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STOCHASTIC TRIGONOMETRY AND STOCHASTIC
INVARIANTS

OVIDIU CALIN AND DER-CHEN CHANG

Abstract. We study a geometry where each point is described by stochastic
coordinates. In the first part we deal with a stochastic analog of trigonometry
and provide some applications in the stochastic framework. In the second part
we introduce the concept of stochastic transforms which are transforms that com-
mute with the expectation operator, and study their properties. In the last part
we prove that these transforms are harmonic and discuss the geometry induced
by them.

1. Introduction

When measuring a length for instance, one introduces inadvertently some errors
of measurement. Since these errors are due to multiple independent causes, by the
central limit theorem it makes sense to consider them normally distributed with
mean zero. For instance, if a square has the side equal to `, and the error of
measurement is denoted by ε, with ε ∼ N(0, k) (normally distributed with zero
mean and standard deviation k), then the measured length is a random variable
equal to ˆ̀ = ` + ε. Then the estimated area of the square computed from the
measured length is given by

E(ˆ̀2) = E
(
(` + ε)2

)
= `2 + E(ε2) = `2 + k2,

which is with an amount k2 larger than the real area of the square. This might be
a significant error, especially if the errors tend to cumulate as new measurements
are made. If one continues with estimating the volume of a cube of side `, then we
obtain

E(ˆ̀3) = `3 + 3`k2 + O(ε3),

which implies an error which cannot be neglected since increases linearly with re-
spect to the cube side `.

It is important in our analysis to distinguish between the properties of the ele-
ments we are measuring. Some of them are stochastic elements, which means that
one or more underlying parameters are random variables, and the other are fixed
elements that are deterministic elements which can be measured exactly. We shall
discuss next the case of a few stochastic elements such as points, lines, and circles.
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A stochastic point M̂ in the plane is a point with at least one of the coordi-
nates stochastic. (The hat will always be used to denote a stochastic element). If
(X̂M , ŶM ) are the Cartesian coordinates of M̂ , then either X̂M , or ŶM , or both
coordinates are random variables. The expected position of the stochastic point M̂
is E(M̂) =

(
E(X̂M ), E(ŶM )

)
= (XM , YM ) = M . A fixed point M is a point with

both coordinates (XM , YM ) deterministic.
For instance, due to vibration, a molecule contained in a piece of paper does

not have fixed coordinates; its coordinates are stochastic, so that one can think of
it as a stochastic point in the plane. If three such molecules are considered, the
area of the triangle defined by them is a random variable. One problem is whether
one can recover the expected area of this triangle from the expected positions of
the molecules. If the answer is positive we say that we have obtained a stochastic
invariant; in general this concept stands for some measurable concept which is not
lost in the stochasticity and can be recovered. The same mechanism can be applied
for the center of mass of the molecules, for instance. More stochastic invariants will
be investigated in section 4. These stochastic invariants will be used to define the
stochastic transforms of the plane in the section 5.

A stochastic line in the standard form y = m̂x+ b̂ has at least one of the parame-
ters m̂ or b̂ stochastic. If only the slope is stochastic, then the sample space consists
of lines passing through the fixed point (0, b). If just the parameter b̂ is stochastic,
then the sample space consists of a family of parallel lines of slope m.

A stochastic circle C(Ô, r̂) might have either a stochastic radius r̂ or a stochastic
center Ô, or both. One may define any type of stochastic polygon if at least one of
the vertices is a stochastic point.

In the first part of this paper we introduce a new type of trigonometry with
stochastic elements. Here we shall discuss the stochastic sine and stochastic cosine
functions and their properties. A few applications given in section 3 will show how
different the new geometry with stochastic elements can be from the Euclidean one.

In section 4 we shall investigate those properties which are stochastically invari-
ant. This leads to the definition of the stochastic invariants. We provide examples
of stochastic invariants on the stochastic line (the line where the coordinate is sto-
chastic) and on the stochastic plane (the plane where the cartesian coordinates are
stochastic).

In section 5 we introduce the concept of stochastic transform and study its prop-
erties. In section 6 we provide the theorems of characterization of stochastic trans-
forms on the stochastic line and stochastic plane as linear and harmonic functions,
respectively. In the fifth section we deal with the geometry introduced by the invert-
ible stochastic transforms and discuss its relationship with the metrical and affine
geometries. In the last section we assume the coordinates of the point depend on
time and are defined as Brownian motions and show that their images through a
stochastic transform are also Brownian motions with a different time scale.

Both authors would like to thank the National Center for Theoretical Sciences
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winter of 2009. The second author take great pleasure in expressing his thanks to
Professor Winnie Li, the director of NCTS, for the invitation.

2. Stochastic trigonometric functions

This section defines two stochastic functions, called stochastic sine and stochastic
cosine, which play a similar role to the functions sine and cosine from the usual
trigonometry.

Consider a fixed point M on the fixed trigonometric circle C(O, 1). Let t be its
argument, so the fixed coordinates of M are XM = cos t and YM = sin t. Now we
shall consider that due to some measurement error the angle t becomes stochastic
and is replaced by the random variable τt = t̂ = t+εt, where the error εt ∼ N(0, kt).
The standard deviation kt is considered smooth with respect to the parameter t.
The probability density function of εt will be denoted by ϕt.

The corresponding stochastic point M̂ will have the stochastic coordinates X̂M =
cos τt and ŶM = sin τt. The expected position of the stochastic point X̂M is E(M̂) =
M = (XM , Y M ). In order to find the expected coordinates XM , Y M we shall
compute the terms E(sin εt) and E(cos εt) first. We have

E(sin εt) =
∫

R
sinxϕt(x) dx =

∫

R
sinx

1√
2πkt

e
− x2

2k2
t dx = 0,

as the integral of an odd function over a symmetric interval. Since

(2.1) E(cos εt) =
∫

cos xϕt(x) dx,

the density function ϕt(x) determines uniquely the value of E(cos εt). Then it will
suffice to compute E(cos εt) in the case of a particular random variable with the

same density function as εt. Choosing this random variable to be
kt√
t
Wt, t > 0,

where Wt is the 1-dimensional Brownian motion, we note that

kt√
t
Wt ∼ N(0, kt).

Then

(2.2) E(cos εt) = E
(
cos(

kt√
t
Wt)

)
= E

(
cos(σtWt)

)
,

with σt = kt√
t
. Using formulas of [2], p. 56

(2.3) E(W 2n+1
t ) = 0, E(W 2n

t ) =
(2n)!
2nn!

tn,

taking the expectation operator in the series expansion yields

E
(
cos(σtWt)

)
=

∑
(−1)n 1

(2n)!
σ2n

t E(W 2n
t ) =

∑
(−1)n 1

(2n)!
σ2n

t

(2n)!
2nn!

tn

=
∑

(−1)n 1
n!

(σ2
t t

2

)n
= e−σ2

t t/2.
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Substituting in (2.2) we get

(2.4) E(cos εt) = e−k2
t /2.

Then the value of the expected coordinates XM and Y M are

XM = E(X̂M ) = E(cos τt) = E
(
cos(t + εt)

)
= E(cos t cos εt − sin t sin εt)

= cos t E(cos εt)− sin t E(sin εt) = cos t E(cos εt)

= e−k2
t /2 cos t.

Y M = E(ŶM ) = E(sin τt) = E
(
sin(t + εt)

)
= E

(
sin t cos εt + cos t sin εt

)

= sin t E(cos εt) + cos t E(sin εt)

= e−k2
t /2 sin t.

Proposition 2.1. The expected coordinates of the stochastic point M̂(cos εt, sin εt)
are given by (e−k2

t /2 cos t, e−k2
t /2 sin t).

The distance between the origin and the expected position of the stochastic point
M̂ is |OM | = e−k2

t /2 ≤ 1. The trade-off between the radius length and the angle
accuracy can be stated by saying that the larger the error, the shorter the radius.
Since the largest error in measuring the argument angle t is π (an error of π + δ
counts as δ), the shrinking factor has the lower and upper bounds

1 ≥ e−k2
t /2 ≥ e−π2/2.

In the next definition we shall consider the standard deviation kt = k, constant.

Definition 2.2. Let t be an angle measured within the error ε ∼ N(0, k), k > 0
constant. Define the stochastic functions

Ssin(t, k) = ek2/2 sin(t + ε)

Scos(t, k) = ek2/2 cos(t + ε),

called the stochastic sine and the stochastic cosine with parameter k.

By Proposition 2.1 we have

E
(
Ssin(t, k)

)
= sin t

E
(
Scos(t, k)

)
= cos t,

We also have
Ssin2(t, k) + Scos2(t, k) = ek2

> 1.

We notice the following asymptotic relations for k → 0

Ssin(t, k) → sin t, Scos(t, k) → cos t.

Since if ε ∼ N(0, k) then also −ε ∼ N(0, k), we have

Scos(−t, k) = ek2/2 cos(−t + ε) = ek2/2 cos(t− ε) = Scos(t, k),

i.e. t → Scos(t, k) is an even function. Similarly we can show that t → Ssin(t, k) is
an odd function.

Next we shall deal with some trigonometric formulas for the stochastic sine and
cosine.
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Proposition 2.3.

Ssin(t + u, k) = Scos(u, k) sin t + Ssin(u, k) cos t

= Scos(t, k) sin u + Ssin(t, k) cos u,

Scos(t + u, k) = cos t Scos(u, k)− sin t Ssin(u, k)
= cos u Scos(t, k)− sinu Ssin(t, k).

Proof. Stating from the definition we have

Ssin(t + u, k) = ek2/2 sin(t + u + ε) = ek2/2 sin
(
t + (u + ε)

)

= ek2/2
(
sin t cos(u + ε) + cos t sin(u + ε)

)

= sin t Scos(u, k) + cos t Ssin(u, k).

In a similar way we can prove the other formulas. ¤

Figure 1. The graph of the stochastic sine Ssin(t, k) and the sto-
chastic cosine Scos(t, k).

The graphs of the stochastic sine Ssin(t, k) and the stochastic cosine Scos(t, k)
are depicted in Figure 1 for t ∈ [0, 2π]. They look like graphs of the usual sine and
cosine which are loaded with some noise and are oscillating between ±ek2/2. This
noise is controlled by the parameter k. The next result states that the variance of
the stochastic sine and cosine are equal and they are independent of t.

Proposition 2.4. We have

V ar
(
Ssin(t, k)

)
= V ar

(
Scos(t, k)

)
=

1
2
(ek2 − 1).

Proof. Let Xt = Ssin(t, k). Then

E(X2
t ) = ek2

E
(
sin2(t + ε)

)
=

1
2
ek2

E
(
1− cos(2t + 2ε)

)

=
1
2
ek2(

1− cos(2t) E(cos 2ε) + sin(2t) E(sin 2ε)︸ ︷︷ ︸
=0

)
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=
1
2
ek2 − 1

2
cos(2t),

where we used E(cos 2ε) = e−k2
, see (2.4). The variance is

V ar(Xt) = E(X2
t )− E(Xt)2 =

1
2
ek2 − 1

2
cos(2t)− sin2 t =

1
2
(ek2 − 1).

The proof for the variance of the stochastic cosine is similar.
¤

3. Applications

1. The Pythagorean Theorem Consider a right triangle ABC with stochastic
angle ∠BAC = π/2 + ε. The hypotenuse â is also stochastic and the lengths of the
sides b and c are considered fixed. Taking the expectation in the law of cosines

â2 = b2 + c2 − 2bc cos(π/2 + ε)
= b2 + c2 + 2bc sin ε,

yields
E(â2) = b2 + c2

since E(sin ε) = 0. Using the inequality E(â2) ≥ E(â)2 we obtain

(3.1) ā2 ≤ b2 + c2,

where ā = E(â) is the expected length of the hypothenuse. The inequality (3.1)
shows that the expected length of the hypothenuse in the stochastic case is smaller
than in the deterministic case.
2. The estimation of one side opposite to a stochastic angle. Consider the
triangle ABC with stochastic angle A and fixed sides b, c and angles B and C. If
Â = A + ε, with ε ∼ N(0, k), then taking the expectation in the relation

â2 = b2 + c2 − 2bc cos(A + ε)

yields

ā2 = E(â2) = b2 + c2 − 2bcE
(
cos(A + ε)

)

= b2 + c2 − 2e−k2/2bc cos A

= e−k2/2(b2 + c2 − 2bc cos A) + b2 + c2 − e−k2/2(b2 + c2)

= e−k2/2a2 + (1− e−k2/2)(b2 + c2).

Hence the expected length ā of the opposite side to the stochastic angle A satisfies

ā2 = e−k2/2a2 + (1− e−k2/2)(b2 + c2).

3. Stochastic triangle inscribed in a fixed circle. Let ABC be a triangle

inscribed in a circle of radius R, with sides lengths a, b, c and angle measures α, β,
γ, respectively. Suppose now that the points B and C become stochastic but they
are still under the constraint that belong to the fixed circle. The problem has now
the following given elements

Fixed elements: the circle and the point A on the circle;
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Figure 2. Stochastic points B and C on a fixed circle; A fixed point
on the circle.

Stochastic elements: points B̂ and Ĉ on the circle.

As a consequence, the sides lengths and the angle measures are also stochastic.
Let â, b̂, ĉ be the stochastic estimations of the lengths of the sides, and let ā = E(â),
b̄ = E(b̂) , c̄ = E(ĉ) be the expected lengths, see Figure 2. We have the following
result.

Proposition 3.1.
b̄c̄

ā
=

bc

a
.

Proof. Consider the stochastic measures of the angles

α̂ = α + εα, β̂ = β + εβ, γ̂ = γ + εγ ,

where εβ , εγ ∼ N(0, k) are independent random variables. From the law of sines we
have

b̂ = 2R sin β̂ = 2R sin(β + εβ),
with the radius R fixed. Taking the expectation operator and using the law of sines
yields

b̄ = E(b̂) = 2R E
(
sin(β + εβ)

)
= 2R sinβ e−k2/2 = e−k2/2b,

where we used the law of sines for the fixed elements b, β and R. In a similar way,
one can show that c̄ = e−k2/2c. Since

α + β + γ = α̂ + β̂ + γ̂ = π,

the random variables εα, εβ , εγ are related by

εα + εβ + εγ = 0,

and hence εα = −(εβ + εγ) ∼ N(0, k
√

2). Then by the law of sines

â = 2R sin α̂ = 2R sin(α + εα),

and taking the expectation we get

ā = E(â) = E
(
2R sin(α + εα)

)
= 2R sinαe−(k

√
2)2/2 = ae−k2

.

Then
b̄c̄

ā
=

be−k2/2 ce−k2/2

ae−k2 =
bc

a
.

¤
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4. Stochastic invariants

Let Â, B̂, . . . be a finite or infinite number of arbitrary stochastic points in the
plane with the expected positions E(Â) = A, E(B̂) = B, . . . A real valued function
f is called a stochastic invariant of the plane if

E
(
f(Â, B̂, . . . )

)
= f(A,B, . . . ).

In other words, stochastic invariants are real-valued functions which admit as argu-
ments stochastic points and commute with the expectation operator

E
(
f(Â, B̂, . . . )

)
= f

(
E(Â), E(B̂), . . . ).

We note that the sum of two stochastic invariants is still a stochastic invariant, while
the product is not. Then it makes sense to define the variance of the stochastic
invariant f by

E
(
f2(Â, B̂, . . . )

)−
(
E

(
f(Â, B̂, . . . )

))2
= E

(
f2(Â, B̂, . . . )

)− f2(A,B, . . . ).

The study of stochastic invariants may help with understanding the geometry of
the stochastic plane. We are interested with those geometric concepts which can be
expressed in terms of stochastic invariants. Next we shall present a few examples
of stochastic invariants.
The distance on the stochastic line. The stochastic line is a line where the
coordinates of points are stochastic. This line will be denoted by R̂. If on the
real line a point M has the coordinate XM , on the stochastic line this corresponds
to a stochastic point M̂ with stochastic coordinate X̂M = XM + ε, with ε random
variable normally distributed with mean zero and standard deviation k, independent
on the point. This way each point on the line corresponds to a normal distribution
centered at the coordinate of that point, see Fig. 3. It worth noting that when
k → 0 the distribution tends to the Dirac delta function δXM

and the stochastic
line becomes in this case the usual real line.

Figure 3. Each point on the stochastic line corresponds to a normal
distribution centered at the coordinate of that point.

Consider two stochastic points M̂ , N̂ on the stochastic line with the coordinates

X̂M = XM + εM , X̂N = XN + εN

with εM , εN ∼ N(0, k) independent random variables. Let M and N denote the
expected positions of the aforementioned stochastic points. The distance between
the points is the random variable

|M̂N̂ | = |X̂M − X̂N | = |(XM −XN ) + (εM − εN )| ∼ N(|XM −XN |, k
√

2),
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and hence
E(|M̂N̂ |) = |XM −XN | = |MN |,

which shows that the distance f(M̂, N̂) = |M̂N̂ | is a stochastic invariant with the
variance

E(|M̂N̂ |2)− (
E(|M̂N̂ |))2 = |MN |2 + 2k2 − |MN |2 = 2k2.

This stochastic invariant explains why measuring a distance several times and av-
eraging out the results yields a better approximation for the distance.

Invariants on the stochastic plane. The stochastic plane is a plane with all
points stochastic, i.e. points for which the coordinates are random variables. The
stochastic plane will be denoted by P̂ to make the distinction from the real plane
denoted by P. If M̂ is a stochastic point in the plane, then its coordinates are

X̂M = XM + εM , ŶM = YM + ε′M ,

where (XM , YM ) are the coordinates of the expected point M = E(M̂). The random
errors are considered independent and normally distributed, with ε ∼ N(0, k), ε′ ∼
N(0, k′). Next we shall provide a few examples of stochastic invariants of the plane.

The midpoint of a line segment. Let Â and B̂ be two stochastic points in the
stochastic plane. We can easily see that the coordinates of the midpoint of the line
segment AB

fX(Â, B̂) =
1
2
(X̂A + X̂B),

fY (Â, B̂) =
1
2
(ŶA + ŶB)

are stochastic invariants. The variance of the first invariant is k2/2 and the variance
of the second one is k′2/2.

The center of mass. Given a polygon with the vertices at the stochastic points
Âi, i ∈ {1, . . . , n}, with the stochastic coordinates

X̂Ai = XAi + εi, ŶAi = YAi + ε′i,

then the coordinates of the center of mass

fX(Â1, . . . , Âi) =
1
n

∑
X̂Ai , fY (Â1, . . . , Âi) =

1
n

∑
ŶAi

are stochastic invariants since

E
(
fX(Â1, . . . , Âi)

)
=

1
n

∑
E(X̂Ai) =

1
n

∑
XAi

= fX(A1, . . . , Ai) = fX

(
E(Â1), . . . , E(Ân)

)
.

Since ε1, . . . , εn are independent and normally distributed with variance k2, then
their average 1

n

∑
εi has variance k2

n . It follows that fX(Â1, . . . , Âi) has variance
k2

n . Similarly, fY (Â1, . . . , Âi) has variance k′2
n . We notice that when n → ∞, the

variance tends to zero, which means that the coordinates of the center of mass tend
to become deterministic in this limit case.
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The angular argument. If M̂ is a stochastic point on the fixed unit circle, its
angular argument is given by τ = t + ε, where ε ∼ N(0, k). Then f(M̂) = τ is a
stochastic invariant with variance k2, since

E
(
f(M̂)

)
= E(τ) = E(t + ε) = t = f

(
E(M̂)

)
.

The inner product function. For any two stochastic points M̂ and N̂ in the plane
P̂ define

f(M̂, N̂) = X̂MX̂N + ŶM ŶN .

A computation shows

f(M̂, N̂) = (XM + εM )(XN + εN ) + (YM + ε′M )(YN + ε′N )
= XMXN + YMYN + εNXM + εMXN + εM εN

+YM ε′M + ε′MYN + ε′M ε′N ,

and taking the expectation yields

E
(
f(M̂, N̂)

)
= XMXN + YMYN = f(M, N) = f

(
E(M̂), E(N̂)

)
,

i.e. the function f is a stochastic invariant.

The area of a triangle. In the following we shall show that the area of a triangle
is a stochastic invariant. Consider three stochastic points Â, B̂, Ĉ with E(Â) = A,
E(B̂) = B, E(Ĉ) = C. Consider the oriented area function f : P̂ × P̂ × P̂ → R
given by

f(Â, B̂, Ĉ) = σ(Â, B̂, Ĉ) =
1
2

∣∣∣∣∣
1 X̂A ŶA

1 X̂B ŶB

1 X̂C ŶC

∣∣∣∣∣,

where

X̂A = XA + εA, X̂B = XB + εB, X̂C = XC + εC

ŶA = YA + εA, ŶB = YB + εB, ŶC = YC + εC .

Using the linearity property of the determinant we have

f(Â, B̂, Ĉ) =
1
2

∣∣∣∣∣
1 X̂A ŶA

1 X̂B ŶB

1 X̂C ŶC

∣∣∣∣∣

=
1
2

∣∣∣∣∣
1 XA YA

1 XB YB

1 XC YC

∣∣∣∣∣ +
1
2

∣∣∣∣∣
1 XA ε′A
1 XB ε′B
1 XC ε′C

∣∣∣∣∣(4.1)

+
1
2

∣∣∣∣∣
1 εA YA

1 εB YB

1 εC YC

∣∣∣∣∣ +
1
2

∣∣∣∣∣
1 εA ε′A
1 εB ε′B
1 εC ε′C

∣∣∣∣∣

= σ(A,B, C) +
1
2
∆1 +

1
2
∆2 +

1
2
∆3.(4.2)
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The expected value of the last three determinants vanish. For instance,

E(∆1) = E

[∣∣∣∣∣
1 XA ε′A
1 XB ε′B
1 XC ε′C

∣∣∣∣∣

]
=

∣∣∣∣∣
1 XA E(ε′A)
1 XB E(ε′B)
1 XC E(ε′C)

∣∣∣∣∣ =

∣∣∣∣∣
1 XA 0
1 XB 0
1 XC 0

∣∣∣∣∣ = 0.

Then taking the expected value in relation (4.2) yields

E
(
f(Â, B̂, Ĉ)

)
= σ(A,B, C) = f(A,B, C),

i.e. the oriented area of a triangle is a stochastic invariant. Next we shall compute
its variance. Using (4.2) we get

V arf = E
(
f2(Â, B̂, Ĉ)

)− σ2(A,B, C)

=
1
4
E(∆2

1 + ∆2
2 + ∆2

3) + σ(A,B, C)E(∆1 + ∆2 + ∆3)

+
1
2
E(∆1∆2 + ∆2∆3 + ∆3∆1).(4.3)

Expanding the determinant

∆1 = XB(ε′C − ε′A) + XA(ε′B − ε′C) + XC(ε′A − ε′B),

and then

∆2
1 = X2

B(ε′C − ε′A)2 + X2
A(ε′B − ε′C)2 + X2

C(ε′A − ε′B)2

+2XAXB(ε′C − ε′A)(ε′B − ε′C) + 2XBXC(ε′C − ε′A)(ε′A − ε′B)
+2XAXC(ε′B − ε′C)(ε′A − ε′B).

Using

E
(
(ε′B − ε′C)2

)
= E

(
(ε′A − ε′B)2

)
= E

(
(ε′C − ε′A)2

)
= 2k′2,

E
(
(ε′C − ε′A)(ε′B − ε′C)

)
= −E(ε′2C) = −k′2,

E
(
(ε′C − ε′A)(ε′A − ε′B)

)
= −E(ε′2A) = −k′2,

taking the expectation yields

(4.4) E(∆2
1) = 2k′2(X2

A + X2
B + X2

C −XAXB −XBXC −XCXA).

Similarly we can show that

(4.5) E(∆2
2) = 2k2(Y 2

A + Y 2
B + Y 2

C − YAYB − YBYC − YCYA).

Expanding the last determinant

∆3 = εB(ε′C − ε′A) + εA(ε′B − ε′C) + εC(ε′A − ε′B)

and taking the square yields

∆2
3 = ε2B(ε′C − ε′A)2 + ε2A(ε′B − ε′C)2 + ε2C(ε′A − ε′B)2

= 2εBεA(ε′C − ε′A)(ε′B − ε′C) + 2εBεC(ε′C − ε′A)(ε′A − ε′B)
+2εAεC(ε′B − ε′C)(ε′A − ε′B).

Using the independence of the variables ε and ε′ we have

E
(
ε2B(ε′C − ε′A)2

)
= E(ε2B)E(ε′C − ε′A)2 = k2 · 2k′2,

E
(
εBεA(ε′C − ε′A)(ε′B − ε′C)

)
= E(εB)E(εA)E

(
(ε′C − ε′A)(ε′B − ε′C)

)
= 0,
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and the similar relations. Then the previous relation yields

E(∆2
3) = 6k2k′2.

Using the properties of independent random variables we also have

E(∆1∆2) = E(∆2∆3) = E(∆3∆1) = 0,

E(∆1) = E(∆2) = E(∆3) = 0.

Substituting in formula (4.3) we obtain

V arf =
1
2
k′2(X2

A + X2
B + X2

C −XAXB −XBXC −XCXA)

+
1
2
k2(Y 2

A + Y 2
B + Y 2

C − YAYB − YBYC − YCYA) +
3
2
k2k′2.

To conclude, a good estimation of the area of a triangle with stochastic vertices is the
area of the triangle formed by the centers of the distributions of the aforementioned
stochastic vertices.

Since any convex polygon can be partitioned into triangles, using that the area
function is additive, we obtain that the signed area function associated with any
convex polygon is a stochastic invariant.

Operations with stochastic invariants.
It follows easily from the definition that the linear combination of two stochastic in-
variants is also a stochastic invariant. However, the usual product is not necessarily
a stochastic invariant, but the tensorial product is.
Tensorial product of stochastic invariants. Let f(M̂1, . . . , M̂r) and g(N̂1, . . . , N̂s) be
two stochastic invariants. Define the new stochastic invariant

(f ⊗ g)(M̂1, . . . , M̂r, N̂1, . . . , N̂s) = f(M̂1, . . . , M̂r)g(N̂1, . . . , N̂s).

Using the independence we can check that

E[(f ⊗ g)(M̂1, . . . , M̂r, N̂1, . . . , N̂s)] = E[f(M̂1, . . . , M̂r)]E[g(N̂1, . . . , N̂s)]
= f(M1, . . . , Mr)g(N1, . . . , Ns)
= (f ⊗ g)(M1, . . . , Mr, N1, . . . , Ns).

5. Stochastic transforms

A mapping F = (F1, F2) : P̂ → P̂ is called a stochastic transform if its compo-
nents F1, F2 : P̂ → R̂ are stochastic invariants. This means

E
(
F (M̂)

)
= F

(
E(M̂)

)
, ∀M̂ ∈ P̂.

Next we shall encounter a few examples. Since E is a linear operator, then any
transform with linear components is a stochastic transform. In particular, a trans-
lation, a rotation or an affine transform is a stochastic transform. For instance, if
T is the translation by a fixed vector (u, v) given by

x′ = x + u

y′ = y + v,
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then
E

(T (X̂M , ŶM )
)

=
(
E(X̂M + u), E(ŶM + v)

)
=

(
E(X̂M ) + u,E(ŶM ) + v

)

= T (
E(X̂M ), E(ŶM )

)
.

Proposition 5.1. Let S denote the set of all stochastic transforms of the plane P̂.
Then

(i) If f, g ∈ S, then αf + βg ∈ S, for all α, β ∈ R.
(ii) If f, g ∈ S, then f ◦ g ∈ S.
(iii) If f ∈ S and f is invertible, then f−1 ∈ S.

Proof. (i) It comes from the linearity of the expectation operator E.
(ii) It follows from the commutativity between E and the functions f and g.
(iii) Applying the expectation to f

(
f−1(M̂)

)
= M̂ yields E

(
f(f−1(M̂)

)
= M ,

which after using the commutativity between E and f yields

f
(
E(f−1(M̂))

)
= M.

Taking the inverse of f yields

E(f−1(M̂)) = f−1(M),

which is E(f−1(M̂)) = f−1
(
E(M̂)

)
, so f−1 ∈ S. ¤

The invertible elements of S will be denoted by U(S). This forms a group of
transforms which is noncommutative. For instance, as it follows from the linearity,
any transformation of the plane of type

x′ = ax + by + c1

y′ = cx + dy + c2,

with ad 6= bc, is an element of U(S). We shall show in the following that there are
elements of U(S) which are neither isometries nor affine transforms. In order to
show this, it suffices to provide an example of a stochastic transform of the plane
which is not linear.

A nonlinear stochastic transform. Consider F = (F1, F2) : P̂ = R̂ × R̂ → P̂
given by

F1(x̂, ŷ) = ex̂ sin ŷ

F2(x̂, ŷ) = ex̂ cos ŷ,

which is invertible since ∂(F1,F2)
∂(x̂,ŷ) = −e2x̂ 6= 0. Consider the stochastic coordinates

x̂ = x + ε, ŷ = y + ε′,

with ε, ε′ ∼ N(0, k) independent variables.
We recall from section 2 that E(cos ε′) = e−k2/2 and E(sin ε′) = 0. Using a

similar method we shall show that E(eε) = ek2/2. Since E(eε) =
∫

exϕ(x) dx,
with ϕ(x) = 1√

2πk
e−x2/2k2

, the expected value E(eε) is uniquely determined by the
density function ϕ(x), so if the random variable ε is replaced by another one with
the same density function, then the expected values are the same. We choose to
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replace ε by k√
t
Wt ∼ N(0, k), where Wt stands for the 1-dimensional Brownian

motion. Denote k√
t

= σt. Using (2.3) we have

E(eε) = E
( ∑ σn

t Wn
t

n!
)

=
∑ 1

n!

(σ2
t t

2

)n
= etσ2

t /2 = ek2/2.

Next we shall check that F1 is a stochastic invariant.

E
(
F1(x̂, ŷ)

)
= E(ex̂ sin ŷ) = E

(
exeε sin(y + ε′)

)

= ex sin y E(eε cos ε′) + ex cos y E(eε sin ε′)
= ex sin y E(eε)E(cos ε′) + ex cos y E(eε)E(sin ε′)

= ex sin y ek2/2e−k2/2 + ex cos y ek2/2 · 0
= ex sin y = F1(x, y) = F1

(
E(x̂), E(ŷ)

)
.

Similarly, one can show that E
(
F2(x̂, ŷ)

)
= F2

(
E(x̂), E(ŷ)

)
. It follows that F =

(F1, F2) is a stochastic transform, with F ∈ U(S).

Another example of nonlinear stochastic transform is F = (F1, F2) with

F1(x̂, ŷ) = x̂− x̂ŷ + ŷ

F2(x̂, ŷ) = x̂ + x̂ŷ + ŷ,

which is invertible on P̂\{(x̂, ŷ)}. This follows from the linearity of E and the
properties of ε and ε′

E(x̂± x̂ŷ + ŷ) = x± E(xy + xε′ + yε + εε′) + y = x± xy + y.

It is worth to notice that in the last two examples the components F1 and F2 are
harmonic functions, i.e., (∂2

x + ∂2
y)Fi(x, y) = 0, i = 1, 2. In the next section we shall

deal with this property of the stochastic transforms.

6. The main result on stochastic transforms

The first result deals with a characterization of the stochastic invariants on the
stochastic line R̂.

Theorem 6.1. f : R̂ → R̂ is a stochastic invariant if and only if f(x) is a linear
function.

Proof. Let x̂ = x + ε, with ε ∼ N(0,
√

t). We have

E
(
f(x + ε)

)
=

∫
f(u)ϕt(u− x) du =

∫
f(x + v)ϕt(v) dv.

Since f is a stochastic invariant

E
(
f(x + ε)

)
= f(x),

and hence
f(x) =

∫
f(x + v)ϕt(v) dv.

Differentiating twice with respect to x and integrating by parts yields

f ′′(x) =
∫

f ′′(x + v)ϕt(v) dv =
∫

f(x + v)∂2
vϕt(v) dv = 2

∫
f(x + v)∂tϕt(v) dv
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= 2∂t

∫
f(x + v)ϕt(v) dv = 2∂tf(x) = 0,

and hence f(x) is linear in x.
The converse statement follows from the linearity of the expectation operator E. ¤

The next result extends the previous one to the 2-dimensional case.

Theorem 6.2. Let P̂ = R̂× R̂ be the stochastic plane. Then F = (F1, F2) : P̂ → P̂
is a stochastic transform if and only if the components F1 and F2 are harmonic
functions, i.e. (∂2

x + ∂2
y)Fi = 0, i = 1, 2.

Proof. Assume F = (F1, F2) is a stochastic transform. Let x̂ = x + ε, ŷ = y + ε′,
with ε, ε ∼ N(0,

√
t), independent stochastic variables. Let ϕt(x) be the density

function of a normally distributed random variable with zero mean and variance t.
It is known that this is the heat kernel for the operator ∂t − 1

2∂2
x, so

(6.1) 2∂tϕt(x) = ∂2
xϕt(x), t > 0.

Since x̂ and ŷ are independent random variables, their joint distribution function is
the product of their density functions. Using this fact we have

E
(
F1(x̂, ŷ)

)
=

∫∫
F1(u, v)ϕt(u− x)ϕt(v − y) dudv

=
∫∫

F1(w + x, z + y)ϕt(w)ϕt(z) dwdz.

Since F is a stochastic transform, E
(
F1(x̂, ŷ)

)
= F1(x, y). Then the previous rela-

tion yields

F1(x, y) =
∫∫

F1(w + x, z + y)ϕt(w)ϕt(z) dwdz.

Differentiating twice with respect to x and using integration by parts yields

∂2
xF1(x, y) = ∂2

x

∫∫
F1(w + x, z + y)ϕt(w)ϕt(z) dwdz

=
∫∫

F1(w + x, z + y)∂2
wϕt(w)ϕt(z) dwdz,

and using relation (6.1) we have

(6.2) ∂2
xF1(x, y) = 2

∫∫
F1(w + x, z + y)∂tϕt(w)ϕt(z) dwdz.

Similarly, we obtain

(6.3) ∂2
yF1(x, y) = 2

∫∫
F1(w + x, z + y)ϕt(w)∂tϕt(z) dwdz.

Adding (6.2) and (6.3) we get
1
2
(
∂2

x + ∂2
y

)
F1(x, y) =

∫∫
F1(w + x, z + y)∂t

(
ϕt(w)ϕt(z)

)
dwdz

= ∂t

∫∫
F1(w + x, z + y)

(
ϕt(w)ϕt(z)

)
dwdz
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= ∂tE
(
F1(x̂, ŷ)

)
= ∂tF1(x, y) = 0,

and hence F1 is a harmonic function. Similar considerations apply to the component
F2.

In order to prove the converse, we assume the functions Fi harmonic and show
that F is a stochastic transform. It suffices to show that the components Fi are
stochastic invariants.

We make the remark that the definition property of the stochastic invariant
f : R̂× R̂→ R̂

E(f(x̂)) = f(E(x̂))

corresponds to the mean property of harmonic functions. If x̂ ∈ R̂× R̂ is a Gaussian
random variable centered at x, then E(f(x̂)) is the average of f(x̂) over the entire
stochastic plane. For f harmonic we have

E(f(x̂)) = average(f(x̂)) = lim
R→∞

1
πR2

∫

|u−x|≤R
f(u) du = f(x) = f(E(x̂)).

Applying this argument for f = Fi, i = 1, 2, shows that Fi are stochastic invariants.
¤

Corollary 6.3. Any stochastic transform F = (F1, F2) has analytic components.

Proof. It follows from the fact that harmonic functions on R2 are real parts of
holomorphic functions. ¤

Corollary 6.4. Let U be an open set in the plane. If F and H are two stochastic
transforms with F|U = H|U , then F = H.

Proof. It follows from Corollary 6.3 and the identity theorem of two analytic func-
tions. ¤

7. The geometry induced by U(S)

We are interested in the study of those properties of the plane that remain un-
changed when the points of the plane are subject to the transformations of the
group U(S). If Isom is the isometries group of the plane, then Isom is a proper
subgroup of U(S), and hence all the properties invariant by U(S) are also invariant
by Isom.

Next we shall provide an example of a class of transformations of U(S).

Proposition 7.1. Let F = (F1, F2) : R2 → R2 be a nonconstant function which
satisfies the Cauchy-Riemann system of equations

∂F1

∂x
=

∂F2

∂y

∂F1

∂y
= −∂F2

∂x
.

Then F ∈ U(S).
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Proof. Using the Cauchy-Riemann equations, we have

∂2F1

∂x2
+

∂2F1

∂y2
=

∂

∂x

∂F2

∂y
− ∂

∂y

∂F2

∂x
= 0,

so F1 is harmonic. In a similar way F2 is harmonic. In order to show that F is
invertible we compute its Jacobian using the Cauchy-Riemann equations

|JF | =
∣∣∣∣∣

∂F1
∂x

∂F2
∂x

∂F1
∂y

∂F2
∂y

∣∣∣∣∣ =
(∂F1

∂x

)2
+

(∂F1

∂y

)2
=

(∂F2

∂x

)2
+

(∂F2

∂y

)2
6= 0.

¤
If consider R2 = C and write F = F1 + iF2, then F becomes a biholomorphic

function. It is known that the biholomorphic transforms are conformal, i.e. preserve
angles between lines and curves. Hence a transformation given by Proposition 7.1
preserves angles. For instance, if choose the holomorphic function F (z) = ez =
ex+iy = ex cos y + iex sin y, then F = (F1, F2) = (ex cos y, ex sin y) is a stochastic
transform, which preserves angles.

8. Stochastic invariants and Brownian motions

Assume that the coordinates of the stochastic point M̂ change with respect to
time t according to the laws

x̂t = x + W1(t), ŷt = y + W2(t), t ≥ 0,

where W1(t), W2(t) are independent 1-dimensional Brownian motions starting at
0. Consider the stochastic transform F = (F1, F2) : P̂ → P̂. The stochastic point
F (M̂) has the coordinates

(ût, v̂t) =
(
F1(x̂t, ŷt), F2(x̂t, ŷt)

)
.

Applying Ito’s formula yields

dût =
∂F1

∂x
dW1(t) +

∂F1

∂y
dW2(t) +

1
2

(
∂2F1

∂x2
+

∂2F1

∂y2

)
dt

dv̂t =
∂F2

∂x
dW1(t) +

∂F2

∂y
dW2(t) +

1
2

(
∂2F2

∂x2
+

∂2F2

∂y2

)
dt.

Since the functions F1, F2 are harmonic, see Theorem 6.2, we have

dût =
∂F1

∂x
dW1(t) +

∂F1

∂y
dW2(t)

dv̂t =
∂F2

∂x
dW1(t) +

∂F2

∂y
dW2(t),

which after integration yields

ût = û0 +
∫ t

0

∂F1

∂x
dW1(s) +

∫ t

0

∂F1

∂y
dW2(s)(8.1)

v̂t = v̂0 +
∫ t

0

∂F2

∂x
dW1(s) +

∫ t

0

∂F2

∂y
dW2(s),(8.2)
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which are the coordinates of the point F (M̂). Since the Ito integral is a martingale,
these coordinates satisfy

E(ût, v̂t) = (û0, v̂0) = (x, y) = F
(
E(M̂)

)
.

Moreover, the coordinates (8.1–8.2) represent versions of the 1-dimensional Brow-
nian motions starting at (x, y) with a certain time scale. Applying Corollary 8.5.3
of [2], p. 154 yields

ût = x + W1

(
α1(t)

)
, v̂t = y + W2

(
α2(t)

)
,

with αi(βi(t)) = βi(αi(t)) = t, t ≥ 0, where

βi(t) =
∫ t

0
‖∇Fi‖2(W1(s),W2(s)) ds.

In the particular case, when F = F1 + iF2 is holomorphic, then after a certain
change of the time scale, the process (ût, v̂t) becomes a 2-dimensional Brownian
motion, see [2], p. 158.

For more properties of Brownian motion the reader may consult [3] and [1].
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