l — Txn||> + |20 — ul]* + (2n — Tan, u — Tu)
+ 2(xy — Tap, Tz, — Tu))
= liminf ||z, — ul®.
n—o0
This is a contradiction. Hence we get the conclusion. O

We have also the following result concerning the set of fixed points of a hybrid
mapping in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space, let C' be a nonempty closed convex subset
of H and let T be a hybrid mapping of C into itself. Then F(T) is closed and

CONVET.

Proof. 1t follows from Theorem 4.4 that F'(T) is closed. In fact, Let {z,} C F(T)
and x,, — z. Then, we have z,, — z and =, — Tz, = 0. So, from Theorem 4.4 we
have z = T'z. Let us show that F(T) is convex. Let x,y € F(T) and « € [0, 1] and
put z = az + (1 — a)y. Then, we have from (1) that

lz = T2|* = laz + (1 - @)y — T2|?

= allz — Tz|* + (1 - )lly = Tz|* — a(l - a) |z - y|
= af|Tz = Tz|* + (1 - a)| Ty — T2|* — a(1 — a) |z — y|?
<a(l|z—z|?+ (z — Tx,z — Tz))
+ (1= a)(lly =2l + (y = Ty, 2 = T2)) — a(l - a)llz — y|?
=a(l - a)’|z —yl* + (1 - a)a’|lz — y|I* — a(l - a)|lz — y|?
=a(l-—a)l-a+a-1)|z—y|?
=0.

So, we have Tz = z. This completes the proof. 0

5. THE FIXED POINT PROPERTY AND UNBOUNDED SETS
Ray [10] proved the following theorem.
Theorem 5.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Then, the following are equivalent:
(i) Every nonexpansive mapping of C into itself has a fixed point in C;

(ii) C is bounded.

Sine [12] gave a simple proof. Using Ray’s theorem, we prove the following
theorem.

Theorem 5.2. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Then, the following are equivalent:

(i) Ewvery hybrid mapping of C into itself has a fized point in C;
(ii) C is bounded.
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Proof. From Theorem 4.3, we know that (ii) implies (i). Let us show that (i) implies
(ii). We know that every firmly nonexpansive mapping is a hybrid mapping. So, the
class of hybrid mappings of C' into itself contains the class of firmly nonexpansive
mappings of C into itself. To show (i) = (ii), it is sufficient to show that if
every firmly nonexpansive mapping of C into itself has a fixed point in C, then
every nonexpansive mapping of C' into itself has a fixed point in C. Let T be a
nonexpansive mapping of C' into itself. Then, S = %I + %T is a firmly nonexpansive
mapping; see [4, p. 128]. In fact, we have that for any z,y € C,

11 11
Sz —Sy|? =|zx+ =Tz — (zy + =Ty)|?
1Sz = SylI* = [l + 5Tz = (Gy + 5 Ty)|
1 1

II§(9E—y)+§(T90—Ty)||2

1 1 1
= Slle = yll? + 51T = Tyl - {lle -y — (Tz - Ty)

1 1
= 5le =yl + STz - Ty|?
1
—wa—yW+WTx—TMP—%x—%Tx—Tw)
1 1
= 1z = yl? + 1Tz = Ty|*) + S (x —y, Tz ~ Ty)

1 1 1
<G+ Pl =yl + 5 -y Ta—Ty)

4
1 , 1
= |z — g —y Tz —T
2||w yl| +2<x y, Tz —Ty)
1 1
=<x—y,§(:v—y)+§(T:v—Ty)>
1 1
:<x—y,§(x+Tx)f§(y+Ty)>
11 11
(z Yo 5o+ 5T (23/+2 Y))

This implies that S is a firmly nonexpansive mapping. Further, it is not difficult
to show F(T) = F(S). So, every firmly nonexpansive mapping of C' into itself has
a fixed point in C if and only if every nonexpansive mapping of C' into itself has a
fixed point in C'. This completes the proof. ]
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