Journal of Nonlinear and Convex Analysis Volume 11, Number 1, 2010, 175–183

FIXED POINT THEOREMS FOR NONLINEAR MAPPINGS AND STRICT CONVEXITY OF BANACH SPACES

S. DHOMPONGSA*, W. FUPINWONG[†], W. TAKAHASHI[‡], AND J.-C. YAO[§]

ABSTRACT. In this paper, we first prove a fixed point theorem for generalized nonexpansive type mappings in a Banach space by using Kohsaka and Takahashi's fixed point theorem [10] for nonspreading mappings. Then using Takahashi, Yao and Kohsaka's result [21], we obtain a necessary and sufficient condition for the existence of fixed points of generalized nonexpansive type mappings. Further, we prove a fixed point theorem for nonspreading mappings with compact domains in a Banach space. Using this result, we give a necessary and sufficient condition for strict convexity of Banach spaces.

1. INTRODUCTION

Let E be a real Banach space and let C be a nonempty closed convex subset of E. Then a mapping T from C into itself is said to be *firmly nonexpansive* [2] if

$$||Tx - Ty|| \le ||r(x - y) + (1 - r)(Tx - Ty)||$$

for all r > 0 and $x, y \in C$. It is known that T is firmly nonexpansive if and only if there exists an accretive operator $A \subset E \times E$ such that $D(A) \subset C \subset R(I + A)$ and $Tx = (I + A)^{-1}x$ for all $x \in C$. In this case, $F(T) = A^{-1}0$ holds. It is also known that T is firmly nonexpansive if and only if for all $x, y \in C$, there exists $j \in J(Tx - Ty)$ such that

$$||Tx - Ty||^2 \le \langle x - y, j \rangle,$$

where J is the normalized duality mapping from E into 2^{E^*} .

Recently, Kohsaka and Takahashi [9] introduced a new class of firmly nonexpansive type mappings in a Banach space and then they showed in [10] that the class coincides with that of resolvents of monotone operators in a Banach space. Further, they introduced the class of nonspreading mappings in [10] which contains the class of firmly nonexpansive type mappings and then showed that every nonspreading mapping in a Banach space with a fixed point is relatively nonexpansive in the sense of Matsushita and Takahashi [11, 12]. Moreover, they proved a fixed point theorem for a single nonspreading mapping and a common fixed point theorem for a commutative family of nonspreading mappings in a Banach space. Very recently, Takahashi, Yao and Kohsaka [21] studied the fixed point property for nonspreading

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10; Secondary 46B10.

Key words and phrases. Duality mapping, firmly nonexpansive mapping, firmly nonexpansive type mapping, fixed point theorem, nonspreading mapping, skew-nonspreading mapping.

The authors^{*,†} and the author[‡] are supported by the Thailand Research Fund (Grant BRG50800016) and by Grant-in-Aid for Scientific Research No. 19540167 from Japan Society for the Promotion of Science, respectively. The author[§] was partially supported by the Grant NSC 98-2115-M-110-001. Corresponding author.

mappings and unbounded sets in a Banach space and they extended Ray's theorem [14] in a Hilbert space to that of a Banach space. On the other hand, motivated by Kohsaka and Takahashi [9, 10], Ibaraki and Takahashi [6, 7] defined the class of generalized nonexpansive type mappings in a Banach space which is connected with the class of nonspreading mappings and then they obtained some results for generalized nonexpansive type mappings.

In this paper, we first prove a fixed point theorem for generalized nonexpansive type mappings in a Banach space by using Kohsaka and Takahashi's fixed point theorem [10] for nonspreading mappings. Then using Takahashi, Yao and Kohsaka's result [21], we obtain a necessary and sufficient condition for the existence of fixed points of generalized nonexpansive type mappings. Further, we prove a fixed point theorem for nonspreading mappings with compact domains in a Banach space. Using this result, we give a necessary and sufficient condition for strict convexity of Banach spaces.

2. Preliminaries

Throughout this paper the ground field for all Banach spaces is the real field \mathbb{R} . Let E be a Banach space and let E^* be the dual space of E. Then the *duality* mapping J from E into 2^{E^*} is defined by

$$Jx = \{x^* \in E : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$

for all $x \in E$.

Let $S(E) = \{x \in E : ||x|| = 1\}$ be the unit sphere centered at the origin of E. Then the Banach space E is said to be *smooth* if the limit

(2.1)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for all $x, y \in S(E)$. The norm of E is also said to be *Gâteaux differentiable*. A Banach space E is *reflexive* if $E = E^{**}$. A Banach space E is said to be *strictly* convex if ||(x+y)/2|| < 1 whenever $x, y \in S(E)$ and $x \neq y$.

We know the following; see, for instance, [4] and [18]:

- (1) If E is smooth, then J is single-valued;
- (2) if E is reflexive, then J is onto;
- (3) if E is strictly convex, then J is one-to-one, that is, $Jx \cap Jy \neq \emptyset$ implies that x = y.

Let E be a Banach space and let T be a mapping from a subset C of E into itself. We denote by

$$F(T) = \{x \in C : Tx = x\}$$

the set of fixed points of T. We say that a mapping T from a subset C of a smooth Banach space E into itself is of *firmly nonexpansive type* [9] if

$$\langle Tx - Ty, JTx - JTy \rangle \leq \langle Tx - Ty, Jx - Jy \rangle$$

for all $x, y \in C$, where J is the duality mapping of E into E^* . Let us consider the function ϕ from $E \times E$ into \mathbb{R} defined by

$$\phi(u, v) = \|u\|^2 - 2\langle u, Jv \rangle + \|v\|^2$$

for all $u, v \in E$. We know that

(2.2)
$$0 \le (\|u\| - \|v\|)^2 \le \phi(u, v)$$

for all $u, v \in E$. Further, we have that for any $u, v, w \in E$,

(2.3)
$$\phi(u,v) = \phi(u,w) + \phi(w,v) + 2\langle u - w, Jw - Jv \rangle.$$

It is also known that

(2.4)
$$2\langle u-v, Jw-Jz \rangle = \phi(u,z) + \phi(v,w) - \phi(u,w) - \phi(v,z)$$

for all $u, v, w, z \in E$. Let $\phi_* \colon E^* \times E^* \to (-\infty, \infty)$ be the function defined by

$$\phi_*(x^*, y^*) = \|x^*\|^2 - 2\langle J^{-1}y^*, x^* \rangle + \|y^*\|^2$$

for $x^*, y^* \in E^*$, where J is the duality mapping of E. It is easy to see that

(2.5)
$$\phi(x,y) = \phi_*(Jy,Jx)$$

for $x, y \in E$. A mapping $T: C \to C$ is called *nonspreading* [10] if

$$\phi(Tx, Ty) + \phi(Ty, Tx) \le \phi(Tx, y) + \phi(Ty, x)$$

for all $x, y \in C$. A mapping $T : C \to C$ is of generalized nonexpansive type [6, 7] or skew-nonspreading if

$$\phi(Tx, Ty) + \phi(Ty, Tx) \le \phi(y, Tx) + \phi(x, Ty)$$

for all $x, y \in C$. Using (2.4), Kohsaka and Takahashi showed in [9] that a mapping $T: C \to C$ is of firmly nonexpansive type if and only if

$$\phi(Tx,Ty) + \phi(Ty,Tx) + \phi(Tx,x) + \phi(Ty,y) \le \phi(Tx,y) + \phi(Ty,x)$$

for each $x, y \in C$. So, we have that a firmly nonexpansive type mapping is nonspreading. Further, Kohsaka and Takahashi [10] proved the following theorem.

Theorem 2.1. Let E be a smooth, strictly convex and reflexive Banach space, let C be a nonempty closed convex subset of E and let T be a nonspreading mapping from C into itself. Then the following are equivalent:

- (i) There exists $x \in C$ such that $\{T^n x\}$ is bounded;
- (ii) F(T) is nonempty.

Very recently, Takahashi, Yao and Kohsaka [21] proved the following theorem which extends Ray's theorem in a Hilbert space to that of a Banach space.

Theorem 2.2. Let E be a smooth, strictly convex and reflexive Banach space and let C be a closed convex suvset of E. Then, the following are equivalent:

- (i) Every nonspreading mapping of C into itself has a fixed point in C;
- (ii) Every firmly nonexpansive type mapping of C into itself has a fixed point in C;
- (iii) C is bounded.

3. Fixed point theorems

In this section, we first prove a fixed point theorem for skew-nonspreading mappings in a Banach space by using Kohsaka and Takahashi's fixed point theorem [10]. Before proving it, we show the following lemma.

Lemma 3.1. Let C be a nonempty subset of a smooth, strictly convex and reflexive Banach space E and let $T : C \to C$ be a skew-nonspeading mapping. Then, the following hold:

- (i) $JTJ^{-1}: J(C) \to J(C)$ is a nonspeading mapping;
- (ii) $F(T) = \emptyset$ if and only if $F(JTJ^{-1}) = \emptyset$;

(iii) $||T^n x|| = ||(JTJ^{-1})^n Jx||$ for each $x \in C$ and $n \in \mathbb{N}$.

Proof. Since E is smooth and strictly convex, E^* is also smooth and strictly convex. Thus the duality mapping J^* from E^* into $2^{E^{**}}$ is a single-valued injection. It follows from the reflexivity of E that J^* is a surjection from E^* into 2^E and $J^* = J^{-1}$. Thus $JTJ^{-1} : J(C) \to J(C)$ is well-defined. In fact, for $x^* \in J(C)$, we have a unique $x \in C$ with $x^* = Jx$. So, we have $JTJ^{-1}x^* = JTx \in J(C)$.

(i) Write $T^* = JTJ^{-1}$. If $x, y \in C$, $x^* = Jx$ and $y^* = Jy$, then we have

$$\phi_*(T^*x^*, T^*y^*) + \phi_*(T^*y^*, T^*x^*)$$

= $\phi_*(JTJ^{-1}Jx, JTJ^{-1}Jy) + \phi_*(JTJ^{-1}Jy, JTJ^{-1}Jx)$
= $\phi_*(JTx, JTy) + \phi_*(JTy, JTx)$
= $\phi(Ty, Tx) + \phi(Tx, Ty)$

and

$$\phi_*(T^*x^*, y^*) + \phi_*(T^*y^*, x^*) = \phi_*(JTJ^{-1}Jx, Jy) + \phi_*(JTJ^{-1}Jy, Jx)$$
$$= \phi_*(JTx, Jy) + \phi_*(JTy, Jx)$$
$$= \phi(y, Tx) + \phi(x, Ty).$$

Since T is skew-nonspreading, we have

$$\begin{split} \phi_*(T^*x^*,T^*y^*) + \phi_*(T^*y^*,T^*x^*) &= \phi(Ty,Tx) + \phi(Tx,Ty) \\ &\leq \phi(y,Tx) + \phi(x,Ty) \\ &= \phi_*(T^*x^*,y^*) + \phi_*(T^*y^*,x^*). \end{split}$$

Hence JTJ^{-1} is nonspreading.

(ii) We also have that for each $x \in C$,

$$\begin{aligned} x \in F(T) \Leftrightarrow x &= Tx \\ \Leftrightarrow Jx &= JTx \\ \Leftrightarrow Jx &= JTJ^{-1}Jx \\ \Leftrightarrow Jx \in F(JTJ^{-1}) \\ \Leftrightarrow x \in J^{-1}F(JTJ^{-1}) \end{aligned}$$

Thus $F(T) = J^{-1}F(JTJ^{-1})$. So, $F(T) = \emptyset$ if and only if $F(JTJ^{-1}) = \emptyset$.

(iii) We show by induction that

$$(JTJ^{-1})^n Jx = JT^n x$$

for each $x \in C$ and $n \in \mathbb{N}$. In fact, for any $x \in C$, we have $JTx = JTJ^{-1}Jx$. So, the equality is true in the case of k = 1. Suppose that

$$(JTJ^{-1})^k Tx = JT^k x$$

for some $k \in \mathbb{N}$. Then, we have

$$(JTJ^{-1})^{k+1}Tx = (JTJ^{-1})(JTJ^{-1})^kTx$$
$$= JTJ^{-1}JT^kx$$
$$= JTT^kx$$
$$= JTT^{k+1}x.$$

So, the equality is true in the case of k + 1. Hence

$$||T^n x|| = ||JT^n x|| = ||(JTJ^{-1})^n Jx||$$

 \square

for each $x \in C$ and $n \in \mathbb{N}$.

Theorem 3.2. Let E be a smooth, strictly convex and reflexive Banach space, let C be a nonempty closed subset of E such that J(C) is closed and convex, and let $T: C \to C$ be a skew-nonspreading mapping. Then the following are equivalent: (i) There is an element $x \in C$ such that $\{T^n x\}$ is bounded; (ii) F(T) is nonempty.

Proof. From Lemma 3.1 (i), $JTJ^{-1} : JC \to JC$ is nonspreading. From Theorem 2.1, it follows that $F(JTJ^{-1})$ is nonempty if and only if there is an element $x \in C$ such that $\{(JTJ^{-1})^n Jx\}$ is bounded. So, we have from Lemma 3.1 (ii) and (iii) that F(T) is nonempty if and only if there is an element $x \in C$ such that $\{T^nx\}$ is bounded.

Next, using Theorems 3.2 and 2.2, we obtain a necessary and sufficient condition for the existence of fixed points of generalized nonexpansive type mappings. This is connected with Ray's theorem [14] and Takahashi's theorem [19] in a Hilbert space.

Lemma 3.3. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a nonspreading mapping of JC into itself. Then $J^{-1}TJ$ is a skew-nonspreading mapping of C into itself.

Proof. Put $S = J^{-1}TJ$. Then, we have that for any $x \in C$, $Sx = J^{-1}TJx \in C$. So, S is a mapping of C into itself. Further, we have that for $x, y \in C$, $x^* = Jx$ and $y^* = Jy$,

$$\phi(Sx, Sy) + \phi(Sy, Sx) = \phi(J^{-1}TJx, J^{-1}TJy) + \phi(J^{-1}TJy, J^{-1}TJx) = \phi_*(TJy, TJx) + \phi_*(TJx, TJy) = \phi_*(Ty^*, Tx^*) + \phi_*(Tx^*, Ty^*)$$

and

$$\begin{split} \phi(Sx,y) + \phi(Sy,x) \\ &= \phi(J^{-1}TJx,y) + \phi(J^{-1}TJy,x) \\ &= \phi_*(Jy,TJx) + \phi_*(Jx,TJy) \\ &= \phi_*(y^*,Tx^*) + \phi_*(x^*,Ty^*). \end{split}$$

Since T is a nonspreading mapping, we have

$$\phi(Sx, Sy) + \phi(Sy, Sx) = \phi_*(Ty^*, Tx^*) + \phi_*(Tx^*, Ty^*) \leq \phi_*(y^*, Tx^*) + \phi_*(x^*, Ty^*) = \phi(Sx, y) + \phi(Sy, x).$$

So, S is a skew-nonspreading mapping.

Using Lemma 3.3, we obtain the following theorem.

Theorem 3.4. Let E be a smooth, strictly convex and reflexive Banach space, let C be a nonempty closed subset of E such that J(C) is closed and convex. Then the following are equivalent:

(i) Every skew-nonspreading mapping of C into itself has a fixed point in C; (ii) C is bounded.

Proof. We know by Theorem 3.2 that if C is bounded, then every skew-nonspreading mapping of C into itself has a fixed point in C. So, we have that (ii) implies (i). Let us prove (ii) \Rightarrow (i). If C is unbounded, then J(C) is unbounded. We know from Theorem 2.2 that there exists a nonspreading mapping T of J(C) into itself such that T has no fixed points in J(C). Using Lemma 3.3, we have that $J^{-1}TJ: C \to C$ is a skew-nonspreading mapping of C into itself, which has no fixed points in C; see also [20]. This means that (ii) \Rightarrow (i).

4. STRICT CONVEXITY OF BANACH SPACES

In this section, we first prove a fixed point theorem for nonspreading mappings with compact domains in a smooth and strictly convex Banach space.

Theorem 4.1. Let E be a smooth and strictly convex Banach space and let C be a nonempty compact convex subset of E. Let T be a nonspreading mapping of C into itself. Then, F(T) is nonempty.

Proof. Take $x \in C$. Let $y \in C$, $k \in \mathbb{N} \cup \{0\}$ and $n \in \mathbb{N}$ be given. Since T is nonspreading and (2.3) holds, we have

$$\begin{split} \phi(T^{k+1}x, Ty) &+ \phi(Ty, T^{k+1}x) \\ &= \phi(T^{k+1}x, y) + \phi(Ty, T^kx) \\ &\leq \phi(T^{k+1}x, Ty) + \phi(Ty, y) + 2\langle T^{k+1}x - Ty, JTy - Jy \rangle + \phi(Ty, T^kx) . \end{split}$$

This implies that

$$0 \leq \phi(Ty, y) + \phi(Ty, T^k x) - \phi(Ty, T^{k+1}x) + 2\langle T^{k+1}x - Ty, JTy - Jy \rangle.$$

180

Summing these inequalities with respect to $k = 0, 1, \ldots, n-1$, we have

$$0 \le n\phi(Ty, y) + \phi(Ty, x) - \phi(Ty, T^n x) + 2\langle \sum_{k=0}^{n-1} T^{k+1} x - nTy, JTy - Jy \rangle.$$

Dividing this inequality by n, we have

(4.1)
$$0 \le \phi(Ty, y) + \frac{1}{n} \{ \phi(Ty, x) - \phi(Ty, T^n x) \} + 2 \langle S_n(Tx) - Ty, JTy - Jy \rangle,$$

where $S_n(z) = \frac{1}{n} \sum_{k=0}^{n-1} T^k z$ for all $z \in C$. Since $\{S_n(Tx)\} \subset C$ and C is compact, we have a subsequence $\{S_{n_i}(Tx)\}$ of $\{S_n(Tx)\}$ such that $S_{n_i}(Tx) \to u \in C$. Letting $n_i \to \infty$ in (4.1), we obtain

(4.2)
$$0 \le \phi(Ty, y) + 2\langle u - Ty, JTy - Jy \rangle.$$

Putting y = u in (4.2), we have from (2.4) that

$$0 \le \phi(Tu, u) + 2\langle u - Tu, JTu - Ju \rangle$$

= $\phi(Tu, u) + \phi(u, u) + \phi(Tu, Tu) - \phi(u, Tu) - \phi(Tu, u)$
= $-\phi(u, Tu).$

Hence we have $\phi(u, Tu) \leq 0$ and hence $\phi(u, Tu) = 0$. Since *E* is strictly convex, we have u = Tu. Therefore F(T) is nonempty. This completes the proof.

Next, we show that the strict convexity of E in Theorems 2.1 and 3.2 can not be omitted. Before showing it, we prove the following lemma.

Lemma 4.2. Let E be a smooth Banach space and let J be the duality mapping of E into E^* . If E is not strictly convex, then there are $u, v \in S(E)$ with $u \neq v$ such that $\phi(x, y) = 0$ for each $x, y \in [u, v]$, where

$$[u, v] = \{(1 - \alpha)u + \alpha v : \alpha \in [0, 1]\}.$$

Moreover, J([u, v]) consists of one point.

Proof. If E is not strictly convex, then there exist $u, v \in S(E)$ such that $u \neq v$ and J(u) = J(v). In fact, if E is a smooth Banach space, then E is strictly convex if and only if for any $x, y \in E$ with $x \neq y$, $Jx \neq Jy$. So, if E is not strictly convex, then there exist $x, y \in E$ such that $x \neq y$ and Jx = Jy. Such $x, y \in E$ satisfy $||x|| = ||y|| \neq 0$. Putting $u = \frac{x}{||x||}$ and $v = \frac{y}{||y||}$, we obtain that ||u|| = ||v|| = 1, $u \neq v$ and

$$J(u) = \frac{1}{\|x\|} J(x) = \frac{1}{\|y\|} J(y) = J(v)$$

Put $x^* = J(u) = J(v)$. Then we have $x^* \in S(E^*)$. Further, we have

$$\langle u, x^* \rangle = \langle v, x^* \rangle = 1$$

If $c \in [u, v]$, then $c = (1 - \alpha)u + \alpha v$ for some $\alpha \in [0, 1]$. So, we have that

$$\langle c, x^* \rangle = \langle (1 - \alpha)u + \alpha v, x^* \rangle = (1 - \alpha)\langle u, x^* \rangle + \alpha \langle v, x^* \rangle = 1$$

and

$$1 = \langle c, x^* \rangle \le ||c|| \le (1 - \alpha) ||u|| + \alpha ||v|| = 1.$$

Hence $\langle c, x^* \rangle = 1 = ||c||$. Thus we have that $\langle c, x^* \rangle = ||c||^2 = ||x^*||^2$ for each $c \in [u, v]$. Therefore, $J(c) = \{x^*\}$ for all $c \in [u, v]$. Further, we have that for each $x, y \in [u, v]$,

$$\phi(x,y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2 = 1 - 2\langle x, x^* \rangle + 1 = 0.$$

This completes the proof.

Now, we can prove the following theorem.

Theorem 4.3. Let E be a smooth Banach space. Then, the following are equivalent:

- (i) E is strictly convex;
- (ii) For every $u, v \in S(E)$ with $u \neq v$ and every nonspreading mapping T of [u, v] into itself, T has a fixed point in [u, v].

Proof. Let us assume (i). Take $u, v \in S(E)$ with $u \neq v$. Then [u, v] is a nonempty compact convex subset of a smooth and strictly convex Banach space E. So, we have from Theorem 4.1 that every nonspreading mapping T of [u, v] into itself has a fixed point in [u, v]. This means that (i) implies (ii). Let us show (ii) \Rightarrow (i). Let E be a smooth Banach space. If E is not strictly convex, then it follows from Lemma 4.2 that there exist $u, v \in S(E)$ with $u \neq v$ such that $\phi(x, y) = 0$ for each $x, y \in [u, v]$, where

$$[u, v] = \{(1 - \alpha)u + \alpha v : \alpha \in [0, 1]\}.$$

Define $T: [u, v] \to [u, v]$ by

$$T((1-\alpha)u + \alpha v) = \begin{cases} \alpha u + (1-\alpha)v, & \text{if } \alpha \neq \frac{1}{2}, \\ v, & \text{if } \alpha = \frac{1}{2}. \end{cases}$$

Then we can see that $F(T) = \emptyset$. Since $\phi(x, y) = 0$ for each $x, y \in C, T$ satisfies that

$$\phi(Tx,Ty) + \phi(Ty,Tx) = 0 = \phi(Tx,y) + \phi(Ty,x)$$

for all $x, y \in [u, v]$. So, T is a nonspreading mapping of [u, v] into itself and this contadicts (ii). Therefore, (ii) \Rightarrow (i).

References

- K. Aoyama, F. Kohsaka and W. Takahashi, Three generalizations of firmly nonexpansive mappings: Their relations and continuity properties, J. Nonlinear Convex Anal. 10 (2009), 131– 147.
- [2] R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341–355.
- [3] R. E. Bruck and Reich, Nonexpansive projetions and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459–470.
- [4] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers Group, Dordrecht, 1990.
- [5] T. Honda, T. Ibaraki and W. Takahashi, Duality theorems and convergence theorems for nonlinear mappings in Banach spaces, Int. J. Math. Stat. 6 (2010), 46–64.
- [6] T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 21–32.
- [7] T. Ibaraki and W. Takahashi, Generalized nonexpansive mappings and a proximal-type algorithm in Banach spaces, Contemp. Math. AMS, to appear.
- [8] W. Kaczor, Fixed points of λ-firmly nonexpansive mappings on nonconvex sets, Nonlinear Anal. 47 (2001), 2787–2792.

- [9] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive type mappings in Banach spaces, SIAM J. Opim. **19** (2008), 824–835.
- [10] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166–177.
- [11] S. Matsushita and W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2004 (2004), 37–47.
- [12] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory. 134 (2005), 257–266.
- [13] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
- [14] W. O. Ray, The fixed point property and unbounded sets in Hilbert space, Trans. Amer. Math. Soc. 258, (1980), 531–537.
- [15] S. Reich and I. Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proc. Amer. Math. Soc. 101 (1987), 246–250.
- [16] R. Smarzewski, On firmly nonexpansive mappings, Proc. Amer. Math. Soc. 113 (1991), 723– 725.
- [17] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [18] W. Takahashi, Nonlinear Functional Analysis, Fixed point Theory and its Applications, Yokohama Publishers, Yokohama 2000.
- [19] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Noninear Convex Anal. 11 (2010), to appear.
- [20] W. Takahashi and J. C. Yao, Nonlinear operators of monotone type and convergence theorems with equilibrium problems in Banach spaces, Taiwanese J. Math. to appear.
- [21] W. Takahashi, J.-C. Yao and F. Kohsaka, The fixed point property and unbounded sets in Banach Spaces, Taiwanese J. Math. 14 (2010), 733–742.

Manuscript received July 18, 2009 revised February 24, 2010

S. Dhompongsa

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: sompongd@chiangmai.ac.th

W. Fupinwong

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: g4865050@cm.edu

W. TAKAHASHI

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan *E-mail address:* wataru@is.titech.ac.jp

J.-C. YAO

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan *E-mail address:* yaojc@math.nsysu.edu.tw