Journal of Nonlinear and Convex Analysis Volume 11, Number 1, 2010, 65–70

A RIGIDITY THEOREM FOR COMMUTING HOLOMORPHIC FUNCTIONS

MARINA LEVENSHTEIN AND SIMEON REICH

ABSTRACT. We first prove a rigidity theorem for commuting holomorphic selfmappings of the open unit disk Δ in the complex plane \mathbb{C} and then use it to improve upon a recent result regarding commuting parabolic semigroups on Δ . This result provides sufficient conditions for two semigroups of holomorphic functions to commute.

1. INTRODUCTION

Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane \mathbb{C} . We denote by $\operatorname{Hol}(D, E)$ the set of all holomorphic functions which map a domain $D \subset \mathbb{C}$ into a set $E \subset \mathbb{C}$, and by $\operatorname{Hol}(D)$ the set of all holomorphic self-mappings of D, *i. e.*, $\operatorname{Hol}(D) := \operatorname{Hol}(D, D)$.

The classical Denjoy–Wolff theorem asserts that if $F \in \text{Hol}(\Delta)$ is neither the identity mapping nor an elliptic automorphism of Δ , then there exists a unique point $\tau \in \overline{\Delta}$, the closed unit disk, which is an attractive point of the discrete semigroup $\{F_n\}_{n=0}^{\infty}$, where $F_0 = I$, $F_n = F \circ F_{n-1}$, that is,

$$\lim_{n \to \infty} F_n(z) = \tau \quad \text{for all} \quad z \in \Delta.$$

This point τ is called the **Denjoy-Wolff point** of F.

All holomorphic self-mappings of Δ which are neither the identity mapping nor elliptic automorphisms of Δ fall into three different classes. Let $F \in \text{Hol}(\Delta)$ and let $\tau \in \overline{\Delta}$ be its Denjoy–Wolff point. Then F is of

- dilation type if $\tau \in \Delta$,

- hyperbolic type if $\tau \in \partial \Delta$ and $0 < F'(\tau) < 1$,

- parabolic type if $\tau \in \partial \Delta$ and $F'(\tau) = 1$.

Note that an analogous classification is used for holomorphic self-mappings of the open right half-plane $\Pi^+ := \{z \in \mathbb{C} : \operatorname{Re} z > 0\}.$

The self-mappings of parabolic type fall into two subclasses:

- **automorphic type**, if all orbits $\{F_n(z)\}_{n=0}^{\infty}$ are separated in the (hyperbolic) Poincaré metric, *i. e.*, $\lim_{n\to\infty} \rho(F_n(z), F_{n+1}(z)) > 0$ for all $z \in \Delta$;

- nonautomorphic type, if no orbit $\{F_n(z)\}_{n=0}^{\infty}$ is hyperbolically separated, *i*. e., $\lim_{n\to\infty} \rho(F_n(z), F_{n+1}(z)) = 0$ for all $z \in \Delta$.

²⁰⁰⁰ Mathematics Subject Classification. 30C80, 47H10, 47H20.

Key words and phrases. Commuting functions, Denjoy–Wolff point, holomorphic self-mapping, one-parameter continuous semigroup, rigidity.

The second author was partially supported by the Fund for the Promotion of Research at the Technion and by the Technion President's Research Fund.

Holomorphic self-mappings of Δ are known to have some rigidity properties. For example, let $F \in \text{Hol}(\Delta)$ have an interior fixed point $\tau \in \Delta$. In this case, if Fcoincides with the identity mapping I up to the first derivative at τ , *i. e.*, $F(\tau) = \tau$ and $F'(\tau) = 1$, then $F \equiv I$ on Δ by the classical Schwarz lemma.

In the boundary case ($\tau \in \partial \Delta$) a rigidity theorem in the spirit of the uniqueness part of the classical Schwarz lemma was established by D. M. Burns and S. G. Krantz [3]. We formulate their result as follows:

Theorem 1.1 ([3, Theorem 2.1]). Let $F \in Hol(\Delta)$. If the unrestricted limit

$$\lim_{z \to 1} \frac{F(z) - z}{(z - 1)^3} = 0,$$

then $F \equiv I$ on Δ .

This means that if $F \in \text{Hol}(\Delta)$ coincides with the identity mapping I up to the third order at its boundary Denjoy–Wolff point τ , then $F \equiv I$.

Suppose now that $F \in \text{Hol}(\Delta)$ coincides with I only up to the second order at its boundary Denjoy–Wolff point. We prove that if F commutes with a function $G \in \text{Hol}(\Delta)$ such that the second (unrestricted) derivative $G''(\tau) \neq 0$, then F = I.

Theorem 1.2. Let $F \in Hol(\Delta)$ be such that

(1.1)
$$\lim_{z \to 1} \frac{F(z) - z}{(z - 1)^2} = 0.$$

Suppose that $F \circ G = G \circ F$ for some $G \in Hol(\Delta)$ with

(1.2)
$$\lim_{z \to 1} \frac{G(z) - z}{(z - 1)^2} = \alpha \neq 0 \ (\neq \infty).$$

Then $F \equiv I$ on Δ .

In our proof of Theorem 1.2 we use the following result due to C. C. Cowen [5, Proposition 3.1]:

Proposition 1.3 ([5, Proposition 3.1]). Let $\psi \in \text{Hol}(\Pi^+)$ and let ∞ be its Denjoy– Wolff point. Then there exists an open, connected, and simply connected set $V \subset \Pi^+$, called a **fundamental set** for ψ , such that:

- (1) $\psi(V) \subset V$;
- (2) for each compact set $K \subset \Pi^+$, the sequence of iterates $\{\psi_n(K)\}_{n=1}^{\infty}$ is eventually contained in V;
- (3) ψ is univalent in V.

2. Rigidity

We begin this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. Consider $\varphi := C \circ F \circ C^{-1}$ and $\psi := C \circ G \circ C^{-1}$, where $C : \Delta \mapsto \Pi^+$ is the Cayley transform given by $C(z) = \frac{1+z}{1-z}, z \in \Delta$. Then φ and ψ are commuting parabolic self-mappings of Π^+ having ∞ as their common Denjoy-Wolff point.

Denote

$$w_0^0 := 1, w_n^0 := \psi(w_{n-1}^0), \quad n = 1, 2, ...,$$

$$w_0 := w, w_n := \psi(w_{n-1}), \quad w \in \Pi^+, \quad n = 1, 2, ...$$

and

$$h_n(w) := \frac{w_n - w_n^0}{w_{n+1}^0 - w_n^0}, \quad n = 1, 2, \dots$$

Then $h_n \in \operatorname{Hol}(\Pi^+, \mathbb{C})$ and the sequence $\{h_n\}_{n=1}^{\infty}$ converges in the compact open topology to a holomorphic function $h \in \operatorname{Hol}(\Pi^+, \mathbb{C})$ such that $h \circ \psi = h + 1$ (cf. [4], Theorem 2.2).

If V is a fundamental set for ψ , then the functions h_n are univalent in V and, consequently, h is univalent in V by Hurwitz's theorem.

It follows from (1.1) and (1.2) that the functions φ and ψ admit the following expansions at ∞ (see [2], p. 51):

(2.1)
$$\varphi(w) = w + \gamma_{\varphi}(w), \qquad \lim_{w \to \infty} \gamma_{\varphi}(w) = 0,$$
$$\psi(w) = w + 2\alpha + \gamma_{\psi}(w), \qquad \lim_{w \to \infty} \gamma_{\psi}(w) = 0.$$

Therefore

$$h_{n}(\varphi(w)) = \frac{\psi_{n}(\varphi(w)) - w_{n}^{0}}{w_{n+1}^{0} - w_{n}^{0}} = \frac{\varphi(\psi_{n}(w)) - w_{n}^{0}}{w_{n+1}^{0} - w_{n}^{0}} = \frac{w_{n} + \gamma_{\varphi}(w_{n}) - w_{n}^{0}}{w_{n+1}^{0} - w_{n}^{0}}$$
$$= \frac{w_{n} - w_{n}^{0}}{w_{n+1}^{0} - w_{n}^{0}} + \frac{\gamma_{\varphi}(w_{n})}{w_{n+1}^{0} - w_{n}^{0}} = h_{n}(w) + \frac{\gamma_{\varphi}(w_{n})}{2\alpha + \gamma_{\psi}(w_{n})} \cdot \frac{2\alpha + \gamma_{\psi}(w_{n})}{w_{n+1}^{0} - w_{n}^{0}},$$

and letting n tend to ∞ , we get

(2.2)
$$h(\varphi(w)) = h(w) + \lim_{n \to \infty} \frac{\gamma_{\varphi}(w_n)}{2\alpha + \gamma_{\psi}(w_n)} \cdot \lim_{n \to \infty} \frac{2\alpha + \gamma_{\psi}(w_n)}{w_{n+1}^0 - w_n^0}, \quad w \in \Pi^+.$$

Since $\alpha \neq 0$, the first limit equals 0. The second limit equals 1. Indeed, repeating the above calculations with ψ instead of φ , we find that

$$h(\psi(w)) = h(w) + \lim_{n \to \infty} \frac{2\alpha + \gamma_{\psi}(w_n)}{w_{n+1}^0 - w_n^0}, \quad w \in \Pi^+.$$

At the same time, $h \circ \psi = h + 1$.

It follows that $h(\varphi(w)) = h(w)$ for all $w \in \Pi^+$.

If $K \subset \varphi(V) \subset \Pi^+$ is a compact set, then

$$\psi_n(K) \subset \psi_n(\varphi(V)) = \varphi(\psi_n(V)) \subset \varphi(V), \quad n = 1, 2, \dots$$

On the other hand, for n large enough, $\psi_n(K) \subset V$ and so $V \cap \varphi(V) \neq \emptyset$. Hence there exists a domain $W \subset V$ such that $\varphi(W) \subset V$. For each $w \in W$, $h(\varphi(w)) = h(w)$. Since h is univalent in V, φ is the identity mapping on W and, by the uniqueness principle, $\varphi(w) = w$ for all $w \in \Pi^+$. Therefore $F = C^{-1} \circ \varphi \circ C$ coincides with the identity mapping on Δ , as claimed. \Box

The following theorem asserts that if $\operatorname{Re} \alpha > 0$, then the unrestricted limit (1.1) can be replaced by the angular one. We recall that a function $f \in \operatorname{Hol}(\Delta, \mathbb{C})$ has

angular limit $L = \angle \lim_{z \to \tau} f(z)$ at a boundary point $\tau \in \partial \Delta = \{z \in \mathbb{C} : |z| = 1\}$ if $f(z) \to L$ as $z \to \tau$ in each nontangential approach region

$$\Gamma(\tau, k) = \left\{ z \in \Delta : \frac{|z - \tau|}{1 - |z|} < k \right\}, \quad k > 1.$$

Theorem 2.1. Let $F \in Hol(\Delta)$ be such that

(2.3)
$$\angle \lim_{z \to 1} \frac{F(z) - z}{(z - 1)^2} = 0.$$

Suppose that $F \circ G = G \circ F$ for some $G \in Hol(\Delta)$ with

(2.4)
$$\lim_{z \to 1} \frac{G(z) - z}{(z - 1)^2} = \alpha \neq \infty, \text{ Re } \alpha > 0.$$

Then $F \equiv I$ on Δ .

The scheme of the proof of Theorem 2.1 is the same as that of Theorem 1.2. We only have to use the expansion

$$\varphi(w) = w + \gamma_{\varphi}(w), \qquad \angle \lim_{w \to \infty} \gamma_{\varphi}(w) = 0,$$

instead of (2.1) and the fact that w_n in the first limit of equality (2.2) converges to ∞ nontangentially because $\operatorname{Re} \alpha > 0$ (see [2]). This expansion can be proved similarly to expansion (2.1), taking into account that (1.1) is replaced by (2.3) (*cf.* [7], p. 947).

3. Commuting semigroups

It turns out that Theorem 1.2 allows us to improve upon a recent result [6] concerning commuting semigroups of holomorphic self-mappings of Δ which are of parabolic type. To explain this, we first recall that a family $S = \{F_t\}_{t\geq 0} \subset \operatorname{Hol}(\Delta)$ is a one-parameter continuous semigroup on Δ (a semigroup, for short) if

(i) $F_t(F_s(z)) = F_{t+s}(z)$ for all $t, s \ge 0$ and $z \in \Delta$,

and

(ii) $\lim_{t \to 0^+} F_t(z) = z$ for all $z \in \Delta$.

It follows from a result of E. Berkson and H. Porta [1] that each semigroup is differentiable with respect to $t \in \mathbb{R}^+ = [0, \infty)$. So, for each one-parameter continuous semigroup $S = \{F_t\}_{t>0} \subset \operatorname{Hol}(\Delta)$, the limit

$$\lim_{t \to 0^+} \frac{z - F_t(z)}{t} = f(z), \quad z \in \Delta,$$

exists and defines a holomorphic function $f \in \text{Hol}(\Delta, \mathbb{C})$. This function is called the (infinitesimal) generator of $S = \{F_t\}_{t>0}$.

We say that two semigroups $S_1 = \{F_t\}_{t\geq 0}$ and $S_2 = \{G_s\}_{s\geq 0}$ on Δ commute if

$$F_t \circ G_s = G_s \circ F_t$$
 for all $s, t \ge 0$.

We now present an improvement of Theorem 5 in [6]. This improvement is a consequence of Theorem 1.2. The difference between our Theorem 3.1 and [6, Theorem 5] is that in item (ii) we no longer assume that α and $\tilde{\alpha}$ are different from zero. **Theorem 3.1.** Let $S_1 = \{F_t\}_{t\geq 0}$ and $S_2 = \{G_t\}_{t\geq 0}$ be two non-trivial continuous semigroups on Δ generated by f and g, respectively, and let $F_1 \circ G_1 = G_1 \circ F_1$.

Suppose that $\tau = 1$ is the boundary null point of f such that f'(1) = 0. If either one of the following conditions:

(i) the semigroups S_1 and S_2 are of non-automorphic type;

(ii) $S_1, S_2 \subset C^0(1)$ and the unrestricted limits $\alpha := \lim_{z \to 1} f''(z), \quad \widetilde{\alpha} := \lim_{z \to 1} g''(z)$ exist;

holds, then the semigroups commute.

Proof. The conditions f'(1) = 0, $\alpha := \lim_{z \to 1} f''(z)$, $\tilde{\alpha} := \lim_{z \to 1} g''(z)$ and the commutativity of S_1 and S_2 imply that $\tau = 1$ is the common Denjoy–Wolff point of all the functions F_t and G_t (t > 0) belonging to the semigroups S_1 and S_2 , respectively, and that

$$\lim_{z \to 1} \frac{F_t(z) - z}{(z - 1)^2} = -\frac{\alpha t}{2} \quad \text{and} \quad \lim_{z \to 1} \frac{G_t(z) - z}{(z - 1)^2} = -\frac{\widetilde{\alpha} t}{2}$$

for all $t \ge 0$ (see Remark 3 on p. 304 of [6]).

If α and $\tilde{\alpha}$ are different from zero, then the semigroups commute by [6, Theorem 5(ii)]. If $\alpha = \tilde{\alpha} = 0$, then the semigroups are of non-automorphic type (see [2]) and they commute by [6, Theorem 5(i)]. Otherwise, if one of the limits α and $\tilde{\alpha}$ is different from zero and the other one equals zero, then by Theorem 1.2, one of the semigroups is the trivial semigroup consisting of identity mappings on Δ and, consequently, the semigroups commute in this case too.

References

- E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.
- [2] P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596.
- [3] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661–676.
- [4] M. D. Contreras, S. Díaz-Madrigal and Ch. Pommerenke, Some remarks on the Abel equation in the unit disk, J. London Math. Soc. 75 (2007), 623–634.
- [5] C. C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), 69–95.
- [6] M. Elin, M. Levenshtein, S. Reich, and D. Shoikhet, Commuting semigroups of holomorphic mappings, Math. Scand. 103 (2008), 295–319.
- [7] R. Tauraso, Commuting holomorphic maps of the unit disk, Ergodic Theory Dynam. Systems 24 (2004), 945–953.

MARINA LEVENSHTEIN

Department of Mathematics, ORT Braude College, 21982 Karmiel, Israel *E-mail address:* marlev@list.ru

SIMEON REICH

Department of Mathematics, The Technion-Israel Institute of Technology, 32000 Haifa, Israel *E-mail address:* sreich@tx.technion.ac.il

70