
Journal of Nonlinear and Convex Analysis

Volume 11, Number 1, 2010, 79–88

FIXED POINT THEOREMS FOR NEW NONLINEAR MAPPINGS
IN A HILBERT SPACE

WATARU TAKAHASHI

Abstract. In this paper, we first consider nonlinear mappings which are de-
duced from an equilibrium problem in a Hilbert space. Further, we deal with
fixed point theorems for the nonlinear mappings in a Hilbert space.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. Then a mapping T : C → H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C. A mapping F is also said to be firmly nonexpansive if

‖Fx− Fy‖2 ≤ 〈x− y, Fx− Fy〉
for all x, y ∈ C; see, for instance, Browder [2], Goebel and Kirk [4], Goebel and
Reich [5], Reich and Shoikhet [11] and Takahashi [14]. It is known that a mapping
F : C → H is firmly nonexpansive if and only if

‖Fx− Fy‖2 + ‖(I − F )x− (I − F )y‖2 ≤ ‖x− y‖2

for all x, y ∈ C, where I is the identity mapping on H. It is also known that a firmly
nonexpansive mapping F is deduced from an equilibrium problem in a Hilbert space
as follows: Let C be a nonempty closed convex subset of H and let us assume that
a bifunction f : C × C → R satisfies the following conditons:

(A1) f(x, x) = 0, ∀x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;
(A3) limt↓0 f(tz + (1− t)x, y) ≤ f(x, y), ∀x, y, z ∈ C;
(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

We know the following lemma; see, for instance, [1] and [3].

Lemma 1.1. Let C be a nonempty closed convex subset of H and let f be a bifunc-
tion from C ×C into R satisfying (A1), (A2), (A3) and (A4). Then, for any r > 0
and x ∈ H, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, if Trx = {z ∈ C : f(z, y) + 1
r 〈y − z, z − x〉 ≥ 0, ∀y ∈ C} for all r > 0 and

x ∈ H, then the following hold:
(1) Tr is single-valued;
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(2) Tr is firmly nonexpansive, i.e.,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉, ∀x, y ∈ H.

Recently, Kohsaka and Takahashi [8] introduced the following nonlinear mapping:
Let E be a smooth, strictly convex and reflexive Banach space, let J be the duality
mapping of E and let C be a nonempty closed convex subset of E. Then, a mapping
S : C → E is said to be nonspreading if

φ(Sx, Sy) + φ(Sy, Sx) ≤ φ(Sx, y) + φ(Sy, x)

for all x, y ∈ C, where φ(x, y) = ‖x‖2 − 2 〈x, Jy〉 + ‖y‖2 for all x, y ∈ E. They
considered such a mapping to study the resolvents of a maximal monotone operator
in the Banach space. In the case when E is a Hilbert space, we know that φ(x, y) =
‖x− y‖2 for all x, y ∈ E. So, a nonspreading mapping S in a Hilbert space H is
defined as follows:

2 ‖Sx− Sy‖2 ≤ ‖Sx− y‖2 + ‖x− Sy‖2

for all x, y ∈ C.
In this paper, we first consider nonlinear mappings which are deduced from a

firmly nonexpansive mapping in a Hilbert space. Further, we deal with fixed point
theorems for the nonlinear mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product 〈 · , · 〉 and
norm ‖ · ‖. In a Hilbert space, it is known that

(1) ‖αx + (1− α)y‖2 = α ‖x‖2 + (1− α) ‖y‖2 − α(1− α) ‖x− y‖2

for all x, y ∈ H and α ∈ R; see, for instance, [16]. Further, in a Hilbert space, we
have that

(2) 2 〈x− y, z − w〉 = ‖x− w‖2 + ‖y − z‖2 − ‖x− z‖2 − ‖y − w‖2

for all x, y, z, w ∈ H. Indeed, we have that

2 〈x− y, z − w〉 = 2 〈x, z〉 − 2 〈x,w〉 − 2 〈y, z〉+ 2 〈y, w〉
= (−‖x‖2 + 2 〈x, z〉 − ‖z‖2) + (‖x‖2 − 2 〈x,w〉+ ‖w‖2)

+ (‖y‖2 − 2 〈y, z〉+ ‖z‖2) + (−‖y‖2 + 2 〈y, w〉 − ‖w‖2)

= ‖x− w‖2 + ‖y − z‖2 − ‖x− z‖2 − ‖y − w‖2 .

Let C be a closed convex subset of H and let T be a mapping of C into H. We
denote by F (T ) the set of all fixed points of T , that is, F (T ) = {z ∈ C : Tz = z}.
We denote the strong convergence and the weak convergence of xn to x ∈ H by
xn → x and xn ⇀ x, respectively. A mapping T : C → H is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
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for all x, y ∈ C. We can prove from (1) that F (T ) is closed and convex. We also know
that if C is a bounded closed convex subset of H and T : C → C is nonexpansive,
then F (T ) is nonempty. A mapping F : C → H is firmly nonexpansive if

‖Fx− Fy‖2 ≤ 〈x− y, Fx− Fy〉
for all x, y ∈ C. A mapping S : C → H is nonspreading if

2 ‖Sx− Sy‖2 ≤ ‖Sx− y‖2 + ‖x− Sy‖2

for all x, y ∈ C. From Kohsaka and Takahashi [8], we know the following fixed point
theorems.

Theorem 2.1 ([8]). Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let S be a nonspreading mapping of C into itself. Then the following
are equivalent:

(i) There exists x ∈ C such that {Snx} is bounded;
(ii) F (S) is nonempty.

Theorem 2.2 ([8]). Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let S be a nonspreading mapping of C into itself. Then F (S) is
closed and convex.

From Iemoto and Takahashi [6], we know the following lemma.

Lemma 2.3. Let C be a nonempty closed convex subset of H. Then a mapping
S : C → H is nonspreading if and only if

‖Sx− Sy‖2 ≤ ‖x− y‖2 + 2 〈x− Sx, y − Sy〉
for all x, y ∈ C.

3. Nonlinear mappings

Let H be a Hilbert space. Let C be a nonempty closed convex subset of H and
let T be a mapping of C into H. Then, we have the following equality:

(3) ‖Tx− Ty‖2 = ‖x− y − (Tx− Ty)‖2 − ‖x− y‖2 + 2〈x− y, Tx− Ty〉
for all x, y ∈ C. We have also from (2) that

(4) 2 〈x− y, Tx− Ty〉 = ‖x− Ty‖2 + ‖y − Tx‖2 − ‖x− Tx‖2 − ‖y − Ty‖2.

Further, we have that

(5) ‖x− y − (Tx− Ty)‖2 = ‖x− Tx‖2 + ‖y − Ty‖2 − 2〈x− Tx, y − Ty〉.
If T : C → H is firmly nonexpansive, then for any x, y ∈ C,

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉.
So, we have from (3) that

2‖Tx− Ty‖2 ≤ 2〈x− y, Tx− Ty〉
= ‖Tx− Ty‖2 − ‖x− y − (Tx− Ty)‖2 + ‖x− y‖2

≤ ‖Tx− Ty‖2 + ‖x− y‖2.
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Then, we have

‖Tx− Ty‖2 ≤ ‖x− y‖2

and hence

‖Tx− Ty‖ ≤ ‖x− y‖.
Such a mapping is nonexpansive. Thus, we can obtain other nonlinear operators
from a firmly nonexpansive mapping in a Hilbert space. Kohsaka and Takahahi
[8] obtained a nonspreading mapping from a firmly nonexpansive mapping. Let
T : C → H be a firmly nonexpansive mapping. Then, we have, for any x, y ∈ C,

2‖Tx− Ty‖2 ≤ 2〈x− y, Tx− Ty〉.
From (4), we obtain

2‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖y − Tx‖2 − ‖x− Tx‖2 − ‖y − Ty‖2

≤ ‖x− Ty‖2 + ‖y − Tx‖2.

So, we have

2‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖y − Tx‖2.

This is a nonspreading mapping. Further, we define a new nonlinear operator from
a firmly nonexpansive mapping. We have that for any x, y ∈ C,

2‖Tx−Ty‖2 ≤ 2〈x− y, Tx− Ty〉
⇐⇒ ‖Tx− Ty‖2 + ‖Tx‖2 + ‖Ty‖2 − 2〈Tx, Ty〉 ≤ 2〈x− y, Tx− Ty〉
=⇒ ‖Tx− Ty‖2 − 2〈Tx, Ty〉 ≤ 2〈x− y, Tx− Ty〉
⇐⇒ ‖Tx− Ty‖2 ≤ 2〈Tx, Ty〉+ 2〈x− y, Tx− Ty〉.

So, we can define a new mapping called a metric mapping, i.e.,

‖Tx− Ty‖2 ≤ 2〈Tx, Ty〉+ 2〈x− y, Tx− Ty〉
for all x, y ∈ C. Finally, we obtain another new nonlinear mapping from a firmly
nonexpansive mapping. We have from (3) and (5) that for any x, y ∈ C,

4‖Tx−Ty‖2 ≤ 4〈x− y, Tx− Ty〉
⇐⇒ 4‖Tx− Ty‖2 ≤ 2〈x− y, Tx− Ty〉+ 2〈x− y, Tx− Ty〉
⇐⇒ 4‖Tx− Ty‖2 ≤ ‖Tx− Ty‖2 − ‖x− y − (Tx− Ty)‖2 + ‖x− y‖2

+ ‖Tx− Ty‖2 + ‖x− y‖2 − ‖x− Tx‖2 − ‖y − Ty‖2 + 2〈x− Tx, y − Ty〉
=⇒ 4‖Tx− Ty‖2 ≤ 2‖Tx− Ty‖2 + 2‖x− y‖2 + 2〈x− Tx, y − Ty〉
⇐⇒ 2‖Tx− Ty‖2 ≤ 2‖x− y‖2 + 2〈x− Tx, y − Ty〉
⇐⇒ ‖Tx− Ty‖2 ≤ ‖x− y‖2 + 〈x− Tx, y − Ty〉.

So, if T : C → H is firmly nonexpansive, then T satislies that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 〈x− Tx, y − Ty〉
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for all x, y ∈ C. We call such a mapping a hybrid mapping. A hybrid mapping
T : C → H is different from a nonspreading mapping. In fact, from Lemma 2.3, we
know that for any x, y ∈ C,

2‖Tx− Ty‖2 ≤ ‖y − Tx‖2 + ‖x− Ty‖2

⇐⇒ ‖Tx− Ty‖2 ≤ ‖x− y‖+ 2〈x− Tx, y − Ty〉.
So, a hybrid mapping T : C → H is different from a nonspreading mapping.

Let T : C → H be a nonexpansive mapping and put A = I − T . Then, we have
from [16] that A is 1/2-inverse strongly monotone, i.e.,

1
2
‖Ax−Ay‖2 ≤ 〈x− y, Ax−Ay〉

for all x, y ∈ C. Let T : C → H be a nonspreading mapping and put A = I − T .
Then, we have from Lemma 2.3 and (3) that for any x, y ∈ C,

‖Ax−Ay‖2 = ‖x− y − (Ax−Ay)‖2 − ‖x− y‖2 + 2〈x− y, Ax−Ay〉
= ‖Tx− Ty‖2 − ‖x− y‖2 + 2〈x− y, Ax−Ay〉
≤ ‖x− y‖2 + 2〈x− Tx, y − Ty〉 − ‖x− y‖2 + 2〈x− y, Ax−Ay〉
= 2〈Ax,Ay〉+ 2〈x− y, Ax−Ay〉.

This implies that A is a metric mapping.

4. Fixed point theorems for hybrid mappings

In this section, we start with the following lemma.

Lemma 4.1. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Then a mapping T : C → H is hybrid if and only if

3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖y − Tx‖2 + ‖x− Ty‖2

for all x, y ∈ C.

Proof. We have from (5) and (4) that for any x, y ∈ C,

‖Tx−Ty‖2 ≤ ‖x− y‖2 + 〈x− Tx, y − Ty〉
⇐⇒ 2‖Tx− Ty‖2 ≤ 2‖x− y‖2 + 2〈x− Tx, y − Ty〉
⇐⇒ 2‖Tx− Ty‖2 ≤ 2‖x− y‖2 + ‖x− Tx‖2

+ ‖y − Ty‖2 − ‖x− y − (Tx− Ty)‖2

⇐⇒ 2‖Tx− Ty‖2 ≤ 2‖x− y‖2 + ‖x− Tx‖2

+ ‖y − Ty‖2 − ‖x− y‖2 − ‖Tx− Ty‖2 + 2〈x− y, Tx− Ty〉
⇐⇒ 3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖x− Tx‖2 + ‖y − Ty‖2

+ ‖x− Ty‖2 + ‖x− Ty‖2 − ‖x− Tx‖2 − ‖y − Ty‖2

⇐⇒ 3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖y − Tx‖2 + ‖x− Ty‖2.

¤
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Using Lemma 4.1, we can show an example of hybrid mappings which is not
nonexpansive.

Example 4.2. Let H be a Hilbert space. Let A, B and C be subsets of H which are
defined by

A = {x ∈ H : ‖x‖ ≤ 1};
B = {x ∈ H : ‖x‖ ≤ 3};
C = {x ∈ H : ‖x‖ ≤ 4}.

Define a mapping T : C → C by

Tx =

{
0, if x ∈ B;
PAx, if x ∈ C \B.

Then, T is a hybrid mapping of C into itself.

Proof. Checking three cases, we can prove that T is a hybrid mapping. In the case
of x, y ∈ B, we have

(6) 3‖Tx− Ty‖2 = 0 ≤ ‖x− y‖2 + ‖y − Tx‖2 + ‖x− Ty‖2.

So, from Lemma 4.1, we have

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 〈x− Tx, y − Ty〉.
Similarly, in the case of x ∈ B and y ∈ C \B, we have

3‖Tx− Ty‖2 = 3‖Ty‖2 = 3

≤ ‖x− y‖2 + ‖y‖2 + ‖x− Ty‖2

= ‖x− y‖2 + ‖y − Tx‖2 + ‖x− Ty‖2.

In the case of x, y ∈ C \B, we have

‖PAx− PAy‖2 ≤ 〈x− y, PAx− PAy〉.
As in Section 3, we have

‖PAx− PAy‖2 ≤ ‖x− y‖2 + 〈x− PAx, y − PAy〉
and hence

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 〈x− Tx, y − Ty〉.
So, T : C → C is a hybrid mapping. Since T is not continuous, T : C → C is not
nonexpansive. ¤

Using the technique developed by Takahashi [13], we prove a fixed point theorem
for hybrid mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space, let C be a nonempty closed convex subset of
H and let T be a hybrid mapping of C into itself. Then the following are equivalent:

(i) There exists x ∈ C such that {Tnx} is bounded;
(ii) F (T ) is nonempty.
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Proof. Fix x ∈ C. Then, for any y ∈ C and k ∈ N ∪ {0}, we have that

2‖T k+1x−Ty‖2 ≤ 2‖T kx− y‖2 + 2〈T kx− T k+1x, y − Ty〉
= 2‖T kx− y‖2 + ‖T kx− Ty‖2 + ‖T k+1x− y‖2

− ‖T kx− y‖2 − ‖T k+1x− Ty‖2

= 2‖T kx− Ty‖2 + 4〈T kx− Ty, Ty − y〉+ 2‖Ty − y‖2

+ ‖T kx− Ty‖2 + ‖T k+1x− y‖2 − ‖T kx− y‖2 − ‖T k+1x− Ty‖2.

So, we obtain that

3‖T k+1x− Ty‖2 ≤ 3‖T kx− Ty‖2 + 4〈T kx− Ty, Ty − y〉
+ 2‖Ty − y‖2 + ‖T k+1x− y‖2 − ‖T kx− y‖2.

Summing these inequalities with respect to k = 0, 1, 2, . . . , n− 1, we have

3‖Tnx− Ty‖2 ≤ 3‖x− Ty‖2 + 4〈
n−1∑

k=0

T kx− nTy, Ty − y〉

+ 2n‖Ty − y‖2 + ‖Tnx− y‖2 − ‖x− y‖2.

Deviding this inequality by n, we have
3
n
‖Tnx− Ty‖2 ≤ 3

n
‖x− Ty‖2 + 4〈Sn(x)− Ty, Ty − y〉

+ 2‖Ty − y‖2 +
1
n
‖Tnx− y‖2 − 1

n
‖x− y‖2,

where Sn(x) = 1
n

∑n−1
k=0 T kx. Since {Tnx} is bounded by assumption, {Sn(x)} is

also bounded. Thus we have a subsequence {Sni(x)} of {Sn(x)} such that Sni(x)
converges weakly to u ∈ C. Replacing n by ni and letting ni →∞, we obtain

0 ≤ 2‖Ty − y‖2 + 4〈u− Ty, Ty − y〉.
Putting y = u, we have

0 ≤ 2‖Tu− u‖2 + 4〈u− Tu, Tu− u〉.
So, we have 0 ≤ −2‖Tu− u‖2 and hence Tu = u. This completes the proof. ¤

Next, we show the demiclosedness of a hybrid mapping in a Hilbert space.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T be a hybrid mapping of C into itself. Then T is demiclosed, i.e.,
xn ⇀ u and xn − Txn → 0 imply u ∈ F (T ).

Proof. Let {xn} ⊂ C be a sequence such that xn ⇀ u and xn−Txn → 0 as n →∞.
Then the sequences {xn} and {Txn} are bounded. Suppose that u 6= Tu. From
Opial’s theorem [9], we have

lim inf
n→∞ ‖xn − u‖2 < lim inf

n→∞ ‖xn − Tu‖2

= lim inf
n→∞ ‖xn − Txn + Txn − Tu‖2

= lim inf
n→∞ (‖xn − Txn‖2 + ‖Txn − Tu‖2
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+ 2 〈xn − Txn, Txn − Tu〉)
≤ lim inf

n→∞ (‖xn − Txn‖2 + ‖xn − u‖2 + 〈xn − Txn, u− Tu〉
+ 2 〈xn − Txn, Txn − Tu〉)

= lim inf
n→∞ ‖xn − u‖2 .

This is a contradiction. Hence we get the conclusion. ¤

We have also the following result concerning the set of fixed points of a hybrid
mapping in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a hybrid mapping of C into itself. Then F (T ) is closed and
convex.

Proof. It follows from Theorem 4.4 that F (T ) is closed. In fact, Let {xn} ⊂ F (T )
and xn → z. Then, we have xn ⇀ z and xn − Txn = 0. So, from Theorem 4.4 we
have z = Tz. Let us show that F (T ) is convex. Let x, y ∈ F (T ) and α ∈ [0, 1] and
put z = αx + (1− α)y. Then, we have from (1) that

‖z − Tz‖2 = ‖αx + (1− α)y − Tz‖2

= α‖x− Tz‖2 + (1− α)‖y − Tz‖2 − α(1− α)‖x− y‖2

= α‖Tx− Tz‖2 + (1− α)‖Ty − Tz‖2 − α(1− α)‖x− y‖2

≤ α(‖x− z‖2 + 〈x− Tx, z − Tz〉)
+ (1− α)(‖y − z‖2 + 〈y − Ty, z − Tz〉)− α(1− α)‖x− y‖2

= α(1− α)2‖x− y‖2 + (1− α)α2‖x− y‖2 − α(1− α)‖x− y‖2

= α(1− α)(1− α + α− 1)‖x− y‖2

= 0.

So, we have Tz = z. This completes the proof. ¤

5. The fixed point property and unbounded sets

Ray [10] proved the following theorem.

Theorem 5.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Then, the following are equivalent:

(i) Every nonexpansive mapping of C into itself has a fixed point in C;
(ii) C is bounded.

Sine [12] gave a simple proof. Using Ray’s theorem, we prove the following
theorem.

Theorem 5.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Then, the following are equivalent:

(i) Every hybrid mapping of C into itself has a fixed point in C;
(ii) C is bounded.
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Proof. From Theorem 4.3, we know that (ii) implies (i). Let us show that (i) implies
(ii). We know that every firmly nonexpansive mapping is a hybrid mapping. So, the
class of hybrid mappings of C into itself contains the class of firmly nonexpansive
mappings of C into itself. To show (i) =⇒ (ii), it is sufficient to show that if
every firmly nonexpansive mapping of C into itself has a fixed point in C, then
every nonexpansive mapping of C into itself has a fixed point in C. Let T be a
nonexpansive mapping of C into itself. Then, S = 1

2I + 1
2T is a firmly nonexpansive

mapping; see [4, p. 128]. In fact, we have that for any x, y ∈ C,

‖Sx− Sy‖2 = ‖1
2
x +

1
2
Tx− (

1
2
y +

1
2
Ty)‖2

= ‖1
2
(x− y) +

1
2
(Tx− Ty)‖2

=
1
2
‖x− y‖2 +

1
2
‖Tx− Ty‖2 − 1

4
‖x− y − (Tx− Ty)‖2

=
1
2
‖x− y‖2 +

1
2
‖Tx− Ty‖2

− 1
4
(‖x− y‖2 + ‖Tx− Ty‖2 − 2〈x− y, Tx− Ty〉)

=
1
4
(‖x− y‖2 + ‖Tx− Ty‖2) +

1
2
〈x− y, Tx− Ty〉

≤ (
1
4

+
1
4
)‖x− y‖2 +

1
2
〈x− y, Tx− Ty〉

=
1
2
‖x− y‖2 +

1
2
〈x− y, Tx− Ty〉

= 〈x− y,
1
2
(x− y) +

1
2
(Tx− Ty)〉

= 〈x− y,
1
2
(x + Tx)− 1

2
(y + Ty)〉

= 〈x− y,
1
2
x +

1
2
Tx− (

1
2
y +

1
2
Ty)〉

= 〈x− y, Sx− Sy〉.
This implies that S is a firmly nonexpansive mapping. Further, it is not difficult
to show F (T ) = F (S). So, every firmly nonexpansive mapping of C into itself has
a fixed point in C if and only if every nonexpansive mapping of C into itself has a
fixed point in C. This completes the proof. ¤
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