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STRONG CONVERGENCE THEOREMS FOR MAXIMAL
MONOTONE OPERATORS AND GENERALIZED

NONEXPANSIVE MAPPINGS
IN BANACH SPACES

W. INTHAKON, S. DHOMPONGSA∗, AND W. TAKAHASHI

Abstract. In this paper, we prove strong convergence theorems by two hybrid
methods for finding a common element of the set of zero points of a maximal
monotone operator and the set of fixed points of a generalized nonexpansive map-
ping in a Banach space. Using these results, we obtain new convergence results
for resolvents of maximal monotone operators and for generalized nonexpansive
mappings in a Banach space.

1. Introduction

Let E be a real Banach space and let E∗ be the dual space of E. Let B be a
maximal monotone operator from E to E∗. It is interesting to study the problem
of finding a point u ∈ E satisfying

0 ∈ Bu.

Such u ∈ E is called a zero point (or a zero) of B. A well-known method to solve
this problem is called the proximal point algorithm: x1 ∈ E and

xn+1 = Jrnxn, n = 1, 2, ...,

where {rn} ⊂ (0,∞) and Jrn is the resolvent of B for all n ∈ N. This algorithm was
first introduced by Martinet [15]. In 1976, Rockafellar [21] proved the following in
the Hilbert space setting: If the solution set B−10 is nonempty and lim infn rn > 0,
then {xn} converges weakly to an element of B−10; see also Brézis and Lions [2]
and Lions [13]. It was shown by Güler [3] that the sequence {xn} generated by this
algorithm does not converge strongly in general. In 2000, motivated by Mann’s type
iteration [14, 20] and Halpern’s type iteration [4, 24] for nonexpansive mappings,
Kamimura and Takahashi [10] modified the proximal point algorithm and obtained
weak and strong convergence theorems for maximal monotone operators in a Hilbert
space. Solodov and Svaiter [25] also obtained a modification of the proximal point
algorithm with metric projections. Ohsawa and Takahashi [19], and Kamimura
and Takahashi [11] generalized Solodov and Svaiter’s result to maximal monotone
operators defined in a Banach space; see also Kohsaka and Takahashi [12], and
Ibaraki and Takahashi [5, 6, 7].
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A mapping T of C into E is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

We denote by F (T ) the set of fixed points of T .
Many researchers have studied several methods for approximation of fixed points

of a nonexpansive mapping; see [4, 14, 20, 24, 29] for instance. In 2003, Nakajo and
Takahashi [18] proved the following theorem by using the hybrid method:

Theorem 1.1. Let C be a nonempty closed convex subset of a Hilbert space H and
let T be a nonexpansive mapping of C into itself such that F (T ) 6= ∅. Suppose
x1 = x ∈ C and {xn} is given by




yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
un+1 = PCn∩Qnx

for every n ∈ N, where PCn∩Qn is the metric projection from C onto Cn ∩Qn and
{αn} is chosen so that 0 ≤ αn ≤ a < 1. Then {xn} converges strongly to PF (T )x,
where PF (T ) is the metric projection from H onto F (T ).

Let us call the hybrid method in Theorem 1.1 the normal hybrid method. Re-
cently, Takahashi-Takeuchi-Kubota [28] used another hybrid method called the
shrinking projection method to prove the following theorem.

Theorem 1.2 ([28]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T be a nonexpansive mapping of C into itself such that
F (T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0, define a sequence {un} of
C as follows:





yn = αnun + (1− αn)Tun,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0

for every n ∈ N, where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {un} converges strongly
to z0 = PF (T )x0, where PF (T ) is the metric projection from H onto F (T ).

Very recently, by using the normal hybrid method and the shrinking projection
method, Inoue, Takahashi, and Zembayashi [9] proved strong convergence theorems
for finding a common element of the set of zero points of a maximal monotone
operator and the set of fixed points of a relatively nonexpansive mapping in a
Banach space.

Theorem 1.3 ([9]). Let E be a uniformly smooth and uniformly convex Banach
space and let C be a nonempty closed convex subset of E. Let A ⊂ E × E∗ be a
maximal monotone operator and let Jr = (J + rA)−1J for all r > 0. Let T be a
relatively nonexpansive mapping from C into itself such that F (T )∩A−10 6= ∅. Let
{xn} be a sequence generated by x0 = x ∈ C and




un = J−1(αnJxn + (1− αn)JTJrnxn),
Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx
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for every n ∈ N ∪ {0}, where {αn} ⊂ [0, 1) satisfies lim infn→∞(1 − αn) > 0,
{rn} ⊂ [a,∞) for some a > 0 and J is the duality mapping on E. Then {xn}
converges strongly to ΠF (T )∩A−10x, where ΠF (T )∩A−10 is the generalized projection
from E onto F (T ) ∩A−10.

Theorem 1.4 ([9]). Let E be a uniformly smooth and uniformly convex Banach
space and let C be a nonempty closed convex subset of E. Let A ⊂ E × E∗ be a
maximal monotone operator and let Jr = (J + rA)−1J for all r > 0. Let T be a
relatively nonexpansive mapping from C into itself such that F (T )∩A−10 6= ∅. Let
{xn} be a sequence generated by x0 = x ∈ C, H0 = C and




un = J−1(αnJxn + (1− αn)JTJrnxn),
Hn+1 = {z ∈ Hn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠHn+1x

for every n ∈ N ∪ {0}, where {αn} ⊂ [0, 1) satisfies lim infn→∞(1 − αn) > 0,
{rn} ⊂ [a,∞) for some a > 0 and J is the duality mapping on E. Then {xn}
converges strongly to ΠF (T )∩A−10x, where ΠF (T )∩A−10 is the generalized projection
from E onto F (T ) ∩A−10.

The purpose of this paper, motivated by [9], is to obtain strong convergence
theorems for finding a common element of the set of zero points of a maximal
monotone operator defined in a dual Banach space and the set of fixed points of a
generalized nonexpansive mapping introduced by Ibaraki and Takahashi [5, 6, 7].
Using these results, we obtain new convergence results for resolvents of maximal
monotone operators and for generalized nonexpansive mappings in Banach spaces.

2. Preliminaries

Let E be a Banach space with ‖ · ‖ and let E∗ denote the dual of E. We denote
the value of x∗ at x by 〈x, x∗〉. Then the duality mapping J on E defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for every x ∈ E. By the Hahn-Banach theorem, J(x) is nonempty; see [26] for more
details. The modulus δ of convexity of E is defined by

δ(ε) = inf
{
1− ‖x + y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}

for every ε with 0 ≤ ε ≤ 2. A Banach space is said to be uniformly convex if δ(ε) > 0
for every ε > 0. Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists. In the case, E is called smooth. It is also said to be uniformly smooth if the
limit (2.1) is attained uniformly for all x, y ∈ U .

We also know the following properties; see [26, 27] for more details:
(1) J(x) 6= ∅ for each x ∈ E;
(2) J is a monotone operator;
(3) if E is strictly convex, then J is one-to-one;
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(4) if E is reflexive, then J is a mapping of E onto E∗;
(5) if E is smooth, then J is single-valued;
(6) E is uniformly convex if and only if E∗ is uniformly smooth;
(7) if E is uniformly smooth, then J is norm-to-norm uniformly continuous on
bounded sets of E.

Let E be a smooth Banach space and consider the following function φ : E×E →
[0,∞) studied in Alber [1] and Kamimura and Takahashi [11]:

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all (x, y) ∈ E × E. We know that

(2.2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉
for each x, y, z ∈ E. By the fact that (‖x‖ − ‖y‖) ≤ φ(x, y) for all x, y ∈ E, we can
see that φ(x, y) ≥ 0 for all x, y ∈ E. Let φ∗ : E∗ × E∗ → [0,∞) be the mapping
defined by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉+ ‖y∗‖2

for all (x∗, y∗) ∈ E∗ × E∗. It is easy to see that

φ(x, y) = φ∗(Jy, Jx)

for all x, y ∈ E. If E is additionally assumed to be strictly convex, then

φ(x, y) = 0 ⇔ x = y.

The following lemma is well known:

Lemma 2.1 ([11]). Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Let C be a nonempty closed convex subset of a smooth Banach space E, let T
be a mapping from C into itself. We denote by F (T ) the set of fixed points of T .
A mapping T is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

A mapping T : C → C is called generalized nonexpansive ([5, 6, 7]) if F (T ) 6= ∅ and

φ(Tx, y) ≤ φ(x, y), ∀(x, y) ∈ C × F (T ).

A point p in C is said to be a generalized asymptotic fixed point of T [8] if C contains
a sequence {xn} such that Jxn

∗
⇀ Jp and lim

n→∞(Jxn−JTxn) = 0. We denote the set

of generalized asymptotic fixed points of T by F̌ (T ). Let D be a nonempty closed
subset of a Banach space E. A mapping R : E → D is said to be sunny if

R(Rx + t(x−Rx)) = Rx, ∀x ∈ E, ∀t ≥ 0.

A mapping R : E → D is said to be a retraction or a projection if Rx = x for
all x ∈ D. A nonempty closed subset D of a smooth Banach space E is said to be
a generalized nonexpansive retract (resp. sunny generalized nonexpansive retract)
of E if there exists a generalized nonexpansive retraction (resp. sunny generalized
nonexpansive retraction) R from E onto D; see [5, 6, 7] for more details. Let
E be a reflexive, strictly convex and smooth Banach space and let B ⊂ E × E∗
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be a set-valued mapping with graph G(B) = {(x, x∗) : x∗ ∈ Bx} and domain
D(B) = {z ∈ E : Bz 6= ∅}. Then the mapping B is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ B ⊂ E × E∗.

It is also said to be maximal monotone if B is monotone and its graph is not
properly contained in the graph of any other monotone operator. It is known that
if B ⊂ E × E∗ is maximal monotone, then B−10 is closed and convex.

Let E be as above and let B ⊂ E∗ × E be a maximal monotone operator. For
each r > 0 and x ∈ E, consider the set

Jrx = {z ∈ E : x ∈ z + rBJz}.
Then Jrx consists of one point. We also denote the domain and the range of Jr

by D(Jr) = R(I + rBJ) and R(Jr) = D(BJ), respectively. Such Jr is called the
generalized resolvent of B and is denoted by

Jr = (I + rBJ)−1.

The Yosida approximation of B is also denoted by Br = (I − Jr)/r. It is shown in
[7] that (JJrx,Brx) ∈ B for x ∈ E; see Ibaraki and Takahashi [7] for more details.

Ibaraki and Takahashi [7] also proved some properties of Jr and (BJ)−10.

Proposition 2.2. Let E be a reflexive and strictly convex Banach space with a
Fréchet differntiable norm and let B ⊂ E∗ × E be a maximal monotone operator
with B−10 6= ∅. Then the following hold:
(1) D(Jr) = E for each r > 0;
(2) (BJ)−10 = F (Jr) for each r > 0;
(3) (BJ)−10 is closed;
(4) Jr is generalized nonexpansive for each r > 0.

Remark 2.3. From the proof of (4), we can conclude that for all x ∈ C and
y ∈ (BJ)−10,

(2.3) φ(x, Jrx) + φ(Jrx, y) ≤ φ(x, y).

They also proved the following lemmas:

Lemma 2.4 ([7]). Let C be a nonempty closed sunny generalized nonexpansive
retract of a smooth and strictly convex Banach space E. Then the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.5 ([7]). Let C be a nonempty closed subset of a smooth and strictly convex
Banach space E such that there exists a sunny generalized nonexpansive retraction
R from E onto C and let (x, z) ∈ E × C. Then the following hold:

(1) z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ C;
(2) φ(Rx, z) + φ(x,Rx) ≤ φ(x, z).

In 2007, Kohsaka and Takahashi [12] proved the following results:

Theorem 2.6. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed subset of E. Then the following are equivalent:

(1) C is a sunny generalized nonexpansive retract of E;
(2) C is a generalized nonexpansive retract of E;
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(3) JC is closed and convex.

Proposition 2.7. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be
the sunny generalized nonexpansive retraction from E onto C and let (x, z) ∈ E×C.
Then the following are equivalent:

(1) z = Rx ;
(2) φ(x, z) = miny∈Cφ(x, y).

Very recently, Ibaraki and Takahashi [8] also obtained the following result con-
cerning the set of fixed points of a generalized nonexpansive mapping.

Theorem 2.8. Let E be a reflexive, strictly convex and smooth Banach space and
let T be a generalized nonexpansive mapping from E into itself. Then, F (T ) is
closed and JF (T ) is closed and convex.

The following is a direct consequence of Theorem 2.6 and Theorem 2.8.

Theorem 2.9 ([8]). Let E be a reflexive, strictly convex and smooth Banach space
and let T be a generalized nonexpansive mapping from E into itself. Then, F (T ) is
a sunny generalized nonexpansive retract of E.

3. Convergence theorem by the normal hybrid method

In this section, we prove a strong convergence theorem by the normal hybrid
method [18] for generalized nonexpansive mappings with resolvents of maximal
monotone operators in a Banach space. Before proving it, we prove the follow-
ing lemma by using the techniques developed by Matsushita and Takahashi [17];
see also [12]. Compare this lemma with Theorem 2.8.

Lemma 3.1. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a closed subset of E such that JC is closed and convex. If T : C → C is
a generalized nonexpansive mapping such that F (T ) 6= ∅, then F (T ) is closed and
JF (T ) is closed and convex.

Proof. We first prove that F (T ) is closed. Let {xn} ⊂ F (T ) with xn → x. Since T
is generalized nonexpansive,

φ(Tx, xn) ≤ φ(x, xn)

for each n ∈ N. This implies

φ(Tx, x) = lim
n→∞φ(Tx, xn) ≤ lim

n→∞φ(x, xn) = φ(x, x) = 0.

Therefore, we have φ(Tx, x) = 0 and hence x ∈ F (T ).
We next show that JF (T ) is closed. Let {x∗n} ⊂ JF (T ) such that x∗n → x∗ for

some x∗ ∈ E∗. Note that since JC is closed and convex, we have x∗ ∈ JC. Then,
there exist x ∈ C and {xn} ⊂ F (T ) such that x∗ = Jx and x∗n = Jxn for all n ∈ N.
Thus

φ(Tx, xn) ≤ φ(x, xn)
= ‖x‖2 − 2〈x, x∗n〉+ ‖x∗n‖2

→ ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2 = 0.
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Hence lim
n→∞φ(Tx, xn) = 0. Since

0 = lim
n→∞φ(Tx, xn) = lim

n→∞(‖Tx‖2 − 2〈Tx, x∗n〉+ ‖x∗n‖2)

= ‖Tx‖2 − 2〈Tx, x∗〉+ ‖x∗‖2 = φ(Tx, x),

we have φ(Tx, x) = 0 and hence x = Tx. This implies x∗ = Jx ∈ JF (T ).
We finally show that JF (T ) is convex. Let x∗, y∗ ∈ JF (T ) and let α ∈ (0, 1) and

β = 1 − α. Then we have x, y ∈ F (T ) such that x∗ = Jx and y∗ = Jy. Thus, we
have

φ(TJ−1(αJx + βJy), J−1(αJx + βJy))

= ‖TJ−1(αJx + βJy)‖2 − 2〈TJ−1(αJx + βJy), αJx

+βJy〉+ ‖J−1(αJx + βJy)‖2 + α‖x‖2 + β‖y‖2 − (α‖x‖2 + β‖y‖2)
= αφ(TJ−1(αJx + βJy), x) + βφ(TJ−1(αJx + βJy), y)

+‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2).

Since x, y ∈ F (T ) and T is generalized nonexpansive, we have

αφ(TJ−1(αJx + βJy), x) + βφ(TJ−1(αJx + βJy), y)

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

≤ αφ(J−1(αJx + βJy), x) + βφ(J−1(αJx + βJy), y)

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

= α
{‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), Jx〉+ ‖x‖2

}

+ β
{‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), Jy〉+ ‖y‖2

}

+ ‖αJx + βJy‖2 − (α‖x‖2 + β‖y‖2)

= 2‖αJx + βJy‖2 − 2〈J−1(αJx + βJy), αJx + βJy〉
= 2‖αJx + βJy‖2 − 2‖αJx + βJy‖2 = 0.

Then we have TJ−1(αJx+βJy) = J−1(αJx+βJy) and hence αJx+βJy ∈ JF (T ).
Therefore JF (T ) is convex and the proof is complete. ¤

As a direct consequence of Theorem 2.6 and Lemma 3.1, we obtain the following
result.

Proposition 3.2. Let E be a smooth, strictly convex and reflexive Banach space
and C be a closed subset of E such that JC is closed and convex. If T : C → C
is a generalized nonexpansive mapping such that F (T ) 6= ∅, then F (T ) is a sunny
generalized nonexpansive retract of E.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex.
Let B ⊂ E∗ × E be a maximal monotone operator with JC ⊃ D(B) and let Jr =
(I + rBJ)−1 for all r > 0. Let T : C → C be a generalized nonexpansive mapping
such that F (T ) ∩ J−1B−10 6= ∅ and assume that F̌ (T ) = F (T ). Let {xn} be a
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sequence generated by x0 = x ∈ C and





un = αnxn + (1− αn)TJrnxn,
Hn = {z ∈ C : φ(un, z) ≤ φ(xn, z)},
Wn = {z ∈ C : 〈x− xn, Jz − Jxn〉 ≤ 0},
xn+1 = RHn∩Wnx

for every n ∈ N ∪ {0}, where J is the duality mapping on E, and {αn} ⊂ [0, 1) and
{rn} ⊂ (0,∞) satisfy lim infn→∞(1 − αn) > 0 and lim infn→∞ rn > 0, respectively.
Then {xn} converges strongly to RF (T )∩J−1B−10x, where RF (T )∩J−1B−10 is the sunny
generalized nonexpansive retraction from E onto F (T ) ∩ J−1B−10.

Proof. We first show that F (T ) ∩ J−1B−10 is a sunny generalized nonexpansive
retract of E. From Proposition 2.2 and Lemma 3.1, we have J−1B−10 and F (T )
are closed, respectively. By using Lemma 3.1 again, we have JF (T ) is closed and
convex. From the maximal monotonicity of B, we have B−10 is closed and convex.
Since E is uniformly convex, J is injective and hence

J(F (T ) ∩ J−1B−10) = JF (T ) ∩B−10

which is also closed and convex. Using Theorem 2.6, we have that F (T )∩J−1B−10
is a sunny generalized nonexpansive retract of E.

For each n ∈ N ∪{0}, it is easy to see that Hn is closed. Since J is norm-to-weak∗
continuous, Wn is closed for all n ∈ N ∪ {0}. Hence Hn ∩Wn is closed. Since E is
reflexive, J is surjective and hence

JWn = {z∗ ∈ JC : 〈x− xn, z∗ − Jxn〉 ≤ 0}

and

JHn = {z∗ ∈ JC : φ∗(z∗, Jun) ≤ φ∗(z∗, Jxn)}

for all n ∈ N ∪ {0}. We can see that JHn is convex since

φ(un, z) ≤ φ(xn, z) ⇔ ‖un‖2 − 2〈un, Jz〉 − ‖xn‖2 + 2〈xn, Jz〉 ≤ 0

⇔ ‖un‖2 − ‖xn‖2 − 2〈xn − un, Jz〉 ≤ 0.

Since J is injective,

J(Hn ∩Wn) = JHn ∩ JWn.

Thus JHn, JWn and J(Hn ∩Wn) are closed and convex for all n ∈ N ∪ {0}.
We next show that Hn ∩ Wn is nonempty. Let w ∈ F (T ) ∩ J−1B−10. Put

yn = Jrnxn. Since Jrn and T are generalized nonexpansive, from the convexity of
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‖ · ‖2 we have

φ(un, w) = φ(αnxn + (1− αn)Tyn, w)
= ‖αnxn + (1− αn)Tyn‖2 − 2〈αnxn + (1− αn)Tyn, Jw〉+ ‖w‖2

≤ αn‖xn‖2 + (1− αn)‖Tyn‖2

−2αn〈xn, Jw〉 − 2(1− αn)〈Tyn, Jw〉+ ‖w‖2

= αnφ(xn, w) + (1− αn)φ(Tyn, w)
≤ αnφ(xn, w) + (1− αn)φ(yn, w)(3.1)
= αnφ(xn, w) + (1− αn)φ(Jrnxn, w)(3.2)
≤ αnφ(xn, w) + (1− αn)φ(xn, w)
= φ(xn, w).

So, we have w ∈ Hn and hence F (T ) ∩ J−1B−10 ⊂ Hn for all n ∈ N ∪ {0}.
Next we show by induction that F (T )∩J−1B−10 ⊂ Hn∩Wn for all n ∈ N ∪{0}.

From W0 = C, we have F (T )∩J−1B−10 ⊂ H0∩W0. This implies that H0∩W0 6= ∅.
By Theorem 2.6, H0∩W0 is a sunny generalized nonexpansive retract of E. Thus we
can define x1 = RH0∩W0x and y1 = Jr1x1. Suppose that F (T )∩J−1B−10 ⊂ Hk∩Wk

for some k ∈ N. If w ∈ F (T )∩ J−1B−10 ⊂ Hk ∩Wk and xk+1 = RHk∩Wk
x, then we

have from Lemma 2.5 that

〈x− xk+1, Jw − Jxk+1〉 ≤ 0,

which implies w ∈ Wk+1. Hence w ∈ Hk+1 ∩ Wk+1. Thus we obtain F (T ) ∩
J−1B−10 ⊂ Hn ∩ Wn for all n ∈ N ∪ {0}. This implies that {xn} and {yn} are
well defined.

We next show that lim
n→∞φ(x, xn) exists. Note that for each n ∈ N ∪{0}, xn ∈ Wn

and
〈x− xn, Jz − Jxn〉 ≤ 0, ∀z ∈ Wn.

So by Lemma 2.5, we have xn = RWnx. Using Lemma 2.5 again, we have

φ(x, xn) = φ(x,RWnx) ≤ φ(x, z)− φ(RWnx, z) ≤ φ(x, z), ∀z ∈ F (T ) ∩ J−1B−10.

Thus {φ(x, xn)} is bounded, and hence {xn} and {yn} are bounded. Since xn+1 =
RHn∩Wnx ∈ Hn ∩Wn ⊂ Wn and xn = RWnx, it follows from Proposition 2.7 that

φ(x, xn) ≤ φ(x, xn+1), ∀n ∈ N ∪ {0}.
Thus {φ(x, xn)} is nondecreasing and hence limn→∞ φ(x, xn) exists.

We next show that limn→∞ ‖un − xn‖ = 0. Consider

φ(xn, xn+1) = φ(RWnx, xn+1)
≤ φ(x, xn+1)− φ(x,RWnx)
= φ(x, xn+1)− φ(x, xn).

Since limn→∞ φ(x, xn) exists, we have limn→∞ φ(xn, xn+1) = 0. From xn+1 =
RHn∩Wnx ∈ Hn, we have

φ(un, xn+1) ≤ φ(xn, xn+1), ∀n ∈ N ∪ {0}.
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Therefore, limn→∞ φ(un, xn+1) = 0. From Lemma 2.1, we have

(3.3) lim
n→∞ ‖un − xn+1‖ = lim

n→∞ ‖xn − xn+1‖ = 0.

Since ‖un − xn‖ ≤ ‖un − xn+1‖+ ‖xn+1 − xn‖, we have

lim
n→∞ ‖un − xn‖ = 0.

Next, we show that lim
n→∞‖xn − yn‖ = 0 and lim

n→∞‖JTyn − Jyn‖ = 0. From

‖un − xn+1‖ = ‖αnxn + (1− αn)Tyn − xn+1‖
= ‖αn(xn − xn+1) + (1− αn)(Tyn − xn+1)‖
≥ (1− αn)‖Tyn − xn+1‖ − αn‖xn − xn+1‖,

we have

‖Tyn − xn+1‖ ≤ 1
1− αn

(‖un − xn+1‖+ αn‖xn − xn+1‖)

≤ 1
1− αn

(‖un − xn+1‖+ ‖xn − xn+1‖).

From (3.3) and lim infn→∞(1− αn) > 0, we have limn→∞ ‖Tyn − xn+1‖ = 0.
From ‖Tyn − xn‖ ≤ ‖Tyn − xn+1‖+ ‖xn+1 − xn‖, we have

(3.4) lim
n→∞ ‖Tyn − xn‖ = 0.

Let w ∈ F (T ) ∩ J−1B−10. Using yn = Jrnxn, from (2.3) we have

φ(xn, w) ≥ φ(xn, Jrnxn) + φ(Jrnxn, w)
= φ(xn, yn) + φ(yn, w).

Hence φ(xn, yn) ≤ φ(xn, w)−φ(yn, w). From (3.1), we have φ(un, w) ≤ αnφ(xn, w)+
(1− αn)φ(yn, w) and hence

φ(yn, w) ≥ φ(un, w)− αnφ(xn, w)
(1− αn)

.

Therefore, we have

φ(xn, yn) ≤ φ(xn, w)− φ(un, w)− αnφ(xn, w)
(1− αn)

=
φ(xn, w)− φ(un, w)

(1− αn)
.(3.5)

We also have

φ(xn, w)− φ(un, w) = ‖xn‖2 − 2〈xn, Jw〉+ ‖w‖2 − ‖un‖2 + 2〈un, Jw〉 − ‖w‖2

= ‖xn‖2 − ‖un‖2 − 2〈xn − un, Jw〉
≤ |‖xn‖2 − ‖un‖2|+ 2|〈xn − un, Jw〉|
≤ (‖xn‖+ ‖un‖)‖xn − un‖+ 2‖xn − un‖‖Jw‖.
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From limn→∞ ‖xn − un‖ = 0, we have limn→∞(φ(xn, w) − φ(un, w)) = 0. Since
lim inf
n→∞ (1 − αn) > 0, from (3.5) we have lim

n→∞φ(xn, yn) = 0. From Lemma 2.1, we
have

(3.6) lim
n→∞‖xn − yn‖ = 0.

Since ‖Tyn − yn‖ ≤ ‖Tyn − xn‖+ ‖xn − yn‖, from (3.4) and (3.6) we have

(3.7) lim
n→∞‖Tyn − yn‖ = 0.

Since E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded
sets. So, from (3.7) we have

(3.8) lim
n→∞‖JTyn − Jyn‖ = 0.

Since {Jxn} is bounded, there exists {xni} ⊂ {xn} such that Jxni ⇀ z∗. Since J
is uniformly norm-to-norm continuous on bounded sets, we have from (3.6) that

lim
n→∞ ‖Jxn − Jyn‖ = 0.

This implies Jyni ⇀ z∗ and hence from (3.8), J−1z∗ ∈ F̌ (T ). Putting z = J−1z∗,
we have z ∈ F̌ (T ).

We next show that z ∈ F (T )∩ J−1B−10. By the assumption, we have z ∈ F (T ).
Since Brn = (I − Jrn)/rn and lim inf

n→∞ rn > 0, we also have

lim
n→∞‖Brnxn‖ = lim

n→∞
‖xn − yn‖

rn
= 0.

If (w∗, w) ∈ B, then it follows from the monotonicity of B and (Jyn, Brnxn) ∈ B
that

〈w −Brnxn, w∗ − Jyn〉 ≥ 0, ∀n ∈ N ∪ {0}.
Hence

〈w −Brni
xni , w

∗ − Jyni〉 ≥ 0.

Letting i → ∞, we have 〈w, w∗ − z∗〉 ≥ 0. By the maximality of B, we have
z∗ ∈ B−10 and hence z ∈ J−1B−10.

We next show that z = RF (T )∩J−1B−10x. Let u = RF (T )∩J−1B−10x. From xn+1 =
RHn∩Wnx and u ∈ F (T ) ∩ J−1B−10 ⊂ Hn ∩Wn, we have

φ(x, xn+1) ≤ φ(x, u).

Since ‖ · ‖2 is weakly lower semicontinuous, from Jxni ⇀ Jz we have

φ(x, z) = ‖x‖2 − 2〈x, Jz〉+ ‖z‖2

≤ lim inf
i→∞

(‖x‖2 − 2〈x, Jxni〉+ ‖xni‖2)

= lim inf
i→∞

φ(x, xni)

≤ lim sup
i→∞

φ(x, xni)

≤ φ(x, u).

From the definition of u, we have u = z. Thus we obtain z∗ = Jz = Ju.
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Furthermore, we can conclude that for any subsequence {xnk
} of {xn} such that

Jxnk
⇀ z∗, z∗ = Ju. Hence Jxn ⇀ z∗ = Ju.

We finally show that xn → z. From (2.2), we have

φ(z, xn) = φ(z, x) + φ(x, xn) + 2〈z − x, Jx− Jxn〉, ∀n ∈ N ∪ {0}.
Since xn = RWnx and z ∈ F (T ) ∩ J−1B−10 ⊂ Wn, we have φ(x, xn) ≤ φ(x, z) and
hence

lim sup
n→∞

φ(z, xn) = lim sup
n→∞

{φ(z, x) + φ(x, xn) + 2〈z − x, Jx− Jxn〉}
≤ lim sup

n→∞
{φ(z, x) + φ(x, z) + 2〈z − x, Jx− Jxn〉}

= φ(z, x) + φ(x, z) + 2〈z − x, Jx− Jz〉
= φ(z, z) = 0.

Thus lim
n→∞φ(z, xn) = 0 and hence lim

n→∞‖z − xn‖ = 0. This completes the proof. ¤

As consequences of Theorem 3.3, we can obtain the following corollaries.

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space
and let B ⊂ E∗ × E be a maximal monotone operator with B−10 6= ∅ and let
Jr = (I + rBJ)−1 for all r > 0. Let {xn} be a sequence generated by x0 = x ∈ E
and





un = Jrnxn,
Hn = {z ∈ E : φ(un, z) ≤ φ(xn, z)},
Wn = {z ∈ E : 〈x− xn, Jz − Jxn〉 ≤ 0},
xn+1 = RHn∩Wnx

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ (0,∞)
satisfies lim infn→∞ rn > 0. Then {xn} converges strongly to RJ−1B−10x, where
RJ−1B−10 is the sunny generalized nonexpansive retraction from E onto J−1B−10.

Proof. Putting T = I, C = E and αn = 0 in Theorem 3.3, we can complete the
proof. ¤

Let E be a reflexive Banach space and let f : E∗ → (−∞,∞] be a proper lower
semicontinuous convex function. By Rockafellar’s theorem [22, 23], the subdifferen-
tial ∂f ⊂ E∗ × E of f defined by

∂f(x∗) = {x ∈ E : f(x∗) + 〈x, y∗ − x∗〉 ≤ f(y∗), ∀y∗ ∈ E∗}
for all x∗ ∈ E∗ is maximal monotone.

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex. Let
T : C → C be a generalized nonexpansive mapping such that F (T ) 6= ∅ and assume
that F̌ (T ) = F (T ). Let {xn} be a sequence generated by x0 = x ∈ C and





un = αnxn + (1− αn)Txn,
Hn = {z ∈ C : φ(un, z) ≤ φ(xn, z)},
Wn = {z ∈ C : 〈x− xn, Jz − Jxn〉 ≤ 0},
xn+1 = RHn∩Wnx
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for every n ∈ N ∪ {0}, where J is the duality mapping on E and {αn} ⊂ [0, 1)
satisfies lim infn→∞(1 − αn) > 0. Then {xn} converges strongly to RF (T )x, where
RF (T ) is the sunny generalized nonexpansive retraction from E onto F (T ).

Proof. Set B = ∂iJC in Theorem 3.3, where iJC is the indicator function of JC, i.e,

iJC =
{

0, x∗ ∈ JC,
∞, otherwise.

Then, we have that B is a maximal monotone operator. Let Jr be the resolvent
of B. Then Jr = RC for r > 0, where RC is the sunny generalized nonexpansive
retraction of E onto C. Indeed, for any x ∈ E and r > 0, we have from Lemma 2.5
that

z = Jrx ⇔ x ∈ z + r∂iJC(Jz)
⇔ x− z ∈ r∂iJC(Jz)

⇔ iJC(Jz) + 〈x− z

r
, y∗ − Jz〉 ≤ iJC(y∗), ∀y∗ ∈ E∗

⇔ 0 ≥ 〈x− z, Jy − Jz〉, ∀y ∈ C

⇔ z = RCx.

So, from Theorem 3.3, we obtain this corollary. ¤

4. Convergence theorem by the shrinking method

In this section, we prove a strong convergence theorem by the shrinking projec-
tion method [28] for generalized nonexpansive mappings with resolvents of maximal
monotone operators in a Banach space.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex.
Let B ⊂ E∗ × E be a maximal monotone operator with JC ⊃ D(B) and let Jr =
(I + rBJ)−1 for all r > 0. Let T : C → C be a generalized nonexpansive mapping
such that F (T ) ∩ J−1B−10 6= ∅ and assume that F̌ (T ) = F (T ). Let {xn} be a
sequence generated by x0 = x ∈ C, H0 = C and





un = αnxn + (1− αn)TJrnxn,
Hn+1 = {z ∈ Hn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RHn+1x

for every n ∈ N∪{0}, where {αn} ⊂ [0, 1) satisfies lim infn→∞(1−αn) > 0, {rn} ⊂
(0,∞) with lim infn→∞ rn > 0 and J is the duality mapping on E. Then {xn}
converges strongly to RF (T )∩J−1B−10x, where RF (T )∩J−1B−10 is the sunny generalized
nonexpansive retraction from E onto F (T ) ∩ J−1B−10.

Proof. As in the proof of Theorem 3.3, we have that F (T ) ∩ J−1B−10 is a sunny
generalized nonexpansive retract of E.

For each n ∈ N ∪ {0}, it is easy to see that Hn is closed. Further, JHn = {z∗ ∈
Hn : φ∗(z∗, Jun) ≤ φ∗(z∗, Jxn)} is also closed and convex. Indeed, since JH0 = JC
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and JC is closed and convex, JH0 is closed and convex. Suppose that JHk is closed
and convex for some k ∈ N ∪ {0}. Since

φ∗(z∗, Jun) ≤ φ∗(z∗, Jxn) ⇔ ‖Jun‖2 − 2〈un, z∗〉 − ‖Jxn‖2 + 2〈xn, z∗〉 ≤ 0

⇔ ‖Jun‖2 − ‖Jxn‖2 − 2〈xn − un, z∗〉 ≤ 0,

we have JHk+1 is closed and convex. So, JHn is closed and convex for all n ∈
N ∪ {0}. If we can show that Hn is nonempty, then Theorem 2.6 ensures that Hn

is a sunny generalized nonexpansive retract of E for all n ∈ N ∪ {0}. We will show
that F (T ) ∩ J−1B−10 ⊂ Hn for all n ∈ N ∪ {0}.

Put yn = Jrnxn. From H0 = C, we have F (T ) ∩ J−1B−10 ⊂ H0. Suppose that
F (T ) ∩ J−1B−10 ⊂ Hk for some k ∈ N. Let w ∈ F (T ) ∩ J−1B−10 ⊂ Hk. Since Jrn

and T are generalized nonexpansive, from the convexity of ‖ · ‖2 we have

φ(un, w) = φ(αnxn + (1− αn)Tyn, w)
= ‖αnxn + (1− αn)Tyn‖2 − 2〈αnxn + (1− αn)Tyn, Jw〉+ ‖w‖2

≤ αn‖xn‖2 + (1− αn)‖Tyn‖2

−2αn〈xn, Jw〉 − 2(1− αn)〈Tyn, Jw〉+ ‖w‖2

= αnφ(xn, w) + (1− αn)φ(Tyn, w)
≤ αnφ(xn, w) + (1− αn)φ(yn, w)(4.1)
≤ αnφ(xn, w) + (1− αn)φ(xn, w)
= φ(xn, w).

So, we have w ∈ Hk+1 and hence F (T ) ∩ J−1B−10 ⊂ Hn for all n ∈ N ∪ {0}.
Therefore, {xn} and {yn} are well-defined.

We next prove that limn→∞ φ(x, xn) exists. From xn = RHnx and Lemma 2.5,
we have

φ(x, xn) = φ(x,RHnx) ≤ φ(x, z)− φ(RHnx, z) ≤ φ(x, z), ∀z ∈ F (T ) ∩ J−1B−10.

Thus {φ(x, xn)} is bounded, and hence {xn} and {yn} are bounded. Since Hn+1 ⊂
Hn and xn = RHnx, it follows from Proposition 2.7 that

φ(x, xn) ≤ φ(x, xn+1), ∀n ∈ N ∪ {0}.
Thus {φ(x, xn)} is nondecreasing and hence limn→∞ φ(x, xn) exists.

We next show that limn→∞ ‖un − xn‖ = 0. From Lemma 2.5,

φ(xn, xn+1) = φ(RHnx, xn+1)
≤ φ(x, xn+1)− φ(x,RHnx)
= φ(x, xn+1)− φ(x, xn).

Therefore, limn→∞ φ(xn, xn+1) = 0. From xn+1 = RHn+1x ∈ Hn+1, we have

φ(un, xn+1) ≤ φ(xn, xn+1), ∀n ∈ N ∪ {0}.
Therefore, limn→∞ φ(un, xn+1) = 0. From Lemma 2.1, we have

(4.2) lim
n→∞ ‖un − xn+1‖ = lim

n→∞ ‖xn − xn+1‖ = 0.

Since ‖un − xn‖ ≤ ‖un − xn+1‖+ ‖xn+1 − xn‖, we have limn→∞ ‖un − xn‖ = 0.
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Next, we show that lim
n→∞‖xn − yn‖ = 0 and lim

n→∞‖JTyn − Jyn‖ = 0. From

‖un − xn+1‖ = ‖αnxn + (1− αn)Tyn − xn+1‖
= ‖αn(xn − xn+1) + (1− αn)(Tyn − xn+1)‖
≥ (1− αn)‖Tyn − xn+1‖ − αn‖xn − xn+1‖,

we have

‖Tyn − xn+1‖ ≤ 1
1− αn

(‖un − xn+1‖+ αn‖xn − xn+1‖)

≤ 1
1− αn

(‖un − xn+1‖+ ‖xn − xn+1‖).

From (4.2) and lim infn→∞(1− αn) > 0, we have limn→∞ ‖Tyn − xn+1‖ = 0.
From ‖Tyn − xn‖ ≤ ‖Tyn − xn+1‖+ ‖xn+1 − xn‖, we have

(4.3) lim
n→∞ ‖Tyn − xn‖ = 0.

Let w ∈ F (T ) ∩ J−1B−10. Using yn = Jrnxn, from (2.3) we have

φ(xn, w) ≥ φ(xn, Jrnxn) + φ(Jrnxn, w)
= φ(xn, yn) + φ(yn, w).

Hence
φ(xn, yn) ≤ φ(xn, w)− φ(yn, w).

From (4.1), we have φ(un, w) ≤ αnφ(xn, w) + (1− αn)φ(yn, w) and hence

φ(yn, w) ≥ φ(un, w)− αnφ(xn, w)
1− αn

.

Therefore, we have

φ(xn, yn) ≤ φ(xn, w)− φ(un, w)− αnφ(xn, w)
1− αn

=
φ(xn, w)− φ(un, w)

1− αn
.(4.4)

Since

φ(xn, w)− φ(un, w) = ‖xn‖2 − 2〈xn, Jw〉+ ‖w‖2 − ‖un‖2 + 2〈un, Jw〉 − ‖w‖2

= ‖xn‖2 − ‖un‖2 − 2〈xn − un, Jw〉
≤ |‖xn‖2 − ‖un‖2|+ 2|〈xn − un, Jw〉|
≤ (‖xn‖+ ‖un‖)‖xn − un‖+ 2‖xn − un‖‖Jw‖

and limn→∞ ‖xn − un‖ = 0, we have limn→∞(φ(xn, w) − φ(un, w)) = 0. Since
lim inf
n→∞ (1 − αn) > 0, from (4.4) we have lim

n→∞φ(xn, yn) = 0. From Lemma 2.1,
we have

(4.5) lim
n→∞‖xn − yn‖ = 0.

From ‖Tyn − yn‖ ≤ ‖Tyn − xn‖+ ‖xn − yn‖, (4.3) and (4.5), we have

(4.6) lim
n→∞‖Tyn − yn‖ = 0.
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Since E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded
sets. And from (4.6), we have

(4.7) lim
n→∞‖JTyn − Jyn‖ = 0.

Since {Jxn} is bounded, there exists {xni} ⊂ {xn} such that Jxni ⇀ z∗. Since J is
uniformly norm-to-norm continuous on bounded sets, we have from (4.5) that

lim
n→∞ ‖Jxn − Jyn‖ = 0.

This implies Jyni ⇀ z∗ and hence from (4.7), J−1z∗ ∈ F̌ (T ). Putting z = J−1z∗,
we have z ∈ F̌ (T ).

We next show that z ∈ F (T )∩ J−1B−10. By the assumption, we have z ∈ F (T ).
Since Brn = (I − Jrn)/rn and lim inf

n→∞ rn > 0, we also have

lim
n→∞‖Brnxn‖ = lim

n→∞
‖xn − yn‖

rn
= 0.

If (w∗, w) ∈ B, then it follows from the monotonicity of B and (Jyn, Brnxn) ∈ B
that

〈w −Brnxn, w∗ − Jyn〉 ≥ 0, ∀n ∈ N ∪ {0}.
Hence

〈w −Brni
xni , w

∗ − Jyni〉 ≥ 0.

Letting i → ∞, we have 〈w, w∗ − z∗〉 ≥ 0. By the maximality of B, we have
z∗ ∈ B−10 and hence z ∈ J−1B−10.

We next show that z = RF (T )∩J−1B−10x. Let u = RF (T )∩J−1B−10x. From xn+1 =
RHn+1x and u ∈ F (T ) ∩ J−1B−10 ⊂ Hn+1, we have

φ(x, xn+1) ≤ φ(x, u).

Since ‖ · ‖2 is weakly lower semicontinuous, from Jxni ⇀ Jz we have

φ(x, z) = ‖x‖2 − 2〈x, Jz〉+ ‖z‖2

≤ lim inf
i→∞

(‖x‖2 − 2〈x, Jxni〉+ ‖xni‖2)

= lim inf
i→∞

φ(x, xni)

≤ lim sup
i→∞

φ(x, xni)

≤ φ(x, u).

From the definition of u, we have u = z. Thus we obtain z∗ = Jz = Ju.
Furthermore, we can conclude that for any subsequence {xnk

} of {xn} such that
Jxnk

⇀ z∗, z∗ = Ju. Hence Jxn ⇀ Ju.
We finally show that xn → z. From (2.2), we have

φ(z, xn) = φ(z, x) + φ(x, xn) + 2〈z − x, Jx− Jxn〉, ∀n ∈ N ∪ {0}.
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Since xn = RHnx and z ∈ F (T ) ∩ J−1B−10 ⊂ Hn, we have φ(x, xn) ≤ φ(x, z) and
hence

lim sup
n→∞

φ(z, xn) = lim sup
n→∞

{φ(z, x) + φ(x, xn) + 2〈z − x, Jx− Jxn〉}
≤ lim sup

n→∞
{φ(z, x) + φ(x, z) + 2〈z − x, Jx− Jxn〉}

= φ(z, x) + φ(x, z) + 2〈z − x, Jx− Jz〉
= φ(z, z) = 0.

Thus lim
n→∞φ(z, xn) = 0 and hence lim

n→∞‖z − xn‖ = 0. This completes the proof. ¤

As consequences of Theorem 4.1, we can obtain the following corollaries.

Corollary 4.2. Let E be a uniformly convex and uniformly smooth Banach space
and let B ⊂ E∗ × E be a maximal monotone operator with B−10 6= ∅ and let
Jr = (I + rBJ)−1 for all r > 0. Let {xn} be a sequence generated by x0 = x ∈ E,
H0 = E and





un = Jrnxn,
Hn+1 = {z ∈ Hn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RHn+1x

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ (0,∞)
satisfies lim infn→∞ rn > 0. Then {xn} converges strongly to RJ−1B−10x, where
RJ−1B−10 is the sunny generalized nonexpansive retraction from E onto J−1B−10.

Proof. Putting T = I, C = E and αn = 0 in Theorem 4.1, we can complete the
proof. ¤
Corollary 4.3. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed subset of E such that JC is closed and convex. Let
T : C → C be a generalized nonexpansive mapping such that F (T ) 6= ∅ and assume
that F̌ (T ) = F (T ). Let {xn} be a sequence generated by x0 = x ∈ C and





un = αnxn + (1− αn)Txn,
Hn+1 = {z ∈ Hn : φ(un, z) ≤ φ(xn, z)},
xn+1 = RHn+1x

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {αn} ⊂ [0, 1)
satisfies lim infn→∞(1 − αn) > 0. Then {xn} converges strongly to RF (T )x, where
RF (T ) is the sunny generalized nonexpansive retraction from E onto F (T ).

Proof. Set B = ∂iJC in Theorem 4.1, where iJC is the indicator function of JC.
So, we obtain this corollary. ¤

Acknowledgement

The first author would like to thank the Office of the Higher Education Com-
mission, Thailand for supporting by grant fund under the program Strategic Schol-
arships for Frontier Research Network for the Join Ph.D. Program Thai Doctoral
degree. She also would like to thank the Department of Mathematical and Comput-
ing Sciences and Prof. Wataru Takahashi for the hospitality and academic support.



62 W. INTHAKON, S. DHOMPONGSA, AND W. TAKAHASHI

References

[1] Ya. Alber, Metric and generalized projection operators in Banach spaces; Properties and appli-
cations, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type,
A. G. Karsatos (ed.), Marcel Dekker, New York, 1996, pp. 15–20.
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