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FIXED POINT THEOREMS FOR NONLINEAR MAPPINGS AND
STRICT CONVEXITY OF BANACH SPACES

S. DHOMPONGSA∗, W. FUPINWONG†, W. TAKAHASHI‡, AND J.-C. YAO§

Abstract. In this paper, we first prove a fixed point theorem for generalized
nonexpansive type mappings in a Banach space by using Kohsaka and Takahashi’s
fixed point theorem [10] for nonspreading mappings. Then using Takahashi, Yao
and Kohsaka’s result [21], we obtain a necessary and sufficient condition for the
existence of fixed points of generalized nonexpansive type mappings. Further, we
prove a fixed point theorem for nonspreading mappings with compact domains
in a Banach space. Using this result, we give a necessary and sufficient condition
for strict convexity of Banach spaces.

1. Introduction

Let E be a real Banach space and let C be a nonempty closed convex subset of
E. Then a mapping T from C into itself is said to be firmly nonexpansive [2] if

‖Tx− Ty‖ ≤ ‖r(x− y) + (1− r)(Tx− Ty)‖
for all r > 0 and x, y ∈ C. It is known that T is firmly nonexpansive if and only
if there exists an accretive operator A ⊂ E × E such that D(A) ⊂ C ⊂ R(I + A)
and Tx = (I + A)−1x for all x ∈ C. In this case, F (T ) = A−10 holds. It is also
known that T is firmly nonexpansive if and only if for all x, y ∈ C, there exists
j ∈ J(Tx− Ty) such that

‖Tx− Ty‖2 ≤ 〈x− y, j〉,
where J is the normalized duality mapping from E into 2E∗ .

Recently, Kohsaka and Takahashi [9] introduced a new class of firmly nonexpan-
sive type mappings in a Banach space and then they showed in [10] that the class
coincides with that of resolvents of monotone operators in a Banach space. Further,
they introduced the class of nonspreading mappings in [10] which contains the class
of firmly nonexpansive type mappings and then showed that every nonspreading
mapping in a Banach space with a fixed point is relatively nonexpansive in the
sense of Matsushita and Takahashi [11, 12]. Moreover, they proved a fixed point
theorem for a single nonspreading mapping and a common fixed point theorem for
a commutative family of nonspreading mappings in a Banach space. Very recently,
Takahashi, Yao and Kohsaka [21] studied the fixed point property for nonspreading
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mappings and unbounded sets in a Banach space and they extended Ray’s theorem
[14] in a Hilbert space to that of a Banach space. On the other hand, motivated
by Kohsaka and Takahashi [9, 10], Ibaraki and Takahashi [6, 7] defined the class
of generalized nonexpansive type mappings in a Banach space which is connected
with the class of nonspreading mappings and then they obtained some results for
generalized nonexpansive type mappings.

In this paper, we first prove a fixed point theorem for generalized nonexpansive
type mappings in a Banach space by using Kohsaka and Takahashi’s fixed point the-
orem [10] for nonspreading mappings. Then using Takahashi, Yao and Kohsaka’s
result [21], we obtain a necessary and sufficient condition for the existence of fixed
points of generalized nonexpansive type mappings. Further, we prove a fixed point
theorem for nonspreading mappings with compact domains in a Banach space. Us-
ing this result, we give a necessary and sufficient condition for strict convexity of
Banach spaces.

2. Preliminaries

Throughout this paper the ground field for all Banach spaces is the real field
R. Let E be a Banach space and let E∗ be the dual space of E. Then the duality
mapping J from E into 2E∗ is defined by

Jx = {x∗ ∈ E : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ E.

Let S(E) = {x ∈ E : ‖x‖ = 1} be the unit sphere centered at the origin of E.
Then the Banach space E is said to be smooth if the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S(E). The norm of E is also said to be Gâteaux differentiable.
A Banach space E is reflexive if E = E∗∗. A Banach space E is said to be strictly
convex if ‖(x + y)/2‖ < 1 whenever x, y ∈ S(E) and x 6= y.

We know the following; see, for instance, [4] and [18]:
(1) If E is smooth, then J is single-valued;
(2) if E is reflexive, then J is onto;
(3) if E is strictly convex, then J is one-to-one, that is, Jx

⋂
Jy 6= ∅ implies

that x = y.

Let E be a Banach space and let T be a mapping from a subset C of E into itself.
We denote by

F (T ) = {x ∈ C : Tx = x}
the set of fixed points of T . We say that a mapping T from a subset C of a smooth
Banach space E into itself is of firmly nonexpansive type [9] if

〈Tx− Ty, JTx− JTy〉 ≤ 〈Tx− Ty, Jx− Jy〉
for all x, y ∈ C, where J is the duality mapping of E into E∗. Let us consider the
function φ from E × E into R defined by

φ(u, v) = ‖u‖2 − 2〈u, Jv〉+ ‖v‖2



FIXED POINT THEOREMS AND STRICT CONVEXITY OF BANACH SPACES 177

for all u, v ∈ E. We know that

(2.2) 0 ≤ (‖u‖ − ‖v‖)2 ≤ φ(u, v)

for all u, v ∈ E. Further, we have that for any u, v, w ∈ E,

(2.3) φ(u, v) = φ(u,w) + φ(w, v) + 2〈u− w, Jw − Jv〉.
It is also known that

(2.4) 2〈u− v, Jw − Jz〉 = φ(u, z) + φ(v, w)− φ(u,w)− φ(v, z)

for all u, v, w, z ∈ E. Let φ∗ : E∗ × E∗ → (−∞,∞) be the function defined by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉+ ‖y∗‖2

for x∗, y∗ ∈ E∗, where J is the duality mapping of E. It is easy to see that

(2.5) φ(x, y) = φ∗(Jy, Jx)

for x, y ∈ E. A mapping T : C → C is called nonspreading [10] if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)

for all x, y ∈ C. A mapping T : C → C is of generalized nonexpansive type [6, 7] or
skew-nonspreading if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(y, Tx) + φ(x, Ty)

for all x, y ∈ C. Using (2.4), Kohsaka and Takahashi showed in [9] that a mapping
T : C → C is of firmly nonexpansive type if and only if

φ(Tx, Ty) + φ(Ty, Tx) + φ(Tx, x) + φ(Ty, y) ≤ φ(Tx, y) + φ(Ty, x)

for each x, y ∈ C. So, we have that a firmly nonexpansive type mapping is non-
spreading. Further, Kohsaka and Takahashi [10] proved the following theorem.

Theorem 2.1. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty closed convex subset of E and let T be a nonspreading mapping
from C into itself. Then the following are equivalent:

(i) There exists x ∈ C such that {Tnx} is bounded;
(ii) F (T ) is nonempty.

Very recently, Takahashi, Yao and Kohsaka [21] proved the following theorem
which extends Ray’s theorem in a Hilbert space to that of a Banach space.

Theorem 2.2. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a closed convex suvset of E. Then, the following are equivalent:

(i) Every nonspreading mapping of C into itself has a fixed point in C;
(ii) Every firmly nonexpansive type mapping of C into itself has a fixed point in

C;
(iii) C is bounded.
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3. Fixed point theorems

In this section, we first prove a fixed point theorem for skew-nonspreading map-
pings in a Banach space by using Kohsaka and Takahashi’s fixed point theorem [10].
Before proving it, we show the following lemma.

Lemma 3.1. Let C be a nonempty subset of a smooth, strictly convex and reflexive
Banach space E and let T : C → C be a skew-nonspeading mapping. Then, the
following hold:

(i) JTJ−1 : J(C) → J(C) is a nonspeading mapping;
(ii) F (T ) = ∅ if and only if F (JTJ−1) = ∅;
(iii) ‖Tnx‖ = ‖(JTJ−1)nJx‖ for each x ∈ C and n ∈ N.

Proof. Since E is smooth and strictly convex, E∗ is also smooth and strictly convex.
Thus the duality mapping J∗ from E∗ into 2E∗∗ is a single-valued injection. It follows
from the reflexivity of E that J∗ is a surjection from E∗ into 2E and J∗ = J−1.
Thus JTJ−1 : J(C) → J(C) is well-defined. In fact, for x∗ ∈ J(C), we have a
unique x ∈ C with x∗ = Jx. So, we have JTJ−1x∗ = JTx ∈ J(C).

(i) Write T ∗ = JTJ−1. If x, y ∈ C, x∗ = Jx and y∗ = Jy, then we have

φ∗(T ∗x∗,T ∗y∗) + φ∗(T ∗y∗, T ∗x∗)

= φ∗(JTJ−1Jx, JTJ−1Jy) + φ∗(JTJ−1Jy, JTJ−1Jx)

= φ∗(JTx, JTy) + φ∗(JTy, JTx)

= φ(Ty, Tx) + φ(Tx, Ty)

and

φ∗(T ∗x∗, y∗) + φ∗(T ∗y∗, x∗) = φ∗(JTJ−1Jx, Jy) + φ∗(JTJ−1Jy, Jx)

= φ∗(JTx, Jy) + φ∗(JTy, Jx)

= φ(y, Tx) + φ(x, Ty).

Since T is skew-nonspreading, we have

φ∗(T ∗x∗, T ∗y∗) + φ∗(T ∗y∗, T ∗x∗) = φ(Ty, Tx) + φ(Tx, Ty)

≤ φ(y, Tx) + φ(x, Ty)

= φ∗(T ∗x∗, y∗) + φ∗(T ∗y∗, x∗).

Hence JTJ−1 is nonspreading.

(ii) We also have that for each x ∈ C,

x ∈ F (T ) ⇔ x = Tx

⇔ Jx = JTx

⇔ Jx = JTJ−1Jx

⇔ Jx ∈ F (JTJ−1)

⇔ x ∈ J−1F (JTJ−1).
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Thus F (T ) = J−1F (JTJ−1). So, F (T ) = ∅ if and only if F (JTJ−1) = ∅.

(iii) We show by induction that

(JTJ−1)nJx = JTnx

for each x ∈ C and n ∈ N. In fact, for any x ∈ C, we have JTx = JTJ−1Jx. So,
the equality is true in the case of k = 1. Suppose that

(JTJ−1)kTx = JT kx

for some k ∈ N. Then, we have

(JTJ−1)k+1Tx = (JTJ−1)(JTJ−1)kTx

= JTJ−1JT kx

= JTT kx

= JTT k+1x.

So, the equality is true in the case of k + 1. Hence

‖Tnx‖ = ‖JTnx‖ = ‖(JTJ−1)nJx‖
for each x ∈ C and n ∈ N. ¤
Theorem 3.2. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty closed subset of E such that J(C) is closed and convex, and let
T : C → C be a skew-nonspreading mapping. Then the following are equivalent:
(i) There is an element x ∈ C such that {Tnx} is bounded;
(ii) F (T ) is nonempty.

Proof. From Lemma 3.1 (i), JTJ−1 : JC → JC is nonspreading. From Theorem
2.1, it follows that F (JTJ−1) is nonempty if and only if there is an element x ∈ C
such that {(JTJ−1)nJx} is bounded. So, we have from Lemma 3.1 (ii) and (iii)
that F (T ) is nonempty if and only if there is an element x ∈ C such that {Tnx} is
bounded. ¤

Next, using Theorems 3.2 and 2.2, we obtain a necessary and sufficient condition
for the existence of fixed points of generalized nonexpansive type mappings. This is
connected with Ray’s theorem [14] and Takahashi’s theorem [19] in a Hilbert space.

Lemma 3.3. Let E be a smooth, strictly convex and reflexive Banach space and let
C be a nonempty subset of E. Let T be a nonspreading mapping of JC into itself.
Then J−1TJ is a skew-nonspreading mapping of C into itself.

Proof. Put S = J−1TJ . Then, we have that for any x ∈ C, Sx = J−1TJx ∈ C.
So, S is a mapping of C into itself. Further, we have that for x, y ∈ C, x∗ = Jx
and y∗ = Jy,

φ(Sx, Sy)+φ(Sy, Sx)

= φ(J−1TJx, J−1TJy) + φ(J−1TJy, J−1TJx)

= φ∗(TJy, TJx) + φ∗(TJx, TJy)

= φ∗(Ty∗, Tx∗) + φ∗(Tx∗, T y∗)
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and

φ(Sx, y)+φ(Sy, x)

= φ(J−1TJx, y) + φ(J−1TJy, x)

= φ∗(Jy, TJx) + φ∗(Jx, TJy)

= φ∗(y∗, Tx∗) + φ∗(x∗, T y∗).

Since T is a nonspreading mapping, we have

φ(Sx, Sy)+φ(Sy, Sx)

= φ∗(Ty∗, Tx∗) + φ∗(Tx∗, T y∗)
≤ φ∗(y∗, Tx∗) + φ∗(x∗, T y∗)
= φ(Sx, y) + φ(Sy, x).

So, S is a skew-nonspreading mapping. ¤
Using Lemma 3.3, we obtain the following theorem.

Theorem 3.4. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty closed subset of E such that J(C) is closed and convex. Then the
following are equivalent:
(i) Every skew-nonspreading mapping of C into itself has a fixed point in C;
(ii) C is bounded.

Proof. We know by Theorem 3.2 that if C is bounded, then every skew-nonspreading
mapping of C into itself has a fixed point in C. So, we have that (ii) implies (i).
Let us prove (ii) ⇒ (i). If C is unbounded, then J(C) is unbounded. We know from
Theorem 2.2 that there exists a nonspreading mapping T of J(C) into itself such
that T has no fixed points in J(C). Using Lemma 3.3, we have that J−1TJ : C → C
is a skew-nonspreading mapping of C into itself, which has no fixed points in C; see
also [20]. This means that (ii) ⇒ (i). ¤

4. Strict convexity of Banach spaces

In this section, we first prove a fixed point theorem for nonspreading mappings
with compact domains in a smooth and strictly convex Banach space.

Theorem 4.1. Let E be a smooth and strictly convex Banach space and let C be a
nonempty compact convex subset of E. Let T be a nonspreading mapping of C into
itself. Then, F (T ) is nonempty.

Proof. Take x ∈ C. Let y ∈ C, k ∈ N ∪ {0} and n ∈ N be given. Since T is
nonspreading and (2.3) holds, we have

φ(T k+1x, Ty) + φ(Ty, T k+1x)

= φ(T k+1x, y) + φ(Ty, T kx)

≤ φ(T k+1x, Ty) + φ(Ty, y) + 2〈T k+1x− Ty, JTy − Jy〉+ φ(Ty, T kx).

This implies that

0 ≤ φ(Ty, y) + φ(Ty, T kx)− φ(Ty, T k+1x) + 2〈T k+1x− Ty, JTy − Jy〉.
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Summing these inequalities with respect to k = 0, 1, . . . , n− 1, we have

0 ≤nφ(Ty, y)

+ φ(Ty, x)− φ(Ty, Tnx) + 2〈
n−1∑

k=0

T k+1x− nTy, JTy − Jy〉.

Dividing this inequality by n, we have

(4.1) 0 ≤ φ(Ty, y) +
1
n
{φ(Ty, x)− φ(Ty, Tnx)}+ 2〈Sn(Tx)− Ty, JTy − Jy〉,

where Sn(z) = 1
n

∑n−1
k=0 T kz for all z ∈ C. Since {Sn(Tx)} ⊂ C and C is compact,

we have a subsequence {Sni(Tx)} of {Sn(Tx)} such that Sni(Tx) → u ∈ C. Letting
ni →∞ in (4.1), we obtain

(4.2) 0 ≤ φ(Ty, y) + 2〈u− Ty, JTy − Jy〉.
Putting y = u in (4.2), we have from (2.4) that

0 ≤ φ(Tu, u) + 2〈u− Tu, JTu− Ju〉
= φ(Tu, u) + φ(u, u) + φ(Tu, Tu)− φ(u, Tu)− φ(Tu, u)

= −φ(u, Tu).

Hence we have φ(u, Tu) ≤ 0 and hence φ(u, Tu) = 0. Since E is strictly convex, we
have u = Tu. Therefore F (T ) is nonempty. This completes the proof. ¤

Next, we show that the strict convexity of E in Theorems 2.1 and 3.2 can not be
omitted. Before showing it, we prove the following lemma.

Lemma 4.2. Let E be a smooth Banach space and let J be the duality mapping of
E into E∗. If E is not strictly convex, then there are u, v ∈ S(E) with u 6= v such
that φ(x, y) = 0 for each x, y ∈ [u, v], where

[u, v] = {(1− α)u + αv : α ∈ [0, 1]}.
Moreover, J([u, v]) consists of one point.

Proof. If E is not strictly convex, then there exist u, v ∈ S(E) such that u 6= v and
J(u) = J(v). In fact, if E is a smooth Banach space, then E is strictly convex if
and only if for any x, y ∈ E with x 6= y, Jx 6= Jy. So, if E is not strictly convex,
then there exist x, y ∈ E such that x 6= y and Jx = Jy. Such x, y ∈ E satisfy
‖x‖ = ‖y‖ 6= 0. Putting u = x

‖x‖ and v = y
‖y‖ , we obtain that ‖u‖ = ‖v‖ = 1, u 6= v

and
J(u) =

1
‖x‖J(x) =

1
‖y‖J(y) = J(v).

Put x∗ = J(u) = J(v). Then we have x∗ ∈ S(E∗). Further, we have

〈u, x∗〉 = 〈v, x∗〉 = 1.

If c ∈ [u, v], then c = (1− α)u + αv for some α ∈ [0, 1]. So, we have that

〈c, x∗〉 = 〈(1− α)u + αv, x∗〉 = (1− α)〈u, x∗〉+ α〈v, x∗〉 = 1

and
1 = 〈c, x∗〉 ≤ ‖c‖ ≤ (1− α)‖u‖+ α‖v‖ = 1.
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Hence 〈c, x∗〉 = 1 = ‖c‖. Thus we have that 〈c, x∗〉 = ‖c‖2 = ‖x∗‖2 for each c ∈ [u, v].
Therefore, J(c) = {x∗} for all c ∈ [u, v]. Further, we have that for each x, y ∈ [u, v],

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 = 1− 2〈x, x∗〉+ 1 = 0.

This completes the proof. ¤

Now, we can prove the following theorem.

Theorem 4.3. Let E be a smooth Banach space. Then, the following are equivalent:
(i) E is strictly convex;
(ii) For every u, v ∈ S(E) with u 6= v and every nonspreading mapping T of

[u, v] into itself, T has a fixed point in [u, v].

Proof. Let us assume (i). Take u, v ∈ S(E) with u 6= v. Then [u, v] is a nonempty
compact convex subset of a smooth and strictly convex Banach space E. So, we
have from Theorem 4.1 that every nonspreading mapping T of [u, v] into itself has
a fixed point in [u, v]. This means that (i) implies (ii). Let us show (ii) ⇒ (i).
Let E be a smooth Banach space. If E is not strictly convex, then it follows from
Lemma 4.2 that there exist u, v ∈ S(E) with u 6= v such that φ(x, y) = 0 for each
x, y ∈ [u, v], where

[u, v] = {(1− α)u + αv : α ∈ [0, 1]}.
Define T : [u, v] → [u, v] by

T ((1− α)u + αv) =

{
αu + (1− α)v, if α 6= 1

2 ,

v, if α = 1
2 .

Then we can see that F (T ) = ∅. Since φ(x, y) = 0 for each x, y ∈ C, T satisfies that

φ(Tx, Ty) + φ(Ty, Tx) = 0 = φ(Tx, y) + φ(Ty, x)

for all x, y ∈ [u, v]. So, T is a nonspreading mapping of [u, v] into itself and this
contadicts (ii). Therefore, (ii) ⇒ (i). ¤
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