Journal of Nonlinear and Convex Analysis Volume 11, Number 1, 2010, 79–88

FIXED POINT THEOREMS FOR NEW NONLINEAR MAPPINGS IN A HILBERT SPACE

WATARU TAKAHASHI

ABSTRACT. In this paper, we first consider nonlinear mappings which are deduced from an equilibrium problem in a Hilbert space. Further, we deal with fixed point theorems for the nonlinear mappings in a Hilbert space.

1. INTRODUCTION

Let *H* be a real Hilbert space and let *C* be a nonempty closed convex subset of *H*. Then a mapping $T: C \to H$ is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. A mapping *F* is also said to be firmly nonexpansive if

$$\|Fx - Fy\|^2 \le \langle x - y, Fx - Fy \rangle$$

for all $x, y \in C$; see, for instance, Browder [2], Goebel and Kirk [4], Goebel and Reich [5], Reich and Shoikhet [11] and Takahashi [14]. It is known that a mapping $F: C \to H$ is firmly nonexpansive if and only if

$$||Fx - Fy||^{2} + ||(I - F)x - (I - F)y||^{2} \le ||x - y||^{2}$$

for all $x, y \in C$, where I is the identity mapping on H. It is also known that a firmly nonexpansive mapping F is deduced from an equilibrium problem in a Hilbert space as follows: Let C be a nonempty closed convex subset of H and let us assume that a bifunction $f: C \times C \to \mathbb{R}$ satisfies the following conditons:

- (A1) $f(x,x) = 0, \quad \forall x \in C;$
- (A2) f is monotone, i.e., $f(x, y) + f(y, x) \le 0$, $\forall x, y \in C$;
- (A3) $\lim_{t \to 0} f(tz + (1 t)x, y) \le f(x, y), \quad \forall x, y, z \in C;$
- (A4) for each $x \in C$, $y \mapsto f(x, y)$ is convex and lower semicontinuous.

We know the following lemma; see, for instance, [1] and [3].

Lemma 1.1. Let C be a nonempty closed convex subset of H and let f be a bifunction from $C \times C$ into \mathbb{R} satisfying (A1), (A2), (A3) and (A4). Then, for any r > 0and $x \in H$, there exists $z \in C$ such that

$$f(z,y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \quad \forall y \in C.$$

Further, if $T_r x = \{z \in C : f(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \forall y \in C\}$ for all r > 0 and $x \in H$, then the following hold:

(1) T_r is single-valued;

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10; Secondary 47H05.

Key words and phrases. Nonexpansive mapping, nonspreading mapping, equilibrium problem, fixed point, Hilbert space.

(2) T_r is firmly nonexpansive, i.e.,

$$||T_r x - T_r y||^2 \le \langle T_r x - T_r y, x - y \rangle, \quad \forall x, y \in H.$$

Recently, Kohsaka and Takahashi [8] introduced the following nonlinear mapping: Let E be a smooth, strictly convex and reflexive Banach space, let J be the duality mapping of E and let C be a nonempty closed convex subset of E. Then, a mapping $S: C \to E$ is said to be nonspreading if

$$\phi(Sx, Sy) + \phi(Sy, Sx) \le \phi(Sx, y) + \phi(Sy, x)$$

for all $x, y \in C$, where $\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$ for all $x, y \in E$. They considered such a mapping to study the resolvents of a maximal monotone operator in the Banach space. In the case when E is a Hilbert space, we know that $\phi(x, y) = ||x - y||^2$ for all $x, y \in E$. So, a nonspreading mapping S in a Hilbert space H is defined as follows:

$$2 \|Sx - Sy\|^2 \le \|Sx - y\|^2 + \|x - Sy\|^2$$

for all $x, y \in C$.

In this paper, we first consider nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space. Further, we deal with fixed point theorems for the nonlinear mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. In a Hilbert space, it is known that

(1)
$$\|\alpha x + (1-\alpha)y\|^2 = \alpha \|x\|^2 + (1-\alpha) \|y\|^2 - \alpha(1-\alpha) \|x-y\|^2$$

for all $x, y \in H$ and $\alpha \in \mathbb{R}$; see, for instance, [16]. Further, in a Hilbert space, we have that

(2)
$$2\langle x-y, z-w\rangle = ||x-w||^2 + ||y-z||^2 - ||x-z||^2 - ||y-w||^2$$

for all $x, y, z, w \in H$. Indeed, we have that

$$2 \langle x - y, z - w \rangle = 2 \langle x, z \rangle - 2 \langle x, w \rangle - 2 \langle y, z \rangle + 2 \langle y, w \rangle$$

= $(- ||x||^2 + 2 \langle x, z \rangle - ||z||^2) + (||x||^2 - 2 \langle x, w \rangle + ||w||^2)$
+ $(||y||^2 - 2 \langle y, z \rangle + ||z||^2) + (- ||y||^2 + 2 \langle y, w \rangle - ||w||^2)$
= $||x - w||^2 + ||y - z||^2 - ||x - z||^2 - ||y - w||^2$.

Let C be a closed convex subset of H and let T be a mapping of C into H. We denote by F(T) the set of all fixed points of T, that is, $F(T) = \{z \in C : Tz = z\}$. We denote the strong convergence and the weak convergence of x_n to $x \in H$ by $x_n \to x$ and $x_n \to x$, respectively. A mapping $T : C \to H$ is nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$

for all $x, y \in C$. We can prove from (1) that F(T) is closed and convex. We also know that if C is a bounded closed convex subset of H and $T : C \to C$ is nonexpansive, then F(T) is nonempty. A mapping $F : C \to H$ is firmly nonexpansive if

$$\left\|Fx - Fy\right\|^{2} \le \langle x - y, Fx - Fy \rangle$$

for all $x, y \in C$. A mapping $S : C \to H$ is nonspreading if

$$2 \|Sx - Sy\|^2 \le \|Sx - y\|^2 + \|x - Sy\|^2$$

for all $x, y \in C$. From Kohsaka and Takahashi [8], we know the following fixed point theorems.

Theorem 2.1 ([8]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let S be a nonspreading mapping of C into itself. Then the following are equivalent:

- (i) There exists $x \in C$ such that $\{S^n x\}$ is bounded;
- (ii) F(S) is nonempty.

Theorem 2.2 ([8]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let S be a nonspreading mapping of C into itself. Then F(S) is closed and convex.

From Iemoto and Takahashi [6], we know the following lemma.

Lemma 2.3. Let C be a nonempty closed convex subset of H. Then a mapping $S: C \to H$ is nonspreading if and only if

$$||Sx - Sy||^2 \le ||x - y||^2 + 2\langle x - Sx, y - Sy \rangle$$

for all $x, y \in C$.

3. Nonlinear mappings

Let H be a Hilbert space. Let C be a nonempty closed convex subset of H and let T be a mapping of C into H. Then, we have the following equality:

(3)
$$||Tx - Ty||^2 = ||x - y - (Tx - Ty)||^2 - ||x - y||^2 + 2\langle x - y, Tx - Ty \rangle$$

for all $x, y \in C$. We have also from (2) that (4) $x, y \in C$. We have also from (2) that

(4)
$$2\langle x-y, Tx-Ty\rangle = ||x-Ty||^2 + ||y-Tx||^2 - ||x-Tx||^2 - ||y-Ty||^2.$$

Further, we have that

(5)
$$||x - y - (Tx - Ty)||^2 = ||x - Tx||^2 + ||y - Ty||^2 - 2\langle x - Tx, y - Ty \rangle.$$

If $T: C \to H$ is firmly nonexpansive, then for any $x, y \in C$,

$$||Tx - Ty||^2 \le \langle x - y, Tx - Ty \rangle.$$

So, we have from (3) that

$$2||Tx - Ty||^{2} \le 2\langle x - y, Tx - Ty \rangle$$

= $||Tx - Ty||^{2} - ||x - y - (Tx - Ty)||^{2} + ||x - y||^{2}$
 $\le ||Tx - Ty||^{2} + ||x - y||^{2}.$

Then, we have

$$||Tx - Ty||^2 \le ||x - y||^2$$

and hence

$$||Tx - Ty|| \le ||x - y||.$$

Such a mapping is nonexpansive. Thus, we can obtain other nonlinear operators from a firmly nonexpansive mapping in a Hilbert space. Kohsaka and Takahahi [8] obtained a nonspreading mapping from a firmly nonexpansive mapping. Let $T: C \to H$ be a firmly nonexpansive mapping. Then, we have, for any $x, y \in C$,

$$2||Tx - Ty||^2 \le 2\langle x - y, Tx - Ty \rangle$$

From (4), we obtain

$$2\|Tx - Ty\|^{2} \le \|x - Ty\|^{2} + \|y - Tx\|^{2} - \|x - Tx\|^{2} - \|y - Ty\|^{2}$$

$$\le \|x - Ty\|^{2} + \|y - Tx\|^{2}.$$

So, we have

$$2||Tx - Ty||^2 \le ||x - Ty||^2 + ||y - Tx||^2$$

This is a nonspreading mapping. Further, we define a new nonlinear operator from a firmly nonexpansive mapping. We have that for any $x, y \in C$,

$$2\|Tx - Ty\|^{2} \leq 2\langle x - y, Tx - Ty \rangle$$

$$\iff \|Tx - Ty\|^{2} + \|Tx\|^{2} + \|Ty\|^{2} - 2\langle Tx, Ty \rangle \leq 2\langle x - y, Tx - Ty \rangle$$

$$\implies \|Tx - Ty\|^{2} - 2\langle Tx, Ty \rangle \leq 2\langle x - y, Tx - Ty \rangle$$

$$\iff \|Tx - Ty\|^{2} \leq 2\langle Tx, Ty \rangle + 2\langle x - y, Tx - Ty \rangle.$$

So, we can define a new mapping called a metric mapping, i.e.,

$$||Tx - Ty||^2 \le 2\langle Tx, Ty \rangle + 2\langle x - y, Tx - Ty \rangle$$

for all $x, y \in C$. Finally, we obtain another new nonlinear mapping from a firmly nonexpansive mapping. We have from (3) and (5) that for any $x, y \in C$,

$$\begin{aligned} 4\|Tx - Ty\|^{2} &\leq 4\langle x - y, Tx - Ty \rangle \\ &\iff 4\|Tx - Ty\|^{2} \leq 2\langle x - y, Tx - Ty \rangle + 2\langle x - y, Tx - Ty \rangle \\ &\iff 4\|Tx - Ty\|^{2} \leq \|Tx - Ty\|^{2} - \|x - y - (Tx - Ty)\|^{2} + \|x - y\|^{2} \\ &+ \|Tx - Ty\|^{2} + \|x - y\|^{2} - \|x - Tx\|^{2} - \|y - Ty\|^{2} + 2\langle x - Tx, y - Ty \rangle \\ &\implies 4\|Tx - Ty\|^{2} \leq 2\|Tx - Ty\|^{2} + 2\|x - y\|^{2} + 2\langle x - Tx, y - Ty \rangle \\ &\iff 2\|Tx - Ty\|^{2} \leq 2\|x - y\|^{2} + 2\langle x - Tx, y - Ty \rangle \\ &\iff \|Tx - Ty\|^{2} \leq \|x - y\|^{2} + \langle x - Tx, y - Ty \rangle. \end{aligned}$$

So, if $T: C \to H$ is firmly nonexpansive, then T satisfies that

$$||Tx - Ty||^2 \le ||x - y||^2 + \langle x - Tx, y - Ty \rangle$$

for all $x, y \in C$. We call such a mapping a hybrid mapping. A hybrid mapping $T: C \to H$ is different from a nonspreading mapping. In fact, from Lemma 2.3, we know that for any $x, y \in C$,

$$2\|Tx - Ty\|^{2} \le \|y - Tx\|^{2} + \|x - Ty\|^{2}$$

$$\iff \|Tx - Ty\|^{2} \le \|x - y\| + 2\langle x - Tx, y - Ty \rangle.$$

So, a hybrid mapping $T: C \to H$ is different from a nonspreading mapping.

Let $T: C \to H$ be a nonexpansive mapping and put A = I - T. Then, we have from [16] that A is 1/2-inverse strongly monotone, i.e.,

$$\frac{1}{2} \|Ax - Ay\|^2 \le \langle x - y, Ax - Ay \rangle$$

for all $x, y \in C$. Let $T : C \to H$ be a nonspreading mapping and put A = I - T. Then, we have from Lemma 2.3 and (3) that for any $x, y \in C$,

$$||Ax - Ay||^{2} = ||x - y - (Ax - Ay)||^{2} - ||x - y||^{2} + 2\langle x - y, Ax - Ay \rangle$$

= $||Tx - Ty||^{2} - ||x - y||^{2} + 2\langle x - y, Ax - Ay \rangle$
 $\leq ||x - y||^{2} + 2\langle x - Tx, y - Ty \rangle - ||x - y||^{2} + 2\langle x - y, Ax - Ay \rangle$
= $2\langle Ax, Ay \rangle + 2\langle x - y, Ax - Ay \rangle.$

This implies that A is a metric mapping.

4. FIXED POINT THEOREMS FOR HYBRID MAPPINGS

In this section, we start with the following lemma.

Lemma 4.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Then a mapping $T : C \to H$ is hybrid if and only if

$$3||Tx - Ty||^{2} \le ||x - y||^{2} + ||y - Tx||^{2} + ||x - Ty||^{2}$$

for all $x, y \in C$.

Proof. We have from (5) and (4) that for any $x, y \in C$,

$$\begin{split} \|Tx - Ty\|^{2} &\leq \|x - y\|^{2} + \langle x - Tx, y - Ty \rangle \\ \iff 2\|Tx - Ty\|^{2} \leq 2\|x - y\|^{2} + 2\langle x - Tx, y - Ty \rangle \\ \iff 2\|Tx - Ty\|^{2} \leq 2\|x - y\|^{2} + \|x - Tx\|^{2} \\ &+ \|y - Ty\|^{2} - \|x - y - (Tx - Ty)\|^{2} \\ \iff 2\|Tx - Ty\|^{2} \leq 2\|x - y\|^{2} + \|x - Tx\|^{2} \\ &+ \|y - Ty\|^{2} - \|x - y\|^{2} - \|Tx - Ty\|^{2} + 2\langle x - y, Tx - Ty \rangle \\ \iff 3\|Tx - Ty\|^{2} \leq \|x - y\|^{2} + \|x - Tx\|^{2} + \|y - Ty\|^{2} \\ &+ \|x - Ty\|^{2} + \|x - Ty\|^{2} - \|x - Tx\|^{2} - \|y - Ty\|^{2} \\ \ll 3\|Tx - Ty\|^{2} \leq \|x - y\|^{2} + \|y - Tx\|^{2} + \|y - Ty\|^{2} \\ \iff 3\|Tx - Ty\|^{2} \leq \|x - y\|^{2} + \|y - Tx\|^{2} + \|x - Ty\|^{2}. \end{split}$$

Using Lemma 4.1, we can show an example of hybrid mappings which is not nonexpansive.

Example 4.2. Let H be a Hilbert space. Let A, B and C be subsets of H which are defined by

$$A = \{x \in H : ||x|| \le 1\}; \\B = \{x \in H : ||x|| \le 3\}; \\C = \{x \in H : ||x|| \le 4\}.$$

Define a mapping $T: C \to C$ by

$$Tx = \begin{cases} 0, & \text{if } x \in B; \\ P_A x, & \text{if } x \in C \setminus B. \end{cases}$$

Then, T is a hybrid mapping of C into itself.

Proof. Checking three cases, we can prove that T is a hybrid mapping. In the case of $x, y \in B$, we have

(6)
$$3\|Tx - Ty\|^2 = 0 \le \|x - y\|^2 + \|y - Tx\|^2 + \|x - Ty\|^2.$$

So, from Lemma 4.1, we have

$$||Tx - Ty||^2 \le ||x - y||^2 + \langle x - Tx, y - Ty \rangle.$$

Similarly, in the case of $x \in B$ and $y \in C \setminus B$, we have

$$3||Tx - Ty||^{2} = 3||Ty||^{2} = 3$$

$$\leq ||x - y||^{2} + ||y||^{2} + ||x - Ty||^{2}$$

$$= ||x - y||^{2} + ||y - Tx||^{2} + ||x - Ty||^{2}.$$

In the case of $x, y \in C \setminus B$, we have

$$||P_A x - P_A y||^2 \le \langle x - y, P_A x - P_A y \rangle.$$

As in Section 3, we have

$$||P_A x - P_A y||^2 \le ||x - y||^2 + \langle x - P_A x, y - P_A y \rangle$$

and hence

$$||Tx - Ty||^2 \le ||x - y||^2 + \langle x - Tx, y - Ty \rangle$$

So, $T: C \to C$ is a hybrid mapping. Since T is not continuous, $T: C \to C$ is not nonexpansive.

Using the technique developed by Takahashi [13], we prove a fixed point theorem for hybrid mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a hybrid mapping of C into itself. Then the following are equivalent:

- (i) There exists $x \in C$ such that $\{T^n x\}$ is bounded;
- (ii) F(T) is nonempty.

Proof. Fix $x \in C$. Then, for any $y \in C$ and $k \in \mathbb{N} \cup \{0\}$, we have that

$$2\|T^{k+1}x - Ty\|^{2} \leq 2\|T^{k}x - y\|^{2} + 2\langle T^{k}x - T^{k+1}x, y - Ty \rangle$$

$$= 2\|T^{k}x - y\|^{2} + \|T^{k}x - Ty\|^{2} + \|T^{k+1}x - y\|^{2}$$

$$-\|T^{k}x - y\|^{2} - \|T^{k+1}x - Ty\|^{2}$$

$$= 2\|T^{k}x - Ty\|^{2} + 4\langle T^{k}x - Ty, Ty - y \rangle + 2\|Ty - y\|^{2}$$

$$+\|T^{k}x - Ty\|^{2} + \|T^{k+1}x - y\|^{2} - \|T^{k}x - y\|^{2} - \|T^{k+1}x - Ty\|^{2}.$$

So, we obtain that

$$3||T^{k+1}x - Ty||^{2} \le 3||T^{k}x - Ty||^{2} + 4\langle T^{k}x - Ty, Ty - y \rangle + 2||Ty - y||^{2} + ||T^{k+1}x - y||^{2} - ||T^{k}x - y||^{2}.$$

Summing these inequalities with respect to k = 0, 1, 2, ..., n - 1, we have

$$3||T^{n}x - Ty||^{2} \le 3||x - Ty||^{2} + 4\langle \sum_{k=0}^{n-1} T^{k}x - nTy, Ty - y \rangle + 2n||Ty - y||^{2} + ||T^{n}x - y||^{2} - ||x - y||^{2}.$$

Deviding this inequality by n, we have

$$\begin{aligned} \frac{3}{n} \|T^n x - Ty\|^2 &\leq \frac{3}{n} \|x - Ty\|^2 + 4\langle S_n(x) - Ty, Ty - y \rangle \\ &+ 2\|Ty - y\|^2 + \frac{1}{n} \|T^n x - y\|^2 - \frac{1}{n} \|x - y\|^2, \end{aligned}$$

where $S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$. Since $\{T^n x\}$ is bounded by assumption, $\{S_n(x)\}$ is also bounded. Thus we have a subsequence $\{S_{n_i}(x)\}$ of $\{S_n(x)\}$ such that $S_{n_i}(x)$ converges weakly to $u \in C$. Replacing n by n_i and letting $n_i \to \infty$, we obtain

$$0 \le 2||Ty - y||^2 + 4\langle u - Ty, Ty - y \rangle.$$

Putting y = u, we have

$$0 \le 2\|Tu - u\|^2 + 4\langle u - Tu, Tu - u \rangle$$

So, we have $0 \leq -2 ||Tu - u||^2$ and hence Tu = u. This completes the proof. \Box

Next, we show the demiclosedness of a hybrid mapping in a Hilbert space.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T be a hybrid mapping of C into itself. Then T is demiclosed, i.e., $x_n \rightharpoonup u$ and $x_n - Tx_n \rightarrow 0$ imply $u \in F(T)$.

Proof. Let $\{x_n\} \subset C$ be a sequence such that $x_n \rightharpoonup u$ and $x_n - Tx_n \rightarrow 0$ as $n \rightarrow \infty$. Then the sequences $\{x_n\}$ and $\{Tx_n\}$ are bounded. Suppose that $u \neq Tu$. From Opial's theorem [9], we have

$$\lim_{n \to \infty} \inf \|x_n - u\|^2 < \liminf_{n \to \infty} \|x_n - Tu\|^2$$

=
$$\liminf_{n \to \infty} \|x_n - Tx_n + Tx_n - Tu\|^2$$

=
$$\liminf_{n \to \infty} (\|x_n - Tx_n\|^2 + \|Tx_n - Tu\|^2)$$

$$+ 2 \langle x_n - Tx_n, Tx_n - Tu \rangle)$$

$$\leq \liminf_{n \to \infty} (\|x_n - Tx_n\|^2 + \|x_n - u\|^2 + \langle x_n - Tx_n, u - Tu \rangle + 2 \langle x_n - Tx_n, Tx_n - Tu \rangle)$$

$$= \liminf_{n \to \infty} \|x_n - u\|^2.$$

This is a contradiction. Hence we get the conclusion.

We have also the following result concerning the set of fixed points of a hybrid mapping in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a hybrid mapping of C into itself. Then F(T) is closed and convex.

Proof. It follows from Theorem 4.4 that F(T) is closed. In fact, Let $\{x_n\} \subset F(T)$ and $x_n \to z$. Then, we have $x_n \to z$ and $x_n - Tx_n = 0$. So, from Theorem 4.4 we have z = Tz. Let us show that F(T) is convex. Let $x, y \in F(T)$ and $\alpha \in [0, 1]$ and put $z = \alpha x + (1 - \alpha)y$. Then, we have from (1) that

$$\begin{aligned} \|z - Tz\|^2 &= \|\alpha x + (1 - \alpha)y - Tz\|^2 \\ &= \alpha \|x - Tz\|^2 + (1 - \alpha)\|y - Tz\|^2 - \alpha(1 - \alpha)\|x - y\|^2 \\ &= \alpha \|Tx - Tz\|^2 + (1 - \alpha)\|Ty - Tz\|^2 - \alpha(1 - \alpha)\|x - y\|^2 \\ &\leq \alpha(\|x - z\|^2 + \langle x - Tx, z - Tz \rangle) \\ &+ (1 - \alpha)(\|y - z\|^2 + \langle y - Ty, z - Tz \rangle) - \alpha(1 - \alpha)\|x - y\|^2 \\ &= \alpha(1 - \alpha)^2 \|x - y\|^2 + (1 - \alpha)\alpha^2 \|x - y\|^2 - \alpha(1 - \alpha)\|x - y\|^2 \\ &= \alpha(1 - \alpha)(1 - \alpha + \alpha - 1)\|x - y\|^2 \\ &= 0. \end{aligned}$$

So, we have Tz = z. This completes the proof.

5. The fixed point property and unbounded sets

Ray [10] proved the following theorem.

Theorem 5.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Then, the following are equivalent:

- (i) Every nonexpansive mapping of C into itself has a fixed point in C;
- (ii) C is bounded.

Sine [12] gave a simple proof. Using Ray's theorem, we prove the following theorem.

Theorem 5.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Then, the following are equivalent:

- (i) Every hybrid mapping of C into itself has a fixed point in C;
- (ii) C is bounded.

Proof. From Theorem 4.3, we know that (ii) implies (i). Let us show that (i) implies (ii). We know that every firmly nonexpansive mapping is a hybrid mapping. So, the class of hybrid mappings of C into itself contains the class of firmly nonexpansive mappings of C into itself. To show (i) \implies (ii), it is sufficient to show that if every firmly nonexpansive mapping of C into itself has a fixed point in C, then every nonexpansive mapping of C into itself. Then, $S = \frac{1}{2}I + \frac{1}{2}T$ is a firmly nonexpansive mapping; see [4, p. 128]. In fact, we have that for any $x, y \in C$,

$$\begin{split} |Sx - Sy||^2 &= \|\frac{1}{2}x + \frac{1}{2}Tx - (\frac{1}{2}y + \frac{1}{2}Ty)\|^2 \\ &= \|\frac{1}{2}(x - y) + \frac{1}{2}(Tx - Ty)\|^2 \\ &= \frac{1}{2}\|x - y\|^2 + \frac{1}{2}\|Tx - Ty\|^2 - \frac{1}{4}\|x - y - (Tx - Ty)\|^2 \\ &= \frac{1}{2}\|x - y\|^2 + \frac{1}{2}\|Tx - Ty\|^2 \\ &- \frac{1}{4}(\|x - y\|^2 + \|Tx - Ty\|^2 - 2\langle x - y, Tx - Ty\rangle) \\ &= \frac{1}{4}(\|x - y\|^2 + \|Tx - Ty\|^2) + \frac{1}{2}\langle x - y, Tx - Ty\rangle \\ &\leq (\frac{1}{4} + \frac{1}{4})\|x - y\|^2 + \frac{1}{2}\langle x - y, Tx - Ty\rangle \\ &= \frac{1}{2}\|x - y\|^2 + \frac{1}{2}\langle x - y, Tx - Ty\rangle \\ &= \langle x - y, \frac{1}{2}(x - y) + \frac{1}{2}(Tx - Ty)\rangle \\ &= \langle x - y, \frac{1}{2}(x + Tx) - \frac{1}{2}(y + Ty)\rangle \\ &= \langle x - y, \frac{1}{2}x + \frac{1}{2}Tx - (\frac{1}{2}y + \frac{1}{2}Ty)\rangle \\ &= \langle x - y, Sx - Sy\rangle. \end{split}$$

This implies that S is a firmly nonexpansive mapping. Further, it is not difficult to show F(T) = F(S). So, every firmly nonexpansive mapping of C into itself has a fixed point in C if and only if every nonexpansive mapping of C into itself has a fixed point in C. This completes the proof.

References

- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225.
- [3] P. L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- [4] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.

- [5] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker Inc., New York, 1984.
- [6] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082–2089.
- [7] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824–835.
- [8] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166–177.
- [9] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- [10] W. O. Ray, The fixed point property and unbounded sets in Hilbert space, Trans. Amer. Math. Soc. 258 (1980), 531–537.
- [11] S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.
- [12] R. Sine, On the converse of the nonexpansive map fixed point theorem for Hilbert space, Proc. Amer. Math. Soc. 100 (1987), 489–490.
- [13] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [14] W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000.
- [15] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
- [16] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.

Manuscript received July 22, 2009 revised September 1, 2009

W. TAKAHASHI

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan and Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail address: wataru@is.titech.ac.jp