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ON EXISTENCE OF BEST PROXIMITY PAIR THEOREMS FOR
RELATIVELY NONEXPANSIVE MAPPINGS

G. SANKARA RAJU KOSURU AND P. VEERAMANI

Abstract. In this paper we study the existence of best proximity pair of points
for relatively nonexpansive mappings on a pair A, B of subsets of a Banach space
X. A recent paper by Esṕınola (A new approach to relatively nonexpansive map-
pings, Proc. Amer. Math. Soc. 136 (2008), no. 6, 1987–1995) contains best
proximity pair theorems for relatively nonexpansive mappings on a proximial
parallel pair in X. In this paper we obtain similar results for a more general class
of pairs.

1. Introduction

Let X be a normed linear space and D ⊂ X. Recall that a mapping T : D → D
is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y in D. In this work
we consider mappings that are relatively nonexpansive, in the sense that they are
defined on the union of a pair of subsets A,B of X satisfying ‖Tx − Ty‖ ≤ ‖x −
y‖ for all x ∈ A , y ∈ B. In [2], Eldred et al., introduced a notion of proximal
normal structure to prove best proximity pair theorems for relatively nonexpansive
mappings of the types (i) TA ⊂ A, TB ⊂ B and (ii) TA ⊂ B, TB ⊂ A. Esṕınola
recently introduced a new approach in [1] to establish the same result for relatively
nonexpansive mappings in a pair of proximinal parellel sets. Esṕınola has also
proved that every convex proximinal pair (A,B) in a strictly convex Banach space
is a proximinal parallel pair. In general there are proximinal pairs (A,B) in X in
which neither X is a strictly convex Banach space nor the pair (A,B) is a proximinal
parallel pair. Motivated by this, we study best proximity pair theorems for relatively
nonexpansive mappings on A ∪ B. It might be noted that the best proximity pair
theorems proved in [1] can also be proved by the approach given in [2]. Our aim here
is to follow the approach of [1] to prove best proximity pair theorems for proximinal
pairs which are not necessarily proximinal parallel.

Definition 1.1. Let M be a nonempty set. A function d : M ×M → [0,∞) is said
to be a semimetric on M, if it satisfies:

1. d(x, y) = 0 if and only if x = y ∈ M.
2. d(x, y) = d(y, x) for any x, y ∈ M.

In this work we adopt the following notations.
For any subsets A,B of a semimetric space (M, d),
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d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B};
δ(x,B) = sup{d(x, y) : y ∈ B}, for x ∈ M ;
δ(A,B) = sup{d(x, y) : x ∈ A, y ∈ B},

δ(A) = δ(A,A), the diameter of A.

Given a semimetric d on a set M a B-set will be a set like

Bd(x, r) = {y ∈ M : d(x, y) ≤ r}.
Consider the family of admissible subsets of M which are intersections of B-sets.
We denote this collection by A(M). For a subset D ⊂ M, we say that a point x ∈ D
is a nondiametral point if δ(x,D) < δ(D).

A family B of subsets of a semimetric space (M, d) is said to be a convexity
structure if B contains the B−sets of M and if B is closed under intersection. B
is compact if every subfamily of B which has the finite intersection property has
nonempty intersection, and normal if every member of B containing more than one
point has a nondiametral point. For more on these concepts the reader may check
the references [3, 4, 5, 6].

Nonexpansiveness with respect to a semimetric is defined in the natural way.

Definition 1.2 ([1]). A mapping T : M → M is said to be nonexpansive with
respect to the semimetric d, if d(Tx, Ty) ≤ d(x, y) for any x, y ∈ M.

An abstract version of Kirk’s Fixed point Theorem is stated in [3]. The following
theorem is a particular case for semimetrics of this abstract version.

Theorem 1.3 ([1]). Let (M, d) be a bounded semimetric space such that A(M) is
compact and has normal structure. Then every nonexpansive mapping T : M → M
has a fixed point.

2. Preliminaries

Let X be a Banach space and A,B be subsets of X. We shall say that a pair
(A,B) of sets of X satisfies a property p if each of the sets A and B has the
same property p. A pair (A,B) of subsets of a Banach space X is said to be a
proximinal pair if for each (x, y) ∈ A × B there exists (x

′
, y

′
) ∈ A × B such that

‖x − y
′‖ = ‖x′ − y‖ = d(A,B). If, additionally, we impose the condition that the

pair of points (x
′
, y

′
) ∈ A × B is unique for each (x, y) ∈ A × B, then we say that

the pair (A,B) is a sharp proximinal pair. In this case, such a y′ ∈ B is said to be
the best proximity point for x ∈ A and vice-versa.

Lemma 2.1. Let (A,B) be a proximinal pair in a Banach space X. Then (A,B) is
a sharp proximinal pair if and only if for every x ∈ A there exists an unique y ∈ B
such that ‖x− y‖ = d(A,B) and vice-versa.

In [2], Eldred et al., introduced the notion of proximal normal structure for a pair
of subsets of a Banach space, as follows:
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Definition 2.2 ([2]). A convex pair (A,B) in a Banach space X is said to have
proximal normal structure if for any closed, bounded and convex proximinal pair
(H1,H2) ⊆ (A,B) for which d(H1,H2) = d(A,B) and d(H1,H2) < δ(H1,H2), there
exists (x1, x2) ∈ H1 ×H2 such that

δ(x1,H2) < δ(H1,H2) and δ(x2,H1) < δ(H1,H2).

In [2] the reader can find different conditions (like (A,B) is a compact convex pair
of a Banach space or a closed bounded convex pair of a uniformly convex Banach
space) which guarantee the existence of proximal normal structure for a given pair
of sets.

In [1], Esṕınola established best proximity pair results, using a notion called
proximinal parallel pair, in a Banach space.

Definition 2.3 ([1]). Let A,B be nonempty subsets of a Banach space X. We say
that (A,B) is a proximinal parallel pair if the following conditions are fulfilled
(1.) (A,B) is a sharp proximinal pair.
(2.) B = A + h for some h ∈ X.

Remark 2.4. For any proximinal parallel pair (A,B) in a Banach space X there exists
h ∈ X such that B = A + h and so for any x, y ∈ A, ‖x− y‖ = ‖(x + h)− (y + h)‖.
Hence δ(A) = δ(B)

Though in [1], Esṕınola has proved that every convex proximinal pair in a strictly
convex Banach space is a proximinal parallel pair, we give a simple proof for the
same result.

Lemma 2.5. Let (A,B) be a convex proximinal pair in a strictly convex Banach
space X. Then (A,B) is a proximinal parallel pair.

Proof. The fact that (A,B) is a sharp proximinal pair immediately follows from the
strict convexity of X. Suppose for x, y in A, x

′
, y

′
in B are the corresponding best

proximity points. Now if x − x
′ 6= y − y

′
then by strict convexity of X, we have

‖x−x
′

2 + y−y
′

2 ‖ < d(A,B). Thus ‖x+y
2 − x

′
+y

′

2 ‖ < d(A,B), a contradiction. ¤

3. Main Results

Let X be a Banach space and (A,B) be a sharp proximinal pair of subsets of X.
Then for each x ∈ B there is a unique y ∈ A such that ‖x − y‖ = d(A,B). In this
case, such a y is denoted by x

′
. From the definition of sharp proximinal pair, it is

easy to see that (x
′
)
′
= x. Throughout this work we denote d(A,B) by d.

Now we define a semimetric on B and use this semimetric to prove the main
results.

Lemma 3.1. Let (A,B) be a sharp proximinal pair in a Banach space X. Let
d1 : B ×B → [0,∞) be defined by

d1(x, y) = max{‖x′ − y‖ − d, ‖x− y
′‖ − d}.

Then d1 defines a semimetric on B.
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Proof. For x = y ∈ B, by uniqueness of best proximity points, d1(x, y) = 0. If
d1(x, y) = 0 then ‖x′ − y‖ = ‖x − y

′‖ = d = d(A,B). So by uniqueness of best
proximity point of x, x

′
= y

′
and hence x = y. By the definition of d1, d1(x, y) =

d1(y, x) for all x, y ∈ B. ¤

We denote the collection of all admissible subsets of B with respect to the semi-
metric d1 by A1(B). Also if B = A then d1(x, y) = ‖x − y‖ for all x, y in B. It is
easy to verify that each B−set in B is a convex subset of X. Now we show that
each B−set in B is a weakly closed subset of the given Banach space X.

Lemma 3.2. Let (A,B) be a weakly compact, convex, sharp proximinal pair in a
Banach space X and d1 be the semimetric on B defined as above. Then each B−set
in B is a weakly closed subset of X.

Proof. Since each B−set in B is a convex subset of X, it is enough to prove that each
B−set in B is closed in the Banach space X. Let yn be a sequence in Bd1(x, r) such
that yn → y in X. By weak compactness of A, we get a subsequence {ynk

} of {yn}
such that y

′
nk
→ z weakly for some z ∈ A. Norm is weakly lower semi continuous

with respect to the weak topology on X implies ‖y − z‖ ≤ lim inf
k

‖ynk
− y

′
nk
‖ = d.

Therefore z = y
′
. Also ‖x− y

′‖ ≤ lim inf
k

‖x− y
′
nk
‖ ≤ r + d, ‖x′ − y‖ ≤ lim inf

k
‖x′ −

yk‖ ≤ r + d and hence y ∈ Bd1(x, r). ¤

Now we see the relation between the proximal normal structure on (A,B) and
d1-normal structure on A1(B).

Proposition 3.3. Let (A,B) be a nonempty sharp proximinal convex pair in Ba-
nach space X. Then (A,B) has proximal normal structure if and only if each closed,
bounded and convex subset of B having more than one point has a d1-nondiametral
point.

Proof. ⇒: Let (A,B) have proximal normal structure and let D ⊆ B be a nonempty
closed, bounded and convex set having more than one point. Then the pair (D

′
, D)

is a closed, bounded and convex proximinal pair of (A,B) satisfying d(A,B) =
d(D

′
, D) by setting

D
′
= {x′ ∈ A : x ∈ D}.

Let x, y in D be such that x 6= y then ‖y′ − x‖ > d and hence d(D
′
, D) < δ(D

′
, D).

By proximal normal structure, there exists (x
′
, y) ∈ D

′ × D such that δ(x
′
, D) <

δ(D
′
, D) and δ(y, D

′
) < δ(D

′
, D). Get (x

′
2, x3), (x

′
4, x5) ∈ D

′ ×D such that

δ(x
′
, D) < d(x

′
2, x3)(3.1)

δ(y, D
′
) < d(x

′
4, x5)(3.2)

Now we claim that δ(x
′
, D) − d < δ1(D). Suppose not d1(x2, x3) ≤ δ(x

′
, D) − d,

which gives ‖x′2 − x3‖ ≤ δ(x
′
, D), a contradiction to 3.1. By a similar argument

it is easy to see that δ(y, D
′
) − d < δ1(D). Now by the convexity of D, x+y

2 ∈ D

and for any z ∈ D, ‖(x+y
2 )

′ − z‖ − d ≤ 1
2

[
(‖x′ − z‖ − d) + (‖y′ + z‖ − d)

] ≤
1
2

[
(δ(x

′
, D)− d) + d1(y, z)] < 1

2

(
δ1(D) + δ1(D)

)
< δ1(D). By the similar argument
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‖(x+y
2 )− z

′‖ − d < δ1(D) and hence x+y
2 is a nondiametrical point D with respect

to d1.
⇐ : Let (H1,H2) be a closed, bounded and convex proximinal subset of (A,B) with
d(H1,H2) = d(A,B) and d(H1,H2) < δ(H1,H2). Let H

′
2 = {x′ ∈ A : x ∈ H2}. Then

= H
′
2 = H1. Now B has d1-normal structure, so δ1(H2) > 0, implies there exists

x ∈ H2 such that δ1(x,H2) < δ1(H2). Then for the pair (x
′
, x) ∈ H1 ×H2 and for

any z ∈ H2, ‖x′−z‖ ≤ d1(x, z)+d ≤ δ1(x,H2)+d < δ1(H2)+d = δ(H1,H2). Hence
δ(x

′
,H2) < δ(H1,H2). By a similar argument we get δ(x,H1) < δ(H1,H2). ¤

Remark 3.4. Using Lemma 3.2 one can easily prove that if (A,B) is a weakly com-
pact convex sharp proximinal pair in a Banach space X then A1(B) is compact.

Let T : A ∪B → A ∪B be a relatively nonexpansive mapping with TA ⊆ A and
TB ⊆ B.

Remark 3.5. Let (A,B) and T be as above. For x ∈ B, d(A,B) ≤ ‖Tx − Tx
′‖ ≤

‖x− x
′‖ = d(A,B) and hence (Tx)

′
= Tx

′
.

Lemma 3.6. Let (A,B) be a sharp proximinal pair in a Banach space X. If T :
A ∪ B → A ∪ B is a relatively nonexpansive mapping with TA ⊆ A and TB ⊆ B.
Then T is d1-nonexpansive on B.

Proof. For x, y ∈ B, ‖Ty − Tx
′‖ − d ≤ ‖y − x

′‖ − d ≤ d1(x, y) and similarly
‖Ty

′ − Tx‖ − d ≤ ‖y′ − x‖ − d ≤ d1(x, y). Hence d1(Tx, Ty) ≤ d1(x, y) ¤
The following theorem is an immediate consequence of Proposition 3.3.

Theorem 3.7. Let (A,B) be a nonempty weakly compact convex sharp proximinal
pair in a Banach space X having proximal normal structure. If T : A∪B → A∪B
is a relatively nonexpansive mapping with TA ⊆ A and TB ⊆ B, then there exists
(a, b) ∈ A×B such that Ta = a, T b = b and ‖a− b‖ = d(A,B).

As particular case of Theorem 3.7, we get the following Corollary.

Corollary 3.8. ([1],[2]) Let (A,B) be a nonempty, weakly compact convex pair in
strictly convex space X, and suppose (A,B) has proximal normal structure. Further
suppose T : A ∪ B → A ∪ B is a relatively nonexpansive mapping with TA ⊆ A
and TB ⊆ B, then there exist x0 ∈ A, y0 ∈ B such that Tx0 = x0, T y0 = y0, and
‖x0 − y0‖ = d(A,B).

Remark 3.9. If the pair (A,B) is not a sharp proximinal pair, the conclusions of the
Theorem 3.7 need not be satisfied.

Example 3.10. For n ≥ 2, let X = Rn with supremum norm, A = {x =
(0, x2, x3, . . . xn) : 0 ≤ xi ≤ 1, 2 ≤ i ≤ n} and B = {y = (1, y2, y3, . . . yn) : 0 ≤
yi ≤ 1, 2 ≤ i ≤ n}. Then for any x ∈ A, y ∈ B, ‖x − y‖ = 1. Hence d(A,B) = 1.
Then the pair (A,B) is a compact, convex pair having proximal normal structure
and any T : A ∪ B → A ∪ B with TA ⊂ A, TB ⊂ B is a relatively nonexpansive
mapping. Hence there exist fixed point free relatively nonexpansive mappings.

Let T : A ∪B → A ∪B be a relatively nonexpansive mapping with TA ⊆ B and
TB ⊆ A. Define a map T

′
: A∪B → A∪B as, T

′
x = Tx

′
for x ∈ A and T

′
y = Ty

′

for y ∈ B. Then it is easy to see that T
′
A ⊆ A, T

′
B ⊆ B and (T

′
x)

′
= Tx.
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Lemma 3.11. Let T and T
′
be as above. Then T

′
is d1-nonexpansive on B.

Proof. Let x, y ∈ B. ‖(T ′
x)

′ −T
′
y‖− d = ‖Tx−Ty

′‖− d ≤ ‖x− y
′‖− d ≤ d1(x, y).

Similarly ‖(T ′
y)
′ − T

′
x‖ − d ≤ d1(x, y). Hence T

′
is d1-nonexpansive on B. ¤

The following theorem is an immediate consequence of Lemma 3.11,Proposition
3.3 and Theorem 1.3.

Theorem 3.12 ([2]). Let (A,B) be a nonempty bounded closed convex pair in a
uniformly convex Banach space X. If T : A∪B → A∪B is a relatively nonexpansive
mapping with TA ⊆ B and TB ⊆ A, then there exists (a, b) ∈ A × B such that
‖a− Ta‖ = ‖b− Tb‖ = d(A,B).

Finally we give an example of a sharp proximinal pair (A,B) of subsets of an
infinite dimensional Banach space X, which is not a proximinal parallel pair, to
illustrate Theorem 3.7.

Example 3.13. Consider the space X of all complex valued continuous functions
on [0, 1] with supremum norm, i.e.,X = (C[0, 1], ‖.‖∞).
A := {fα : α ∈ [0, 1]} and B := {gα : α ∈ [0, 1]}, where

fα(t) :=

{
2iαt, if t ∈ [0, 1

2 ]
2iα(1− t), if t ∈ [12 , 1]

gα(t) :=

{
1 + α(t− 1

2) + 2iαt, if t ∈ [0, 1
2 ]

1− α(t− 1
2) + 2iα(1− t), if t ∈ [12 , 1]

For any fixed α ∈ [0, 1] and for any t ∈ [0, 1
2 ], |fα(t)−gα(t)| = |2iαt−(1+α(t− 1

2)+
2iαt)| = |1+α(t− 1

2)| ≤ 1 and for any t ∈ [12 , 1], |fα(t)− gα(t)| = |2iα(1− t)− (1−
α(t− 1

2)+2iα(1− t))| = |1−α(t− 1
2)| ≤ 1. Also |fα(1

2)−gα(1
2)| = |iα−(1+ iα)| = 1.

Therefore ‖fα − gα‖ = 1. Now for any α 6= β ∈ [0, 1], ‖fα − gβ‖ ≥ |fα(1
2)− gβ(1

2)| =
|iα−(1+iβ)| = |1−i(β−α)| > 1. Hence for any (fα, gβ) ∈ A×B, (gα, fβ) ∈ B×A is
the unique pair satisfying ‖fα− gα‖ = ‖fβ − gβ‖ = 1 = d(A,B) i.e., the pair (A,B)
is a sharp proximinal pair in X. Also f0(0)− g0(0) = 1 6= 1

2 = f1(0)− g1(0). Hence
the pair (A,B) is not a proximinal parallel pair. Now for any sequence fαn ∈ A, the
sequence αn has a convergent subsequence, again denote by αn, which converges to
some α ∈ [0, 1]. It is easy to see that the sequence fαn converges to fα. Therefore
(A,B) is a compact subset of X. Now (A,B) is compact convex pair and and hence
has proximal normal structure (c.f. [2]). Let T : A ∪B → A ∪B be defined as

T (fα) = fα
2
, T (gα) = gα

2
for all α ∈ [0, 1],

Then T is a relatively nonexpansive map on A∪B, T satisfies all the conditions of
Theorem 3.7 and (f0, g0) is the required best proximity pair satisfying the conclu-
sions of Theorem 3.7.
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