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ALGORITHMS CONSTRUCTION FOR NONEXPANSIVE
MAPPINGS IN HILBERT SPACES

MENGQIN LI, YONGHONG YAO∗, YEONG-CHENG LIOU, AND SHIN MIN KANG

Abstract. In this paper, we construct two new algorithms for nonexpansive
mappings in Hilbert spaces. We show that the proposed algorithms converge
strongly to fixed points of nonexpansive mappings in Hilbert spaces.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that
a mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

We use Fix(T ) to denote the set of fixed points of T .
Construction of fixed points of nonlinear mappings is an important and active

research area. In particular, iterative algorithms for finding fixed points of non-
expansive mappings have received vast investigations since these algorithms find
applications in a variety of applied areas of inverse problem, partial differential
equations, image recovery and signal processing (see, e.g., [7], [10]-[11], [21], [37]).

It is well-known that the Picard iteration xn+1 = Txn = · · · = Tn+1x of the
mapping T at a point x ∈ C may, in general, not behave well. This means that it
may not converge even in the weak topology. One way to overcome this difficulty is
to use Mann’s iteration algorithm that produces a sequence {xn} via the recursive
manner:

(1.1) xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where {αn} ⊂ [0, 1] and the initial value x0 ∈ C is chosen arbitrarily. For example,
Reich [23] proved that if {αn} is chosen such that

∑∞
n=1 αn(1− αn) = ∞, then the

sequence {xn} defined by (1.1) converges weakly to a fixed point of T . However,
this scheme has only weak convergence even in a Hilbert space.

Some attempts to construct iteration algorithm so that strong convergence is
guaranteed have recently been made (see, e.g., [1]-[9], [12]-[20], [22]-[36], [38]).

It is our purpose in this paper to introduce two new algorithms for nonexpansive
mappings in Hilbert spaces. We show that the proposed methods converge strongly
to fixed points of nonexpansive mappings in Hilbert spaces.
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2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and the induced norm ‖ · ‖, respectively. For every point x ∈ H, there
exists a unique nearest point in C, denoted by PCx such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

The mapping PC is called the metric projection of H onto C. It is well known that
PC is a nonexpansive mapping and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

Moreover, PC is characterized by the following properties:

〈x− PCx, y − PCx〉 ≤ 0,

and
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C.

In order to prove our main results, we need the following well-known lemmas.

Lemma 2.1 ([33]). Let C be a nonempty closed convex of a real Hilbert space H.
Let T : C → C be a nonexpansive mapping. Then I − T is demi-closed at 0, i.e., if
xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.

Lemma 2.2 ([29]). Let {xn} and {yn} be bounded sequences in a Banach space
E and {βn} be a sequence in [0, 1] which satisfies the following condition: 0 <
lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = (1−βn)xn +βnyn for all
n ≥ 0 and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0. Then limn→∞ ‖yn−xn‖ = 0.

Lemma 2.3 ([31]). Assume {an} is a sequence of nonnegative real numbers such
that an+1 ≤ (1− γn)an + γnδn, n ≥ 0 where {γn} is a sequence in (0, 1) and {δn} is
a sequence in R such that

(i)
∑∞

n=0 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 |δnγn| < ∞.

Then limn→∞ an = 0.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C →
C be a nonexpansive mapping. Let β be a constant in (0, 1). For each t ∈ (0, 1),
define a mapping Tt : C → C by

Ttx = PC [t(βx) + (1− t)Tx], ∀x ∈ C.

For x, y ∈ C, we have

‖Ttx− Tty‖ = ‖PC [t(βx) + (1− t)Tx]− PC [t(βy) + (1− t)Ty]‖
≤ [1− (1− β)t]‖x− y‖,

which implies that Tt is a contraction. Using the Banach contraction principle,
there exists a unique fixed point xt of Tt in C, i.e.,

(3.1) xt = PC [t(βxt) + (1− t)Txt].

Now we show the strong convergence of this implicit algorithm.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. For each t ∈ (0, 1), let
the net {xt} be generated by (3.1). Then, as t → 0, the net {xt} converges strongly
to a fixed point of T .

Proof. First, we prove that {xt} is bounded. Take u ∈ Fix(T ). From (3.1), we have

‖xt − u‖ = ‖PC [t(βxt) + (1− t)Txt]− PCu‖
≤ βt‖xt − u‖+ (1− t)‖Txt − u‖+ (1− β)t‖u‖
≤ [1− (1− β)t]‖xt − u‖+ (1− β)t‖u‖,

that is,

‖xt − u‖ ≤ ‖u‖.
Hence, {xt} is bounded.

Again from (3.1), we obtain

‖xt − Txt‖ = ‖PC [t(βxt) + (1− t)Txt]− PCTxt‖
≤ t‖βxt − Txt‖
→ 0 as t → 0.(3.2)

Next we show that {xt} is relatively norm compact as t → 0. Let {tn} ⊂ (0, 1) be
a sequence such that tn → 0 as n →∞. Put xn := xtn . From (3.2), we have

‖xn − Txn‖ → 0.(3.3)

From (3.1) and (3.2), we get

‖xt − u‖2 = 〈PC [t(βxt) + (1− t)Txt]− [t(βxt) + (1− t)Txt], xt − u〉
+〈[t(βxt) + (1− t)Txt]− u, xt − u〉

≤ 〈[t(βxt) + (1− t)Txt]− u, xt − u〉
= βt〈xt − u, xt − u〉+ (1− t)〈Txt − xt + xt − u, xt − u〉

−(1− β)t〈u, xt − u〉
≤ [1− (1− β)t]‖xt − u‖2 − (1− β)t〈u, xt − u〉.

Hence,

‖xt − u‖2 ≤ 〈u, u− xt〉.
In particular,

‖xn − u‖2 ≤ 〈u, u− xn〉, u ∈ Fix(T ).(3.4)

Since {xn} is bounded, without loss of generality, we may assume that {xn} con-
verges weakly to a point x∗ ∈ C. Noticing (3.3) we can use Lemma 2.1 to get
x∗ ∈ Fix(T ). Therefore we can substitute x∗ for u in (3.4) to get

‖xn − x∗‖2 ≤ 〈x∗, x∗ − xn〉.
Hence, the weak convergence of {xn} to x∗ actually implies that xn → x∗ strongly.
This has proved the relative norm compactness of the net {xt} as t → 0.
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To show that the entire net {xt} converges to x∗, assume xtm → x̃ ∈ Fix(T ),
where tm → 0. Put xm = xtm . Similarly we have

‖xm − x∗‖2 ≤ 〈x∗, x∗ − xm〉
Therefore,

‖x̃− x∗‖2 ≤ 〈x∗, x∗ − x̃〉.
Interchange x∗ and x̃ to obtain

‖x∗ − x̃‖2 ≤ 〈x̃, x̃− x∗〉.
Adding up the last two inequalities yields

2‖x∗ − x̃‖2 ≤ ‖x∗ − x̃‖2,

which implies that x̃ = x∗. This completes the proof.
¤

Next we construct an explicit algorithm and prove this algorithm has strong
convergence under some mild conditions on control parameters.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let {αn} and
{βn} be two real sequences in [0, 1] and λ be a constant in (0, 1). For given x0 ∈ C
arbitrarily, let the sequence {xn} be generated iteratively by

(3.5) xn+1 = (1− λ)xn + λPC [αnβnxn + (1− αn)Txn], n ≥ 0.

Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) lim supn→∞ βn < 1.

Then the sequence {xn} generated by (3.5) strongly converges to a fixed point of
T .

Proof. First, we prove that the sequence {xn} is bounded. Take u ∈ Fix(T ). From
(3.5), we have

‖xn+1 − u‖ = ‖(1− λ)xn + λPC [αnβnxn + (1− αn)Txn]− u‖
≤ (1− λ)‖xn − u‖+ λ‖PC [αnβnxn + (1− αn)Txn]− PCu‖
≤ (1− λ)‖xn − u‖+ λ‖αnβnxn + (1− αn)Txn − u‖
≤ (1− λ)‖xn − u‖+ λ[αnβn‖xn − u‖+ (1− βn)αn‖u‖

+(1− αn)‖xn − u‖]
= [1− (1− βn)λαn]‖xn − u‖+ (1− βn)λαn‖u‖
≤ max{‖xn − u‖, ‖u‖}.

Hence, {xn} is bounded and so is {Txn}.
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Set yn = PC [αnβnxn + (1− αn)Txn] for all n ≥ 0. It follows that

‖yn − yn−1‖ = ‖PC [αnβnxn + (1− αn)Txn]
−PC [αn−1βn−1xn−1) + (1− αn−1)Txn−1]‖

≤ ‖[αnβnxn + (1− αn)Txn]
−[αn−1βn−1xn−1) + (1− αn−1)Txn−1]‖

≤ ‖Txn − Txn−1‖+ αn‖βnxn − Txn‖
+αn−1‖βn−1xn−1 − Txn−1‖

≤ ‖xn − xn−1‖+ M(αn + αn−1),

where M is a constant such that supn{‖βnxn − Txn‖} ≤ M .
Therefore, we have

lim sup
n→∞

(‖yn − yn−1‖ − ‖xn − xn−1‖) ≤ 0.

This together with Lemma 2.2 implies that

lim
n→∞ ‖yn − xn‖ = 0.

Hence,

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞λ‖yn − xn‖ = 0.

Note that

‖xn+1 − Txn‖ ≤ (1− λ)‖xn − Txn‖+ λ‖PC [αnβnxn + (1− αn)Txn]− PCTxn‖
≤ (1− λ)‖xn − Txn‖+ λαn‖βnxn − Txn‖.

Then, we have

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖
≤ ‖xn − xn+1‖+ (1− λ)‖xn − Txn‖+ λαn‖βnxn − Txn‖,

which implies that

‖xn − Txn‖ ≤ 1
λ
‖xn − xn+1‖+ αn‖βnxn − Txn‖ → 0.

Let the net {xt} be defined by (3.1). By Theorem 3.1, we have xt → x∗ as t → 0.
Next we prove lim supn→∞〈x∗, x∗ − yn〉 ≤ 0. Set yt = t(βxt) + (1− t)Txt.

‖xt − xn‖2 = 〈PCyt − xn, PCyt − xn〉
= 〈PCyt − yt, PCyt − xn〉+ 〈yt − xn, xt − xn〉
≤ 〈yt − xn, xt − xn〉
= t〈xt − xn, xt − xn〉 − (1− β)t〈xt, xt − xn〉

+(1− t)〈Txt − Txn, xt − xn〉+ (1− t)〈Txn − xn, xt − xn〉
≤ ‖xt − xn‖2 − (1− β)t〈xt, xt − xn〉+ (1− t)〈Txn − xn, xt − xn〉
≤ ‖xt − xn‖2 − (1− β)t〈xt, xt − xn〉+ M‖Txn − xn‖,
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where M > 0 such that sup{‖xt‖2, 2‖xt − Txn‖, ‖xt − xn‖, t ∈ (0, 1), n ≥ 0} ≤ M .
It follows that

〈xt, xt − xn〉 ≤ M

(1− β)t
‖Txn − xn‖.

Therefore,

lim sup
t→0

lim sup
n→∞

〈xt, xt − xn〉 ≤ 0.(3.6)

We note that

〈x∗, x∗ − xn〉 = 〈x∗, x∗ − xt〉+ 〈x∗ − xt, xt − xn〉+ 〈xt, xt − xn〉
≤ 〈x∗, x∗ − xt〉+ ‖x∗ − xt‖‖xt − xn‖+ 〈xt, xt − xn〉
≤ 〈x∗, x∗ − xt〉+ ‖x∗ − xt‖M + 〈xt, xt − xn〉.

This together with xt → x∗ and (3.6) imply that

lim sup
n→∞

〈x∗, x∗ − xn〉 ≤ 0.

Hence, we have

lim sup
n→∞

〈x∗, x∗ − yn〉 ≤ 0.

Finally we show that xn → x∗. First, we set un = αnβnxn + (1 − αn)Txn, n ≥ 0.
Note that

〈PC [un]− un, PC [un]− x∗〉 ≤ 0.

From (3.5), we have

‖yn − x∗‖2 = 〈PC [un]− un, PC [un]− x∗〉+ 〈un − x∗, yn − x∗〉
≤ 〈un − x∗, yn − x∗〉
= αnβn〈xn − x∗, yn − x∗〉+ (1− βn)αn〈x∗, x∗ − yn〉

+(1− αn)〈Txn − x∗, yn − x∗〉
≤ [αnβn + (1− αn)]‖xn − x∗‖‖yn − x∗‖+ (1− βn)αn〈x∗, x∗ − yn〉
≤ 1− (1− βn)αn

2
(‖xn − x∗‖2 + ‖yn − x∗‖2) + (1− βn)αn〈x∗, x∗ − yn〉

≤ 1− (1− βn)αn

2
‖xn − x∗‖2 +

1
2
‖yn − x∗‖2 + (1− βn)αn〈x∗, x∗ − yn〉.

It follows that

‖yn − x∗‖2 ≤ [1− (1− βn)αn]‖xn − x∗‖2 + 2(1− βn)αn〈x∗, x∗ − yn〉.(3.7)

From (3.5) and (3.7), we have

‖xn+1 − x∗‖2 ≤ (1− λ)‖xn − x∗‖2 + λ‖yn − x∗‖2

≤ (1− λ)‖xn − x∗‖2 + λ[1− (1− βn)αn]‖xn − x∗‖2

+2λαn(1− βn)〈x∗, x∗ − yn〉
= [1− λ(1− βn)αn]‖xn − x∗‖2 + 2λαn(1− βn)〈x∗, x∗ − yn〉.

We can check that all assumptions of Lemma 2.3 are satisfied. Therefore, xn →
x∗. This completes the proof. ¤
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Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let {αn} be a real
sequence in [0, 1] and λ be a constant in (0, 1). For given x0 ∈ C arbitrarily, let the
sequence {xn} be generated iteratively by

xn+1 = (1− λ)xn + λPC [(1− αn)Txn], n ≥ 0.

Suppose the following conditions are satisfied:
(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞.

Then the sequence {xn} converges strongly to a fixed point of T .
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