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A RIGIDITY THEOREM FOR COMMUTING HOLOMORPHIC
FUNCTIONS

MARINA LEVENSHTEIN AND SIMEON REICH

Abstract. We first prove a rigidity theorem for commuting holomorphic self-
mappings of the open unit disk ∆ in the complex plane C and then use it to
improve upon a recent result regarding commuting parabolic semigroups on ∆.
This result provides sufficient conditions for two semigroups of holomorphic func-
tions to commute.

1. Introduction

Let ∆ = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C.
We denote by Hol(D, E) the set of all holomorphic functions which map a domain
D ⊂ C into a set E ⊂ C, and by Hol(D) the set of all holomorphic self-mappings
of D, i. e., Hol(D) := Hol(D, D).

The classical Denjoy–Wolff theorem asserts that if F ∈ Hol(∆) is neither the
identity mapping nor an elliptic automorphism of ∆, then there exists a unique
point τ ∈ ∆, the closed unit disk, which is an attractive point of the discrete
semigroup {Fn}∞n=0, where F0 = I, Fn = F ◦ Fn−1, that is,

lim
n→∞Fn(z) = τ for all z ∈ ∆.

This point τ is called the Denjoy-Wolff point of F .
All holomorphic self-mappings of ∆ which are neither the identity mapping nor

elliptic automorphisms of ∆ fall into three different classes. Let F ∈ Hol(∆) and
let τ ∈ ∆ be its Denjoy–Wolff point. Then F is of

– dilation type if τ ∈ ∆,
– hyperbolic type if τ ∈ ∂∆ and 0 < F ′(τ) < 1,
– parabolic type if τ ∈ ∂∆ and F ′(τ) = 1.
Note that an analogous classification is used for holomorphic self-mappings of the

open right half-plane Π+ := {z ∈ C : Re z > 0}.
The self-mappings of parabolic type fall into two subclasses:
– automorphic type, if all orbits {Fn(z)}∞n=0 are separated in the (hyperbolic)

Poincaré metric, i. e., lim
n→∞ ρ(Fn(z), Fn+1(z)) > 0 for all z ∈ ∆;

– nonautomorphic type, if no orbit {Fn(z)}∞n=0 is hyperbolically separated, i.
e., lim

n→∞ ρ(Fn(z), Fn+1(z)) = 0 for all z ∈ ∆.
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Holomorphic self-mappings of ∆ are known to have some rigidity properties. For
example, let F ∈ Hol(∆) have an interior fixed point τ ∈ ∆. In this case, if F
coincides with the identity mapping I up to the first derivative at τ , i. e., F (τ) = τ
and F ′(τ) = 1, then F ≡ I on ∆ by the classical Schwarz lemma.

In the boundary case (τ ∈ ∂∆) a rigidity theorem in the spirit of the uniqueness
part of the classical Schwarz lemma was established by D. M. Burns and S. G.
Krantz [3]. We formulate their result as follows:

Theorem 1.1 ([3, Theorem 2.1]). Let F ∈ Hol(∆). If the unrestricted limit

lim
z→1

F (z)− z

(z − 1)3
= 0,

then F ≡ I on ∆.

This means that if F ∈ Hol(∆) coincides with the identity mapping I up to the
third order at its boundary Denjoy–Wolff point τ , then F ≡ I.

Suppose now that F ∈ Hol(∆) coincides with I only up to the second order at
its boundary Denjoy–Wolff point. We prove that if F commutes with a function
G ∈ Hol(∆) such that the second (unrestricted) derivative G′′(τ) 6= 0, then F = I.

Theorem 1.2. Let F ∈ Hol(∆) be such that

(1.1) lim
z→1

F (z)− z

(z − 1)2
= 0.

Suppose that F ◦G = G ◦ F for some G ∈ Hol(∆) with

(1.2) lim
z→1

G(z)− z

(z − 1)2
= α 6= 0 ( 6= ∞).

Then F ≡ I on ∆.

In our proof of Theorem 1.2 we use the following result due to C. C. Cowen [5,
Proposition 3.1]:

Proposition 1.3 ([5, Proposition 3.1]). Let ψ ∈ Hol(Π+) and let ∞ be its Denjoy–
Wolff point. Then there exists an open, connected, and simply connected set V ⊂
Π+, called a fundamental set for ψ, such that:

(1) ψ(V ) ⊂ V ;
(2) for each compact set K ⊂ Π+, the sequence of iterates {ψn(K)}∞n=1 is even-

tually contained in V ;
(3) ψ is univalent in V .

2. Rigidity

We begin this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. Consider ϕ := C ◦ F ◦ C−1 and ψ := C ◦ G ◦ C−1, where

C : ∆ 7→ Π+ is the Cayley transform given by C(z) =
1 + z

1− z
, z ∈ ∆. Then ϕ

and ψ are commuting parabolic self-mappings of Π+ having ∞ as their common
Denjoy-Wolff point.
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Denote
w0

0 := 1, w0
n := ψ(w0

n−1), n = 1, 2, ...,

w0 := w, wn := ψ(wn−1), w ∈ Π+, n = 1, 2, ...,

and

hn(w) :=
wn − w0

n

w0
n+1 − w0

n

, n = 1, 2, ....

Then hn ∈ Hol(Π+,C) and the sequence {hn}∞n=1 converges in the compact open
topology to a holomorphic function h ∈ Hol(Π+,C) such that h ◦ψ = h +1 (cf. [4],
Theorem 2.2).

If V is a fundamental set for ψ, then the functions hn are univalent in V and,
consequently, h is univalent in V by Hurwitz’s theorem.

It follows from (1.1) and (1.2) that the functions ϕ and ψ admit the following
expansions at ∞ (see [2], p. 51):

(2.1) ϕ(w) = w + γϕ(w), lim
w→∞ γϕ(w) = 0,

ψ(w) = w + 2α + γψ(w), lim
w→∞ γψ(w) = 0.

Therefore

hn(ϕ(w)) =
ψn(ϕ(w))− w0

n

w0
n+1 − w0

n

=
ϕ(ψn(w))− w0

n

w0
n+1 − w0

n

=
wn + γϕ(wn)− w0

n

w0
n+1 − w0

n

=
wn − w0

n

w0
n+1 − w0

n

+
γϕ(wn)

w0
n+1 − w0

n

= hn(w) +
γϕ(wn)

2α + γψ(wn)
· 2α + γψ(wn)

w0
n+1 − w0

n

,

and letting n tend to ∞, we get

(2.2) h(ϕ(w)) = h(w) + lim
n→∞

γϕ(wn)
2α + γψ(wn)

· lim
n→∞

2α + γψ(wn)
w0

n+1 − w0
n

, w ∈ Π+.

Since α 6= 0, the first limit equals 0. The second limit equals 1. Indeed, repeating
the above calculations with ψ instead of ϕ, we find that

h(ψ(w)) = h(w) + lim
n→∞

2α + γψ(wn)
w0

n+1 − w0
n

, w ∈ Π+.

At the same time, h ◦ ψ = h + 1.
It follows that h(ϕ(w)) = h(w) for all w ∈ Π+.
If K ⊂ ϕ(V ) ⊂ Π+ is a compact set, then

ψn(K) ⊂ ψn(ϕ(V )) = ϕ(ψn(V )) ⊂ ϕ(V ), n = 1, 2, ....

On the other hand, for n large enough, ψn(K) ⊂ V and so V ∩ ϕ(V ) 6= ∅. Hence
there exists a domain W ⊂ V such that ϕ(W ) ⊂ V . For each w ∈ W , h(ϕ(w)) =
h(w). Since h is univalent in V , ϕ is the identity mapping on W and, by the
uniqueness principle, ϕ(w) = w for all w ∈ Π+. Therefore F = C−1 ◦ ϕ ◦ C
coincides with the identity mapping on ∆, as claimed.

The following theorem asserts that if Re α > 0, then the unrestricted limit (1.1)
can be replaced by the angular one. We recall that a function f ∈ Hol(∆,C) has
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angular limit L = ∠ lim
z→τ

f(z) at a boundary point τ ∈ ∂∆ = {z ∈ C : |z| = 1} if

f(z) → L as z → τ in each nontangential approach region

Γ(τ, k) =
{

z ∈ ∆ :
|z − τ |
1− |z| < k

}
, k > 1.

Theorem 2.1. Let F ∈ Hol(∆) be such that

(2.3) ∠ lim
z→1

F (z)− z

(z − 1)2
= 0.

Suppose that F ◦G = G ◦ F for some G ∈ Hol(∆) with

(2.4) lim
z→1

G(z)− z

(z − 1)2
= α 6= ∞, Re α > 0.

Then F ≡ I on ∆.

The scheme of the proof of Theorem 2.1 is the same as that of Theorem 1.2. We
only have to use the expansion

ϕ(w) = w + γϕ(w), ∠ lim
w→∞ γϕ(w) = 0,

instead of (2.1) and the fact that wn in the first limit of equality (2.2) converges
to ∞ nontangentially because Re α > 0 (see [2]). This expansion can be proved
similarly to expansion (2.1), taking into account that (1.1) is replaced by (2.3) (cf.
[7], p. 947).

3. Commuting semigroups

It turns out that Theorem 1.2 allows us to improve upon a recent result [6]
concerning commuting semigroups of holomorphic self-mappings of ∆ which are of
parabolic type. To explain this, we first recall that a family S = {Ft}t≥0 ⊂ Hol(∆)
is a one-parameter continuous semigroup on ∆ (a semigroup, for short) if

(i) Ft(Fs(z)) = Ft+s(z) for all t, s ≥ 0 and z ∈ ∆,
and

(ii) lim
t→0+

Ft(z) = z for all z ∈ ∆.

It follows from a result of E. Berkson and H. Porta [1] that each semigroup
is differentiable with respect to t ∈ R+ = [0,∞). So, for each one-parameter
continuous semigroup S = {Ft}t≥0 ⊂ Hol(∆), the limit

lim
t→0+

z − Ft(z)
t

= f(z), z ∈ ∆,

exists and defines a holomorphic function f ∈ Hol(∆,C). This function is called
the (infinitesimal) generator of S = {Ft}t≥0 .

We say that two semigroups S1 = {Ft}t≥0 and S2 = {Gs}s≥0 on ∆ commute if

Ft ◦Gs = Gs ◦ Ft for all s, t ≥ 0.

We now present an improvement of Theorem 5 in [6]. This improvement is
a consequence of Theorem 1.2. The difference between our Theorem 3.1 and [6,
Theorem 5] is that in item (ii) we no longer assume that α and α̃ are different from
zero.
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Theorem 3.1. Let S1 = {Ft}t≥0 and S2 = {Gt}t≥0 be two non-trivial continuous
semigroups on ∆ generated by f and g, respectively, and let F1 ◦G1 = G1 ◦ F1.

Suppose that τ = 1 is the boundary null point of f such that f ′(1) = 0. If either
one of the following conditions:

(i) the semigroups S1 and S2 are of non-automorphic type;
(ii) S1, S2 ⊂ C0(1) and the unrestricted limits α := lim

z→1
f ′′(z), α̃ := lim

z→1
g′′(z)

exist;
holds, then the semigroups commute.

Proof. The conditions f ′(1) = 0, α := lim
z→1

f ′′(z), α̃ := lim
z→1

g′′(z) and the commuta-
tivity of S1 and S2 imply that τ = 1 is the common Denjoy–Wolff point of all the
functions Ft and Gt (t > 0) belonging to the semigroups S1 and S2, respectively,
and that

lim
z→1

Ft(z)− z

(z − 1)2
= −αt

2
and lim

z→1

Gt(z)− z

(z − 1)2
= − α̃t

2

for all t ≥ 0 (see Remark 3 on p. 304 of [6]).
If α and α̃ are different from zero, then the semigroups commute by [6, Theorem

5(ii)]. If α = α̃ = 0, then the semigroups are of non-automorphic type (see [2])
and they commute by [6, Theorem 5(i)]. Otherwise, if one of the limits α and α̃
is different from zero and the other one equals zero, then by Theorem 1.2, one of
the semigroups is the trivial semigroup consisting of identity mappings on ∆ and,
consequently, the semigroups commute in this case too. ¤
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